
An Approach to Magnetometer-free
On-body Inertial Sensors Network

Alignment

Michael Lorenz ∗ Bertram Taetz ∗ Gabriele Bleser ∗

∗ Technische Universiät Kaiserslautern, Kaiserslautern, Germany
(e-mail: {surname}@cs.uni-kl.de).

Abstract: To capture human motion with inertial sensors, they are attached as a network on
different segments. Typically the measurements received from each sensor are fused to obtain its
orientation. A challenging task is to align the orientation of each sensor w.r.t. to a single common
coordinate frame. To fulfill this task typically the local magnetic field is measured to provide
information about the heading direction. Since especially in indoor environments magnetic
field disturbances can be present, this information is not a reliable source. To overcome this
problem, we present a method that aligns an on-body inertial sensor network using gyroscopes
and accelerometers only. The subject wearing the network had to fulfill a predefined procedure,
consisting of standing still and walking straight. To extract the heading direction, we estimated
the linear acceleration and angular velocity using a maximum-a-posteriori estimator. Performing
a principal component analysis on the estimated states we computed two heading directions
for each estimate. Instead of using them separately, we used a fusing approach that exploits
symmetrical effects. We validated the approach on a lower body configuration using an optical
motion capture system. The heading direction of sensors attached on a single leg could be
aligned up to median maximal deviation of 2.6 degrees and on the complete lower body of 6.6
degrees. Especially deviations of the pelvis were higher, due to a lack of motion excitation. To
be able to quantify the excitation needed, we proposed an indicator based on the ratio of the
eigenvalues of the principal component analysis of the angular velocities.

Keywords: Human body motion capture, inertial sensors, sensor network, sensor alignment,
spatial synchronization, motion estimation, information and sensor fusion, parameter and
state estimation.

1. INTRODUCTION

The microelectromechanical systems (MEMS) technology
allows to construct inertial measurement units (IMUs),
also called inertial sensors, which are small, light-weighted
and have a low power consumption. As Aminian and Najafi
(2004) pointed out, this allows to attach them on the hu-
man body and apply them in numerous applications such
as sports, rehabilitation or daily life monitoring. Usually
MEMS IMUs are also equipped with a magnetometer,
which allows them to measure the local magnetic field.
Combining several IMUs in a sensor network attached to
the human body, they are used in order to solve different
tasks, like human body motion tracking or human motion
analysis, as for instance done by Teufl et al. (2019), von
Marcard et al. (2017) and Prathivadi et al. (2014). Usually
such tasks are solved by first estimating the orientation
of the moving body parts w.r.t. to a common coordinate
frame (L), see Fig. 1. In a subsequent step the orientations
are used to resolve the original problem. Regarding gold
standard systems for human motion capturing, meaning
optical motion capturing systems based on reflective mark-
ers, the primal task of obtaining the orientation w.r.t. to a
reference coordinate frame is comparably simple. As shown
in Guerra-Filho (2005), optical systems are able to capture
the positions of markers w.r.t. to a local coordinate frame
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Fig. 1. The figure shows the experimental setup for the
validation of our approach using seven IMUs and an
optical motion capturing system. The common local
coordinate frame (L) is used to orientate each IMU.
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(L), see Fig. 1. Assuming that minimum three markers
are attached rigidly on a body, also the orientation of
the body can be computed w.r.t. to the local coordinate
frame. Hence camera based systems capture all markers
from the outside and then estimate the orientation w.r.t.
to a local system. In contrast obtaining the orientation of
each IMU is rather a challenging task when using inertial
sensor network based systems. Each IMU of a network has
to measure two different 3D vectors in its IMU coordinate
frame. In addition the reference measurements in the local
coordinate frame (L) have to be known. When both are
given the measurements can be used to fuse the orientation
of each sensor w.r.t. to the local coordinate system (L).
The two 3D measurement vectors are typically obtained
from different common measurable sources. One of the
sources is typically gravity, which is measured by the
accelerometer when the sensor is remaining still. With
this the inclination of a sensor w.r.t. to gravity can be
computed, see Kok et al. (2017). To know in which direc-
tion each sensor is heading, typically as a second source
the local magnetic field measured by a magnetometer is
used. For outdoor environments this might be a valid
assumption. However, in indoor environments the mag-
netic field can be disturbed by ferromagnetic materials as
shown by de Vries et al. (2009). Hence when initializing the
orientation using measurements of the local magnetic field,
the heading direction of each sensor might be corrupted.

There are magnetometer-free human motion tracking so-
lutions, like Kok et al. (2014) or Taetz et al. (2016),
which, however, need a single magnetometer measure-
ment for each IMU to align the sensor network at the
beginning of the tracking procedure. To get rid of this
single measurement an alternative common source of the
heading direction, which does not rely on the magnetic
field, has to be introduced. In literature there exist several
approaches of which only some can be used to align a
inertial sensor network. All further mentioned solutions
assume that the person carrying the sensors is walking
straight for some time. Published work dealing with in-
door positioning solutions uses mainly accelerometers to
tackle related problems. Kunze et al. (2009) estimates the
heading direction of a device in the trouser’s pockets using
a principle component analysis (PCA) on heuristically
preprocessed raw accelerometer data. A similar approach
to infer a heading direction for indoor navigation purposes
is presented by, Hoseinitabatabaei et al. (2011), Kim et al.
(2014) or Deng et al. (2015). It is an open question how
well the latter approaches perform when aligning an in-
ertial sensor network. There are also indoor positioning
approaches which compute heading directions avoiding a
PCA. For instance Nguyen et al. (2016) uses gyroscope
and accelerometer measurements to compute the change
of the heading direction of a single smartphone. However,
since the change of the heading is considered, it is an open
question whether this method is capable to align several
IMUs in a network. The specific task of aligning an inertial
sensor network is addressed in Xie et al. (2018). They
show that it is possible to align five smartphones and a
smart glass located at the upper part of the human body
quite accurately. They use accelerometer signals when a
person is moving to extract the heading direction using
a PCA. Additionally gyroscope data is only used in an
orientation tracking procedure. Recently Nazarahari and

Rouhani (2019) applied a gyroscope-based solution to the
field of biomechanics. To obtain the sensor-to-body cali-
bration of inertial sensors attached to lower limbs the com-
mon heading information is extracted using the gyroscope
measurements. Here a PCA on gyroscope measurements is
used to obtain information about the heading.

The novelty of this work is a method which estimates a
heading direction for each sensor of the network w.r.t.
to a local coordinate system exploiting symmetrical ef-
fects between angular velocities and accelerations when
a person is walking straight. Using additionally informa-
tion about the inclination of each sensor w.r.t. to gravity
the on-body inertial sensor network can be aligned. In
a first step angular velocities and linear accelerations of
each sensor are estimated using a Bayesian smoothing
approach. Performing a PCA on each estimate we are
able to extract two directions from each estimate. The
two heading directions from angular velocity and linear
acceleration are fused to a common heading direction
exploiting symmetries between them. Experimental results
show that the combined heading estimate outperforms the
ones obtained using acceleration or angular velocity only
as done in previous works. Also we propose an indicator
to detect, when a body part/segment underwent sufficient
movement to extract the heading direction. The approach
is validated on a lower body configuration with an optical
motion capture system.

The work is structured as follows: After the approach of
extracting a common heading direction using gyroscope
and accelerometer data is explained in Section 2, we
evaluate it using an optical reference system in Section 3.
For this we use a setup with seven IMUs fixed in casings
equipped with four reflective markers attached to the lower
body as illustrated in Fig. 1. Based on the results of the
evaluation, Section 4 presents a critical discussion of the
performance. The work is completed by conclusions and
possible future work in Section 5.

2. METHOD

Our approach to find a common heading direction given an
on-body inertial sensor network requires the fulfillment of
a pre-defined procedure. This procedure is schematically
summarized in Fig. 2 by the white boxes. First, the person
has to stand still for about a second. In this period the
inclination of each sensor w.r.t. to gravity is computed. In
a second step the person has to walk for some steps into a
predefined direction. To have enough excitation to extract
a common heading direction, we assumed a minimum
of three steps. Given the measurements we extracted a
common heading direction the following way: First we
computed a maximum-a-posteriori (MAP) estimate of the
linear acceleration at, angular velocity ωt and orientation
χt in a navigation frame associated to the sensor, which
is explained in Section 2.1. Afterwards based on a PCA
of the estimated states we extracted a common heading
direction. This procedure is described in Section 2.2.
Having a common heading direction in Section 2.3 the
procedure of aligning the inertial sensors is described.
The necessary computational steps are summarized by the
colored boxes of Fig. 2.
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Fig. 2. Schematic description of the method to obtain a
common heading direction for inertial sensor network
alignment w.r.t. to a common local frame. The white
boxes indicate the physical actions of the person. The
colored boxes summarize the computational steps.

Before explaining the computational steps we introduce
the needed coordinate frames. The coordinate frame of the
ith inertial sensor Ii is aligned with the accelerometer
triad and its coordinate axes are aligned with the casing
of the sensor. Measurements obtained are given in this
coordinate frames. The z-axis of the local coordinate
frame L is aligned with gravity and the y-axis is aligned
with the common heading direction extracted via the
proposed method. These coordinate frames are illustrated
in Fig. 1. In addition a navigation coordinate frame
Ni associated to an inertial sensor i is needed. Like the
local frame, its z-axis is also aligned with gravity but its
y-axis is pointing into an arbitrary heading direction. A
rotation matrix RNiIi ∈ R3x3 rotates a three dimensional
vector from the ith IMU coordinate frame to its navigation
frame. The inverse rotation is given by

RIiNi =
[
RNiIi

]T
. (1)

2.1 Estimating the States

Instead of extracting a common heading direction from
the raw sensor data directly, we used the gyroscope and
accelerometer measurements in a sensor fusion approach
to obtain the orientations and linear accelerations without
gravity. This has the advantage that we were directly
able to extract the estimated states in a plane orthogo-
nal to gravity. Typical solutions use a Bayesian Filtering
approach like an Extended Kalman Filter to obtain the
estimated states. Its recursive nature allows fast computa-
tions. However, this is at the cost of a decreased accuracy.
In contrast Bayesian Smoother approaches incorporate all
information given a set of measurements and showed to
be more robust in the presence of missing or corrupted
data. In particular we computed a MAP estimate of the
state trajectory for each sensor. As shown in Kok et al.
(2017) the estimates obtained by such an estimator are
more stable and accurate than the ones using an Extended
Kalman Filter, especially when the sampling rates are low.
Since an optimization problem has to be solved, this is
achieved at the expense of an increased computational
complexity.

The estimated states included orientation, linear acceler-
ation and angular velocity. To represent orientations at
a certain time t we made use of re-projected Modified
Rodriguez Parameters (MRP) χNiIit ∈ R3 as applied in
Lorenz et al. (2019). In contrast to unit quaternions and
their implied unity constraint, using this parametrization
we avoided additional effort when solving the optimization
problem (4). The linear acceleration of a sensor i in its

navigation frame at time instance t is denoted by aNit ∈ R3.
The angular velocity at time instance t was estimated in
the IMU coordinate frame ωIit ∈ R3. Its representation in
the navigation frame was obtained by rotating it using the
estimated orientations as

ωNit = R(χNiIit ) ωIit . (2)

The rotation matrix with bold font R(χNiIi) denotes a
conversion from MRPs to rotation matrices. Note that the
states were estimated for each sensor individually in its
navigation frame.

Assuming that N measurement samples contained the
still-standing and walking phase the complete trajectory
was estimated for a window of the same size. We therefore
defined the vector of stacked states of time instance t as

xt = [ (χNiIit )T (ωIit )T (aNit )T ]T . (3)

With the assumption of Gaussian noise, the MAP estima-
tor was analogously to Lorenz et al. (2019) formulated as
the weighted nonlinear least square problem

x̂1:N = argmin
x1:N

||e1||2P−1
1︸ ︷︷ ︸

prior

+

N∑
t=1

(
||va,t||2R−1

a
+ ||vω,t||2R−1

ω

)
︸ ︷︷ ︸

sensor measurements

+

N−1∑
t=1

(
||wχ,t||2Q−1

χ
+ ||wω,t||2Q−1

ω
+ ||wa,t||2Q−1

a

)
︸ ︷︷ ︸

dynamics

.

(4)

Here x1:N indicates the stacked vector of the states of all
time instances. The solution to the optimization problem
is the estimate and is denoted as x̂1:N . The optimiza-
tion problem (4) can be solved using standard methods
like the Gauss-Newton or Levenberg-Marquardt method
as explained in Nocedal and Wright (2006). Note, that
the problem was solved for each sensor of the network
individually. The terms of weighted sums are explained
in the following.

Prior We assumed that the person is standing still for
the beginning of the measurements for a predefined time.
Although the human being is barely able to stand perfectly
still, the accelerometer measurements showed only very
low deviations from a static value. We defined that the
acceleration measurements resulted only due to gravity.
To account for small fluctuations we averaged the mea-
surements for this period. Consequently we obtained an
estimate of the gravity vector gIi for each sensor in its own
IMU coordinate frame. We then defined an artificial head-
ing direction measurement m̃Ii ∈ R3 : gIi ⊥ m̃Ii pointing
in arbitrary direction. It was computed applying the cross
product as

m̃Ii = gIi × u , (5)
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where we defined the random vector u ∈ R3 : u 6= k gIi ,
and k ∈ R. With m̃Ii and gIi we then computed the prior
orientation χ̄NiIi1 w.r.t. to the navigation coordinate frame
Ni using the triad method of Black (1964).
Since we assume that the sensor network is remaining
still at the beginning the prior states on acceleration and
angular velocity are zero. Having priors for the initial
states the residual terms were computed as

e1 =

χ̄NiIi1 − χNiIi1

ωIi1
aNi1

 , (6)

where e1 is assumed to be zero-mean Gaussian distributed
with some known covariance matrix as e1 ∼ N (0, P1).

Sensor Measurements Using the terms of the sensor
measurements in (4), we extracted the estimated states
from the measurements. We modeled these terms as

ya,t,i = R(χNiIit )T (aNit − gNi) + va,t , (7a)

yω,t,i = ωIit + vω,t . (7b)

Here ya,t,i indicates the accelerometer measurement and
yω,t,i the gyroscope measurement at time instance t of sen-
sor i. The gravity in the navigation frame, which is by defi-
nition the same as in the local coordinate frame, is given by
gNi . The noises va,t and vω,t are assumed to be Gaussian
distributed as va,t ∼ N (0, Ra) and vω,t ∼ N (0, Rω).

As Xing et al. (2017) pointed out, the effect of gyro-
bias of MEMS IMUs does not have severe influence on
estimates of short time considerations. Without loss of
generality we omit the treatment of biases here and assume
that the measurements are bias free or at least bias
compensated. However, an inclusion of bias estimation is
rather straightforward and can be found e.g. in Kok et al.
(2017).

Dynamics Terms of the dynamics in (4) take care of the
coupling between states of two consecutive time instances.
Since the angular velocity is represented as rotation vec-
tors and our orientation is estimated as re-projected MRPs
we proceed the coupling over time by converting them to
unit quaternions as

q(χNiIit+T ) = q(χNiIit )� q
(
T
(
ωIit + wχ,t

))
. (8)

The conversions can be found in the work of Markley and
Crassidis (2014) and are indicated by the q( ) operator.
The sampling interval is given by T . We assume the process
noise to be wχ,t ∼ N (0, Qχ). The dynamics of angular
velocity and acceleration were modelled as random walk

ωIit+T = ωIit + wω,t , (9a)

aNit+T = aNit + wa,t . (9b)

Consequently the corresponding noises are modeled as
wω,t ∼ N (0, Qω) and wa,t ∼ N (0, Qa).

2.2 Obtaining a common heading direction

Since for the alignment of the sensory network only a
common heading direction is needed the components in
direction of gravity were omitted. The z-component of
linear acceleration in the navigation frame is dropped
from here on. The angular velocities were estimated in the
IMU coordinate frame. To obtain them in the associated
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Fig. 3. Estimated values for horizontal linear accelera-
tion and angular velocity in the navigation coordi-
nate frame. The plots contain estimates of the still-
standing period and three steps of an IMU attached
on the left shank.

navigation frame, they were rotated using the estimated
orientations χ̂NiIit and applying (2). From here on the
z-component of the angular velocity is also dropped. Given
horizontal linear accelerations and angular velocities for
each time instance we performed a PCA as described in
Jolliffe (2002). The results of this procedure are illustrated
in Fig. 3 for estimates of a left shank.

Rotations of the legs take mainly place in the sagittal
plane, compare figure Fig. 1. Hence it can be assumed
that the vectors of angular velocity are mainly parallel
to the normal of the sagittal plane. The first principle
component, shown as a red arrow in Fig. 3, reflects this
behavior. For this reason the second principle component,
which is orthogonal to the dominant component, is point-
ing in the direction of walking. Body parts which are not
actively taking part in the bipedal walking locomotion
such as the pelvis show the same behavior. However, for
such body parts the first component was not as dominant
as shown in Fig. 3. Since linear accelerations are acting
in direction of walking one might assume that the first
component is dominating the second. Hence the direction
could be extracted from the first component. This might
hold for the lower limbs. Pilot experiments showed that
this assumption is not reliable for the pelvis. This is es-
pecially the case when the person starts to walk slowly
and only low accelerations are acting in the horizontal
plane. For this reason we assumed that the common head-
ing obtained from the angular velocity only, mNi

ω ∈ R3 :
||mNi

ω ||2 = 1, was the second principle component of the
horizontal angular velocity normalized to unity length. To
obtain a heading direction from the linear acceleration,
mNi
a ∈ R3 : ||mNi

a ||2 = 1, we computed dot products be-
tween the normalized principle components of the linear
acceleration and mNi

ω . The component with a closer value
to ±1 was selected as mNi

a .

Since principle components are ambiguous regarding their
sense of direction, our computed directions are also am-
biguous regarding their sign. To avoid this ambiguity we
aligned mNi

ω and mNi
a into direction of walking. To detect

the forward direction, we used the same idea as done by
Kourogi and Kurata (2003). When the person starts to
walk during the time period k ∈ [W1,Wend] the low-pass
filtered horizontal accelerations ãWk

were pointing into
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walking direction. Computing the dot product between the
heading direction mNi

a and ãW1:Wend
it had to be

mNi
a · ã

Ni
W1:Wend

> 0 . (10)

If (10) was negative, then mNi
a had to be multiplied by −1.

To obtain the right sense of direction for mNi
ω the same

procedure using mNi
a was applied. Therefore the equation

mNi
ω · mNi

a > 0 , (11)

had to be fulfilled if the sense of direction was correct.

To understand the idea behind a heading direction which
was computed combining mNi

ω and mNi
a , we make use

of an exemplary result which is illustrated in Fig. 4.
The graphic shows the estimated two individual head-
ing directions for a lower body configuration. The mean
values (green arrows) of the methods are pointing in a
similar direction. However, in many cases directions of
the segments were distributed symmetrically comparing
mNi
ω and mNi

a . For instance the direction of the pelvis
(black line) is on the right side of the mean for the case
of linear acceleration and on the left side for the angular
velocity. Both deviate about the same angle. To avoid these
symmetrical deviations from the mean, we computed for
every sensor i the combined common heading direction
mNi
c ∈ R3 : ||mNi

c ||2 = 1 as

mNi
c =

mNi
ω +mNi

a

||mNi
ω +mNi

a ||2
. (12)

The result of this procedure for this example is illustrated
in Fig. 5.

2.3 Aligning the sensors to a common coordinate frame

Having an estimate of a common heading direction, each
sensor was aligned from its associated navigation coor-
dinate frame to a common local coordinate frame (L).
Therefore each sensor’s individual estimate of the common
heading direction mNi

c was rotated into its IMU coordinate
frame to obtain mIi

c , using the inverse operation of (2).
Consequently for each measurement of the IMU an ad-
ditional measurement of a common heading direction is
given in terms of the IMU coordinate frame. All inertial
sensors of the network were aligned into one common
local coordinate frame, using the triad method, as in
Section 2.1.1.

2.4 Experimental setup

The presented approach was evaluated using a setup as
depicted in Fig. 1.

Data Acquisition We captured the lower body using
seven IMUs (MTW Awinda Xsens Technologies BV, En-
schede, The Netherlands). They were rigidly set into a
custom 3D printed casing with four reflective markers.
The casing and IMUs were attached on the pelvis, thighs,
shanks and feet using elastic stripes. An optical motion
capture system (13 OptiTrack Prime Cameras Natural-
Point Inc. Corvallis, OR, USA) was used to track the re-
flective markers of the casing. Both systems were hardware
synchronized using a standard 5V transistor-transistor-
logic signal. We recorded data at a sampling frequency of
60 Hz. The alignment between the IMU coordinate frames
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Fig. 4. Estimated common heading directions of acceler-
ation only and angular velocity only. The plot shows
the direction in the local frame for each segment of
the lower body. The resulting directions were com-
pared using an optical reference system as described
in Section 3.

and the optical reference system (hand eye) was computed
using the measured angular velocities as done by de Vries
et al. (2009). The bias of the gyroscopes was estimated in
a calibration procedure as done by Kok et al. (2017). The
gyroscopes measurements were then compensated by the
estimated bias.

Subjects and motions Thirteen healthy subjects (eight
female and five male) were asked to stand still for about
a second and then walk straight at a self-chosen speed. A
trajectory of N = 330 samples was smoothed to obtain
the estimated states. During this period the persons made
three to seven steps. Two persons were walking with an
approximate speed between 0.5m/s and 0.6m/s. Three
persons were walking with an approximate speed between
0.6m/s and 0.8m/s. All other persons were walking with
an approximate speed of 0.8m/s to 1.04m/s.

Quantifying deviations When we initialize the the prior
on the orientation χ̄NiIi1 as described in Section 2.1.1, each
heading measurement mNi

c , mNi
ω and mNi

a are obtained in
its navigation coordinate system. Since they may be not
perfectly aligned with each other, quantifying deviations
among the senors is not possible. To evaluate the devia-
tions we have to be able to compare the estimates in a
pre-aligned coordinate system. For this reason the prior
on the orientation χ̄NiIi1 of (6) was taken from the optical
reference system for each sensor. Hence, all obtained esti-
mates of the heading directions mNi were computed in the
coordinate system of the optical motion capturing system.
It was thus possible to compare the heading estimates with
each other and to quantify the deviations among them.

3. EXPERIMENTAL RESULTS

Example results for one subject using the different meth-
ods are presented in Fig. 4 and Fig. 5. Except for one case
all heading directions were pointing in a similar manner
into direction of walking. We compared the deviations
w.r.t. to a mean direction computed using all segments.
The results are illustrated using box plots in Fig. 6. Recall
that in a box plot the half of the values are given in the
colored boxes and the other half is located in the region
of the “antennas”. The median values are illustrated as
a red line in the box. The proposed combined approach
outperformed the other solutions. The median values for
the combined approach were on average closer to the
mean direction. Also variances, which can be estimated
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by the size of the boxes and antennas, were smaller and
the robustness concerning outliers increased. Note, that
the median values were nearly symmetrical distributed for
the same segments of different sides. For instance was the
median value mL

c of the right foot was −4.4◦ away from
the mean and of the left foot was 3.1◦ away.

We also compared the maximal deviations from the mean
direction w.r.t. different configurations of segments, which
is illustrated in a box plot in Fig. 7. The values indicate
how far the worst estimate was away from the mean direc-
tion. The deviations for single legs only were comparably
low. For example was the median of maximal deviations
for the combined approach at 2.6◦ for the right leg and
at 2.4◦ for the left leg. The mean value for both legs
was with 2.8◦ slightly higher than the median but in the
same range. The single approaches performed with median
values over 5◦ maximal deviation worse. Due to the sym-
metries mentioned before the maximal deviations for both
legs increased. The combined approach yielded a median
of 5.4◦. With the linear accelerations we achieved a value
of 7.1◦ and with angular velocity 10.4◦. Aligning both legs
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Fig. 5. Estimated common heading direction using the
combined approach of acceleration and angular veloc-
ity (left plot). The right plot shows as a comparison
the estimated heading direction using magnetometer
measurements of the magnetic field. The meaning of
the lines is the same as in Fig. 4.
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Fig. 6. The green boxes indicate the values using only
acceleration mL

a . The yellow boxes indicate the values
using only angular velocity mL

ω and the purple boxes
indicate the values using the combined approach mL

c .
The thick red line in each colored box represents the
median value for the direction. The dashed line at zero
indicates the mean heading directions mean(mL

a/ω/c)

of the three different methods using all segments. The
rot crosses outside the boxes represent the outliers.
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Fig. 7. The meaning of the boxes is the same as in Fig. 6.

only the spread of maximal deviations for the combined
approach had a maximal value of 6.6◦ and a minimal
value of 4.4◦, not including outliers. As illustrated in the
column of the lower body in Fig. 7, adding the pelvis into
consideration yielded poorer results. The maximal value
for the maximal deviation reached 17.7◦ for the combined
approach, not including the outlier. However, the minimal
value for the maximal deviation is with 2.98◦ fairly low.
Comparing the column for the pelvis in Fig. 6, it is clear
that the significant increase of the variance for the lower
body configuration is caused by the high variance of the
estimates for the pelvis. Although the variance increased,
considering the median value with 6.6◦ for the combined
approach, it can be stated that it is only 0.8◦ worse than
for median value of both legs. The mean value for a lower
body configuration was at 12.0◦ fairly high. The significant
difference to the median value is caused by an outlier.

In general legs exceeded enough excitation during walking.
The difference between the estimates for persons who
walked about 1.0m/s or slower than 0.8m/s was marginal.
However, regarding the pelvis the amount of excitation
significantly determined the quality of the heading esti-
mate. The pelvis of four subjects did not perceive enough
excitation to distinguish the walking direction. All four
subjects were walking with small steps and managed to
perform more than five steps. Two of them were walking
less than 0.7m/s and two of them about 1.0m/s. In these
cases the estimated pelvis heading direction was corrupted
by a lack of directional information. The ratio between
the eigenvalues of the principle components of the angular
velocity was smaller than two. In one particular case,
where a female subject was walking five steps with a
speed of 0.56m/s the ratio was at 1.2. Here the second
principal component of the horizontal angular velocity was
pointing orthogonal to the common heading direction. For
this reason the forward direction could not be extracted
from the second component as assumed in Section 2.2. This
particular result of the pelvis is not visible in Fig. 6 and
Fig. 7. They are marked as outliers beyond the scope of the
plots. Also the principle components of the acceleration
with the higher eigenvalues did not always point into
direction of walking. For overall two cases the direction
with the higher eigenvalue was also pointing orthogonal to
the walking direction.
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4. DISCUSSION

We showed that the introduced method is in general
capable of aligning several inertial sensors in a network
attached to the human body. Estimating the heading
direction for a single leg performed with average value
of 2.8◦ for the maximal deviation fairly well. However,
if a common heading direction for all seven IMUs of the
lower body was computed, the result was poorer. With
an mean maximal deviation of 12.0◦ and median value
of 6.6◦ for the lower body, it is an open question if such
estimates are still valid to align an inertial sensor network
in practice. The estimates of the lower body configuration
suffer mainly from the heading estimate of the pelvis.
For this body part it is important that enough excitation
is present. The question how much excitation is needed
remains still open. A suitable indicator might be the ratio
of the eigenvalues of the angular velocity. For subjects
having a ratio greater than two the estimated states had
enough information to extract the heading direction using
a PCA. However, this indicator only works under the
assumption that the more excitation is present the higher
are the amplitudes of angular velocity in the sagittal plane
of the moving person. For this reason more investigations
in this direction have to be undertaken.

During walking with a constant velocity the motion excita-
tion of the pelvis is not that high as for example of the feet.
A possibility to induce more excitation especially to the
pelvis can be a different walking procedure. An example
could be that the person first stands still, then walks
for some steps straight and stands still again. Because of
the additional stop some beneficial information might be
induced, which could improve the results.

So far we computed the combined heading direction mNi
c

in (12) using a simple arithmetic mean. We performed
also experiments on a version using a combination of the
individual directions mNi

ω and mNi
a weighted by the eigen-

values. However, since the magnitudes of the eigenvalues
are of different orders it did not perform as well as the
simple approach.

As de Vries et al. (2009) points out to avoid disturbances
in the magnetic field a minimum distance of 100 cm to
the irregularity causing materials should be preserved.
Assuming that the main disturbances are caused by the
ground one could apply a hybrid solution consisting of
magnetometers and the proposed approach. Since aligning
sensors on the legs performs fairly well, this could be used
to align all sensors of the legs individually and then use
the magnetic field to align other segments, which do not
have enough excitation, with the upper legs. Here the ratio
of the eigenvalues of the angular velocity can be used as a
measure of excitation.

In literature the heading direction estimation just using a
PCA on the linear accelerations is very common. However,
in our experimental setup using just linear accelerations
to extract the heading direction did not perform as well.
This might be due to the fact that we also considered low
walking velocities and hence low excitations.

5. CONCLUSIONS AND OUTLOOK

In this work we presented a method that enables an
alignment of an inertial sensor network which is attached
on the human body. From a predefined procedure, where
the person has to stand still and then walk straight, we
extracted a common heading direction. We therefore first
estimated the linear accelerations and angular velocities
for each sensor using a maximum-a-posteriori estimator.
Applying a PCA on each estimate we computed two head-
ing directions for one IMU. Instead of using these heading
directions separately we exploited symmetrical effects to
improve the heading estimate. We therefore computed a
combined heading direction using the arithmetic mean.
Given measures of gravity by the accelerometer and the
combined heading direction the network could be aligned
w.r.t. to a common local coordinate system.

We showed that the heading direction obtained by the
combined approach outperforms an estimate using only
linear acceleration or angular velocity. In particular con-
sidering each leg individually the heading direction could
be extracted up to an average maximal deviation from
the mean of 2.8◦. The estimates of a common heading
direction for all seven IMUs of the lower body were poorer
with an average of 12.0◦ maximal deviation and a median
of 6.6◦. However, latter results origin from a lack of motion
excitation in the pelvis segment. Evaluating the results we
found that the ratio of the eigenvalues of the PCA can
be used as indicator to determine whether enough motion
excitation was present.

We plan to improve the combined estimate of the heading
direction introducing a different walking procedure.
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