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Abstract: In this manuscript we introduce numerical Gaussian process Kalman filtering (GPKF).
Numerical Gaussian processes have recently been developed to simulate spatiotemporal models.
The contribution of this paper is to embed numerical Gaussian processes into the recursive
Kalman filter equations. This embedding enables us to do Kalman filtering on infinite-dimensional
systems using Gaussian processes. This is possible because i) we are obtaining a linear model
from numerical Gaussian processes, and ii) the states of this model are by definition Gaussian
distributed random variables. Convenient properties of the numerical GPKF are that no spatial
discretization of the model is necessary, and manual setting up of the Kalman filter, that is
fine-tuning the process and measurement noise levels by hand is not required, as they are learned
online from the data stream. We showcase the capability of the numerical GPKF in a simulation
study of the advection equation.
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1. INTRODUCTION

Monitoring physical, chemical, or biological systems re-
quires measurements obtained from sensors. These mea-
surements are subjected to stochastic noise. In addition,
technical or financial restrictions might prevent measuring
all properties of interest. State estimation methods help
to overcome both of these obstacles. They filter signal
from noise, and reconstruct latent properties by leveraging
mathematical models of the process at hand. The most
known state estimator is the Kalman filter, see Kalman
(1960). It gives the optimal, in an expected squared error
sense, state estimate for a linear system that is subjected
to additive Gaussian noise. State estimation methods for
infinite-dimensional systems, that is systems described
through partial differential equations (PDEs), are not that
well established. Usually, the PDEs are spatially discretized
into large ODE systems that can be incorporated into the
recursive Kalman filter equations.

In this work, we take a different route founded on Gaussian
process (GP) regression, see Williams and Rasmussen
(2006), and the recently introduced numerical GPs by
Raissi et al. (2018). These are machine learning methods
that unlike in a first principles derivation of a state space
model, work with non-parametric models that adapt to
the data. A GP is a Gaussian distribution over functions
and it is fully defined by a mean function and a covariance
function. When doing regression, a GP prior is placed on
the regressor function. The posterior distribution of the GP
is then calculated by conditioning on measurements and
estimating the so-called hyper-parameters of the covariance
function. An elegant extension to traditional GP regression
to solve (non-)linear time-dependent PDEs, are numerical
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GPs. In this method the PDE is first temporally discretized,
hence the name numerical. From this a multi-output GP
is formulated whose structure, i.e. covariance functions,
is informed by the time-discretized PDE. Propagation
through time is then simply done by iteratively forming the
conditional distribution of this multi-output GP without
having to do numerical integration.

Our contribution lies in embedding numerical GP regression
into the recursive Kalman filter equations. This is possible
because the outputs of the numerical GP are, by definition,
Gaussian distributed, and they relate linearly to each other
through the time-discretized PDE. We therefore obtain a
Kalman filter for infinite-dimensional systems whose under-
lying process model is a first principles structured Gaussian
process. Tedious manual tuning of the Kalman filter is not
necessary anymore as the process and measurement noise
variance are learned dynamically on the data stream.

This paper is structured as follows: we start by introducing
Kalman filtering and (numerical) GP regression in the
methods section. Next, we show how numerical GP re-
gression can be embedded into the recursive Kalman filter
equations to obtain the numerical Gaussian process Kalman
filter (GPKF). Before giving a conclusion, we showcase the
numerical GPKF using a simulation case study of the one-
dimensional advection equation.

Related works: Infinite-dimensional Kalman filtering via
Gaussian process regression has been done previously by
Särkkä and Hartikainen (2012) and Särkkä et al. (2013).
Therein, spatiotemporal GP regression setups are converted
into infinite-dimensional state space models. These can
then be used for infinite-dimensional Kalman filtering. In
numerical Gaussian process regression, the spatiotemporal
model is first discretized in time and then formulated as
a multi-output GP with the spatial coordinates as inputs.
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Finite-dimensional filtering with Gaussian processes has
been done, among others, by Deisenroth et al. (2009),
Deisenroth and Ohlsson (2011), and Ko and Fox (2009).

2. METHODS

We give a brief introduction to Kalman filtering and (nu-
merical) Gaussian process regression. We use the respective
common notations for Kalman filtering (state space models)
and GP regression. Both sections should therefore be
read as separate entities. The notation of numerical GP
regression is oriented after the original work of Raissi et al.
(2018) where the focus lies on spatiotemporal models. In
Section 3 we will unify both frameworks.

2.1 Kalman filtering

Kalman filtering can be used for stochastic filtering of
a signal from noisy online measurements. Furthermore,
it can also be employed to reconstruct non-measurable
states. It does so by using a probabilistic process and
measurement model. In case of linear process dynamics
and an identical, independent Gaussian distributed noise
acting on the process and measurements, the Kalman filter
gives the optimal estimate of the states with respect to the
expected squared error.

What follows is the Kalman filter from a Bayesian perspec-
tive as presented in Särkkä (2013).

Suppose the process and measurement equations are given
as a state space model

xt = Axt−1 + qt−1
yt = Cxt + rt. (1)

Here, xt ∈ Rdx is the state at time t and yt ∈ Rdy is the
measurement at time t. Process dynamics of the model
are given by A ∈ Rdx×dx and the measurement model
matrix is C ∈ Rdy×dx . Process noise qt−1 ∈ Rdx and
measurement noise rt ∈ Rdy are both modeled as white,
additive Gaussian noise with diagonal covariance matrices
Q ∈ Rdx×dx and R ∈ Rdy×dy , respectively. We formulate
(1) as probability density functions from which the Bayesian
viewpoint of Kalman filtering naturally arises

p(xt|xt−1) = N(xt|Axt−1,Q),

p(yt|xt) = N(yt|Cxt,R). (2)
Here the first equation describes the stochastic dynamics of
the system while the second equation gives the distribution
of the current measurement given the current state. These
distributions are Gaussian for all times because the noise
terms are Gaussian random variables, and the process and
measurement equations are linear.

The goal in Bayesian filtering is to compute the marginal
posterior distribution of the state xt at each time step
given all measurements up to the current time step. The
term marginal refers here to the marginalization over the
previous state xt−1. Using Bayes’ theorem we have

p(xt|y1:t) =
p(yt|xt) p(xt|y1:t−1)∫
p(yt)|xt) p(xt|y1:t−1) dxt

. (3)

With a constant data stream of measurements, this quickly
becomes intractable as the measurement history grows
ever larger. The Kalman filter circumvents this problem

by solving this equation recursively starting from a prior
mean m0 and covariance P 0. The predictive, posterior,
and normalizing distribution of (3) can be calculated in
closed form. They are

p(xt|y1:t−1) = N(xt|m−t ,P
−
t ), (4)

p(xt|y1:t) = N(xt|mt,P t), and (5)
p(yt|y1:t−1) = N(yt|Cm−t ,St), (6)

respectively. Moments of the above distributions are
calculated in a prediction step

m−t = Amt−1, (7)
P−t = AP t−1A

T +Q, (8)
and an update step

vt = yt −Cm−t , mt = m−t +Ktvt,

St = CP−t C
T +R, P t = P−t −KtStK

T
t .

Kt = P−t C
TS−1t , (9)

One can derive these equations by formulating the required
conditional, joint, and marginal distributions of the states
and measurements. This procedure can be found in Särkkä
(2013) and we will use it later to derive the numerical
Gaussian process Kalman filter equations.

2.2 Gaussian process regression

Here we give a brief introduction into Gaussian process
regression where we take the function-space view presented
in Williams and Rasmussen (2006). Afterwards we explain
how numerical GP regression by Raissi et al. (2018) is used
to solve time-dependent partial differential equations.

A GP is a Gaussian distribution over a random function
f(x). It is fully defined through its mean function m(x)
and covariance function k(x,x′)

m(x) = E [f(x)]

k(x,x′) = E
[
(f(x)−m(x)) (f(x′)−m(x′))

T
]
.

(10)

Any finite dimensional collection of random variables
f(x1), . . . , f(xl) is jointly Gaussian distributedf(x1)

...
f(xl)

 ∼ N


m(x1)

...
m(xl)

 ,

k(x1,x1) · · · k(x1,xl)
...

. . .
...

k(xl,x1) · · · k(xl,xl)


 .

(11)
Here, we introduce the notation K = K(X,X), with
X = (x1, . . . ,xl) and Kij = k(xi,xj). In regression
we want to learn the function f(x) from possibly noisy
observations of its outputs at known inputs

y(xi) = f(xi) + εi, εi ∼ N(0, σ2
ε ). (12)

For GP regression we place a GP prior on f(x) ∼
GP(m(x), k(x,x′)) and formulate the conditional distri-
bution of the function values to be predicted f(X∗) =
(f(x∗1), . . . , f(x∗p)) at test points X∗, given the observa-
tions y(X) = (y(x1), . . . , y(xl)). To obtain the conditional
distribution, we first formulate the joint Gaussian distribu-
tion of the prediction and observation(

f(X∗)
y(X)

)
∼ N

((
m(X∗)
m(X)

)
,

(
K∗∗ K∗
KT
∗ Ky

))
, (13)

from which we get the conditional distribution using
Lemma 2 (see Appendix)
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f(X∗)|y(X) ∼ N(m(X∗) +K∗K
−1
y (y(X)−m(X)),

K∗∗ −K∗K−1y K
T
∗ ). (14)

Here, measurement noise is accounted for inside Ky =
K + σ2

εI. The covariance matrices in (13) and (14) are
K∗∗ = K(X∗,X∗) ∈ Rp×p and K∗ = K(X∗,X) ∈ Rp×l.

Although GP regression is non-parametric, meaning that
we do not need to define a structure for f(x), we in-
corporate prior information through our choice of the
kernel k(x,x′;θ) and its hyper-parameters θ. The squared
exponential kernel (SE) finds broad application. For scalar
inputs it is

k(x, x′) = σ2exp

(
(x− x′)2

2l2

)
. (15)

The hyper-parameters are the variance σ2 and the length-
scale l.

The hyper-parameters θ can be estimated from the mea-
surement data by minimizing the negative log marginal
likelihood function
−log p(y|X) = + 1

2y
T (K(X,X;θ) + σ2

εI)−1y
+ 1

2 log|K(X,X;θ) + σ2
εI|+ l

2 log 2π.

This provides a good compromise between data fit, first
term, and model complexity, second term.

Numerical Gaussian processes: In Raissi et al. (2018)
numerical GPs have been introduced and used to solve
spatiotemporal models. Numerical GPs combine the data-
driven machine learning nature of GPs with first principles
knowledge from a spatiotemporal model. Numerical refers
to the fact that the spatiotemporal model has to be time-
discretized. For an easy to follow introduction of numerical
GPs, we will be using the explicit Euler discretization here.
For a general formulation, regardless of the discretization
method, readers are referred to the original work of Raissi
et al. (2018). To start, consider a linear partial differential
equation

∂n

∂t
(t, x) = Lxn(t, x), (16)

where Lx is a linear operator acting on n(t, x) with respect
to x ∈ R. Discretization of (16) in time with the explicit
Euler scheme yields

nt = nt−1 + ∆tLxnt−1
= Qxnt−1. (17)

We now place a GP prior of our choice on nt−1
nt−1 ∼ GP

(
0, knnt−1,t−1(x, x′)

)
. (18)

It follows that
nt = Qxnt−1 ∼ GP

(
0, knnt,t (x, x′)

)
, (19)

since a linear transformation of a GP is still a GP but
with a different kernel that is informed by the linear
transformation, see Särkkä (2011) for example. Using the
definition of a covariance function (10), we can derive

kt,t = E
[
nt(x) (nt(x

′))
T
]

= E
[
Qxnt−1(x) (Qx′nt−1(x′))

T
]

= Qxknnt−1,t−1QTx′ ,

(20)

and

knnt,t−1 = E
[
nt(x) (nt−1(x′))

T
]

= E
[
Qxnt−1(x) (nt−1(x′))

T
]

= Qxknnt−1,t−1.

(21)

Note that if we place the prior on nt, we would have to
invert the linear operator. Choosing where to place the GP
prior is therefore crucial.

To perform temporal propagation, we first formulate the
following multi-output GP[

nt
nt−1

]
∼ GP

(
0,

[
knnt,t knnt,t−1
knnt−1,t k

nn
t−1,t−1

])
. (22)

Starting from the initial condition, we now recursively
calculate the conditional posterior distribution

p(nt|nt−1) = N (µt,Σt,t) . (23)
The posterior mean and covariance are calculated as in
(14).

Before formulating the conditional posterior distribution,
the hyper-parameters have to be learned. In the first time
step, this is done on the initial and boundary data, and in
the succeeding steps on artificially generated data, i.e. test
points Xt−1,∗,Xt,∗, and the current boundary data. This
artificial data has to be marginalized out from the posterior
distribution to assure correct propagation of uncertainty.
The reader is referred to Raissi et al. (2018) for exact details
of this procedure.

Numerical GPs can handle explicit and implicit numerical
methods. Merely (22) changes depending on the outputs
and kernels introduced through the discretization method.
Furthermore, numerous types of boundary conditions and
their combinations can be handled within this framework.

3. NUMERICAL GAUSSIAN PROCESS KALMAN
FILTERING

We start by extending numerical GPs to include online
measurements and stochastic noise. Then, we embed this
structure into the traditional Kalman filter equations.

3.1 Inclusion of a measurement equation and noise

Consider a linear stochastic partial differential equation
(PDE)

∂n

∂t
(t, x) = Lxn(t, x) + q(t, x), (24)

with Lx being a linear operator acting on the solution of
the PDE n(t, ·) ∈ L2(Rdx ,R), x 7→ n(t, x), and x ∈ Rdx .
Process noise q(t, x) is white, additive Gaussian noise. To
make the derivation easily accessible and without loss of
generality, we use the explicit Euler time stepping scheme to
derive the numerical GPKF. Forward Euler discretization
of (24) results in

nt(x) = nt−1(x) + ∆tLxnt−1(x) + ∆tqt−1(x),

= Fxnt−1(x) + ∆tqt−1(x), (25)
where Fx is again a linear operator summarizing the
structure of the discretized PDE. The right-hand side
of (24) is not continuous, and one should therefore use
the Euler-Maruyama method for discretization instead.
However, the covariance of the noise term qt−1 will enter the
algorithm by being multiplied with the step size ∆t, much
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Table 1. Kernels of the multi-output explicit
Euler GP (30). For readability we write k

instead of knnt−1,t−1.

Kernel Structure

knn
t−1,t−1 k

knn
t,t−1 Fxk

knn
t,t FxkFT

x′ + ∆t2kqqt−1,t−1

kn
yn

t,t−1 HxFxk

knny

t,t Fxk (Fx′Hx′ )T + ∆t2kqqt−1,t−1H
T
x′

kn
yny

t,t HxFxk (Fx′Hx′ )T + ∆t2Hxk
qq
t−1,t−1H

T
x′ + krrt,t

like in the Euler-Maruyama method, see knnt,t in Table 1.
We place mutually independent GP priors on nt−1 and
qt−1

nt−1 ∼ GP
(
0, knnt−1,t−1(x, x′)

)
, (26)

qt−1 ∼ GP
(
0, kqqt−1,t−1(x, x′)

)
, (27)

with a kernel of our choice for nt−1 and a white noise
kernel kqqt−1,t−1(x, x′) = δ(x − x′)σ2

q for qt−1. Other noise
kernel choices are possible, but not sensible given the linear
Gaussian setting.

We introduce a measurement equation
nyt (y) = Hxnt(y) + rt(y), (28)

with the measurement operator Hx : L2(Rdx ,R) →
L2(Rdy ,R), nt 7→ nty, the measurement y ∈ Rdy , and
additive, white noise rt(y) modeled as a GP with kernel
krrt,t(y, y

′) = δ(y − y′)σ2
r . Since nt−1 is a GP, so is nt, as

already established, but so is also nyt . Boundary conditions
are usually a linear transformation of the state and are
hence treated in the same fashion

nbt(xb) = Bxnt(xb). (29)
We write the complete multi-output GP as nt

nyt
nbt
nt−1

 ∼ GP


0

0
0
0

 ,


knnt,t kn

yn
t,t knn

b

t,t knnt,t−1
kn

yn
t,t kn

yny

t,t kn
ynb

t,t kn
yn
t,t−1

kn
bn
t,t kn

bny

t,t kn
bnb

t,t kn
bn
t,t−1

knnt−1,t k
nny

t−1,t k
nnb

t−1,t k
nn
t−1,t−1


 .

(30)
These kernels, except for the boundary kernels, are listed
in Table 1. With this structure we are equipped to
write down the recursive Kalman filter equations. This
is possible because we have a linear model whose states
are Gaussian distributed random variables, i.e. Gaussian
process distributed.

3.2 The numerical Gaussian process Kalman filter

In this subsection we only work with finite-dimensional
collections of the Gaussian process random variables. We
therefore write N(·, ·) instead of GP(·, ·). Furthermore, we
use bold lowercase letters for the random variables and
kernels become covariance matrices, indicated by bold
capital letters, as already introduced in subsection 2.2.

Recall that in Kalman filtering we want to calculate the
posterior distribution of a dynamic state given model
predictions and measurements up to the current time.
According to Bayes’ rule the posterior is given by

p(nt|ny1:t) =
p(nyt |nt)p(nt|n

y
1:t−1)

p(nyt |n
y
1:t−1)

. (31)

p(nt|nt−1) × p(nt−1|ny1:t−1)

p(nt, nt−1|ny1:t−1)

prior p(nt|ny1:t−1) ×

likelihood p(nyt |nt)

p(nt, n
y
t |n

y
1:t−1)

posterior p(nt|ny1:t)

marginalizing

conditioning

repeat re-
cursively

Fig. 1. Recursive posterior distribution calculation. Bound-
ary data has been omitted for readability as it is
treated in the same fashion as measurements.

Here we omitted the boundary data nbt(xb) for readability.
We assume the states to be Markovian, i.e. the current state
nt is conditionally independent of anything that happened
before t− 1. Furthermore, the current measurement given
the current state is conditionally independent of the
measurement and state histories. The individual terms
can be calculated in closed form

• prior p(nt|nyt−1) = N(nt|m−t ,P
−
t ),

• posterior p(nt|nyt ) = N(nt|mt,P t),
• normalizing constant p(nyt |n

y
t−1) = N(nyt |Hxm−t ,P t).

An illustration of the road map ahead is shown in Fig. 1.

To calculate the prior distribution, we first calculate the
joint distribution of the states nt−1 and nt conditioned on
the measurement and boundary data history
p(nt−1,nt|ny1:t−1,nb1:t−1) = p(nt|nt−1)︸ ︷︷ ︸

model prediction

× p(nt−1|ny1:t−1,nb1:t−1)︸ ︷︷ ︸
previous posterior

= N(nt|Ant−1,PGP,nn
t )

×N (nt−1|mt−1,P t−1)

= N

((
nt−1
nt

)
|m′,P ′

)
. (32)

Using Lemma 1, the joint mean of (32) is

m′ =

(
mt−1
Amt−1

)
(33)

and the covariance is

P ′ =

[
P t−1 P t−1A

T

AP t−1 AP t−1A
T + PGP,nn

t

]
. (34)

We introduced
A = Knn

t,t−1(Knn
t−1,t−1)−1, (35)

and
PGP,nn
t = Knn

t,t −K
nn
t,t−1(Knn

t−1,t−1)−1Knn
t−1,t. (36)

These two equations are obtained by forming the condi-
tional nt|nt−1 of the multi-output GP (22). We can think
of (35) as the equivalent to the dynamic matrix in a state
space model with the difference that its entries depend on
the test points A(Xt,∗,Xt−1,∗). Now, the prior distribution
is obtained by marginalizing over nt−1 in (32)

p(nt|ny1:t−1,nb1:t−1) = N
(
nt|m−t ,P

−
t

)
, (37)
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with prior mean and covariance
m−t = Amt−1, (38)

P−t = AP t−1A
T + PGP,nn

t . (39)
Equipped with this, we can calculate the joint distribution
p(nt,n

y
t ,n

b
t |n

y
1:t−1,n

b
1:t−1). This will allow us to write

down the posterior distribution later. We start by noting
that
p(nt,n

y
t ,n

b
t |n

y
1:t−1,n

b
1:t−1) = p(nyt ,n

b
t |nt)

× p(nt|ny1:t−1,nb1:t−1)

= N(nyt ,n
b
t |Cnt,P

GP,nyny

t )

×N
(
nt|m−t ,P

−
t

)
= N

ntnyt
nbt

 |m′′,P ′′
 .

(40)
Here we introduced

C =

[
Knyn
t,t

Knbn
t,t

]
(Knn

t,t )−1, (41)

and

PGP,nyny

t =

[
Knyny

t,t Knynb

t,t

Knbny

t,t Knbnb

t,t

]

−

[
Knyn
t,t

Knbn
t,t

]
(Knn

t,t )−1
[
Knny

t,t Knnb

t,t

]
. (42)

These two expressions are obtained in the similar fashion as
A and PGP,nn

t by forming nyt ,nbt |nt from (30). Again, we
can think of C as the measurement matrix equivalent
in a state space model, albeit its entries depend on
the measurement, boundary, and test point locations
C(Y t,Xt,b,Xt,∗). Using Lemma 1 one more time, the
joint mean is

m′′ =

(
m−t
Cm−t

)
. (43)

The covariance is

P ′′ =

[
P−t P−t C

T

CP−t CP
−
t C

T + PGP,nyny

t .

]
(44)

To get the posterior p(nt|ny1:t,nb1:t), we need to condition
the above joint distribution p(nt,n

y
t ,n

b
t |n

y
1:t−1,n

b
1:t−1) on

the current measurement and boundary data using Lemma
2

p(nt|nyt ,nbt ,n
y
1:t−1,n

b
1:t−1) = p(nt|ny1:t,nb1:t)

= N (mt,P t) . (45)
The posterior mean is 1

mt = m−t + P−t C
T

×
(
CP−t C

T + PGP,nyny

t

)−1 (
[nyt n

b
t ]
T −Cm−t

)
,

(46)
and the corresponding variance is

P t = P−t − P
−
t C

T
(
CP−t C

T + PGP,nyny

t

)−1
CP−t .

(47)
1 Careful readers will recognize the structure of this posterior KF
estimate from the posterior GP mean and covariance, compare with
(14). This shouldn’t be a surprise, as in both cases a conditional
Gaussian is formed.

1.5

0

1

time

0.5

10

x

8640 20

n(
t,x

) 0.5

1

Fig. 2. Temporal snapshots of the analytical solution (black)
and the posterior estimate of the numerical GPKF
(blue) along with two times its standard deviation.
Blue circles indicate measurements. 41 training points
are sampled from the initial estimate, from then on
5 noisy measurements are available in each time step
∆t = 5 · 10−3.

To summarize the numerical GPKF, we have the prediction
step as

m−t = Am−t−1, (48)

P−t = AP t−1A
T + PGP,nn

t , (49)
and the update step as

vt = nyt −Cm−t , (50)

St = CP−t C
T + PGP,nyny

t , (51)
Kt = P−t C

T (St)
−1, (52)

mt = m−t +Ktvt, (53)
P t = P−t −KtSt(Kt)

T . (54)
The covariances of process and measurement noise are
added to the kernels Knn

t,t and Knyny

t,t , as shown in Table
1. They therefore enter the algorithm as in the traditional
Kalman filter.

By minimizing the negative log-marginal likelihood, hyper-
parameters are estimated in every time step from the
current measurement, boundary, and previous test data.

4. SIMULATION STUDY

We will look at the one-dimensional advection equation
∂n

∂t
(t, x) + gn(t, x) = 0. (55)

Here, the advection speed is g = 3. We impose a no-flux
boundary condition n(t, xb = 0)g = 0. The initial state is a
bimodal Gaussian distribution n(0, x) = N(µ0,1 = 2, σ2

0,1 =

0.452) + N(µ0,2 = 3.75, σ2
0,2 = 0.62).

For this numerical case study, we assume to obtain noise
corrupted point evaluations of the analytical solution

nyt (yi) = nt(yi) + εi. (56)
Here ε is generated from a zero mean Gaussian with
variance σ2

ε = 0.062. Process noise is zero.
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Fig. 3. Process and measurement noise standard deviation
estimation, as well as the mean integrated squared
error between posterior state estimation and ground
truth.

We discretize (55) using the implicit Euler method with
a step size of ∆t = 5 · 10−3. This is also used as the
sampling time for measurements. A GP prior with a zero-
mean function and squared exponential kernel is placed
on nt(x). From this, the entire structure of the numerical
GPKF is built up.

The initial state estimate is a shifted and diffused version
of the true initial state n(0, x) = N(µ0 + 0.5,σ2

0 + 0.2).
From the initial estimate, Ntr = 41 points are sampled
and regular GP regression is performed. This gives the
initial variance P 0 of the Kalman filter. Initial hyper-
parameter values of the squared exponential are lSE = 0.5
and σ2

SE = 0.32, and σ2
q = 0.12 for the process white noise

kernel, and σ2
r = 0.22 for the measurement white noise

kernel.

Fig. 2 shows temporal snapshots of the analytical solution
and the numerical GPKF posterior estimate along with two
times its standard deviation. State estimation convergence
towards ground truth in terms of the mean integrated
squared error (MISE) can be seen in Fig. 3. Therein, the
adaptation of the noise hyper-parameters is shown as well.

5. CONCLUSION

In this paper, we introduced numerical Gaussian process
Kalman filtering (GPKF) with which we can do state
and noise estimation for infinite-dimensional systems.
Numerical Gaussian processes by Raissi et al. (2018) solve
spatiotemporal models with Gaussian process regression by
discretization in time and leveraging the resulting structure
for kernel design. We embedded this method into the well
known recursive Kalman filter equations.

Learning the noise hyper-parameters online on the data
stream could be a two-sided sword. In cases where the
negative log-marginal likelihood function has a rugged
contour, performance of the numerical GPKF could be
drastically reduced by getting stuck in local minima.
Further simulation studies with more complex dynamics
should investigate this, as well as non-zero process noise.
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Appendix A. GAUSSIAN IDENTITIES

The following is taken from Särkkä (2013).
Lemma 1. (Joint distribution of Gaussian variables) If
random variables x ∈ Rdx and y ∈ Rdy have the Gaussian
probability distributions

x ∼ N (m,P ) (A.1)
y|x ∼ N (Hx+ u,R) , (A.2)

than the joint distribution of x, y and the marginal
distribution of y are given as(

x
y

)
∼ N

((
m

Hm+ u

)
,

(
P PHT

HP HPHT +R

))
,

(A.3)

y ∼ N
(
Hm+ u,HPHT +R

)
. (A.4)

Lemma 2. (Conditional distribution of Gaussian variables)
If the random variables x and y have the joint Gaussian
probability distribution(

x
y

)
∼ N

((
a
b

)
,

(
A C
CT B

))
, (A.5)

than the conditional distribution is
x|y ∼ N

(
a+CB−1(y − b),A−CB−1CT

)
. (A.6)
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