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Abstract: The dissipation obstacle refers to the problem that there is no general solution to
shape the energy of dissipative port-Hamiltonian (pH) systems with the method of Casimir
functions. This paper argues that it is caused by lack of a strictly symplectic structure of a
dissipative port-Hamiltonian system. We develop a method of bicomplex pH systems that is
strictly symplectic and we show how it overcomes the obstacle and allows one to systematically
use Casimir functions to shape the energy.
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1. INTRODUCTION

In engineering, Newtonian mechanics is favored over the
more fundamental analytical mechanics of Lagrange and
Hamilton (see e.g. the introduction of Allison et al.
(2014)). This is mostly due to the inability of analytical
mechanics to model non-conservative systems. Virtually
all engineering systems are non-conservative, hence the
preference for Newtonian mechanics.

In the mathematics literature, much progress has been
made of late to expand the theory of Hamiltonian me-
chanics to deal with systems that cannot be dealt with
using Newtonian methods (see e.g. Arnol’d (1989); Singer
(2001); Marsden and Ratiu (2002)). Much of the effort con-
sists of developing the symplectic-geometric methods that
underlie Hamiltonian mechanics, but no specific results are
available for non-conservative systems.

In the physics literature, several methods have been pro-
posed to apply analytical mechanics to non-conservative
systems. These methods include the use of the ad hoc
Rayleigh dissipation function (Goldstein, 1980, p. 23) and
the use of fractional calculus to generalize frictional energy
in Lagrangian mechanics (Riewe (1997); Allison et al.
(2014)). But there exists no systematic means to apply
these methods in engineering. Another line of research con-
sists of Hamiltonians defined on complex spaces which are
mainly used for quantum-mechanical systems, but neither
these have been connected to dissipative systems (Shankar,
1994, p. 203).

In systems and control engineering, port-Hamiltonian
(pH) systems theory is a recent development that builds on
the mathematical tradition and aims to put energy back in
controls (Ortega et al. (2001)). Non-conservative systems
are modeled as pH systems by separating the dissipative
elements from the energy-storing elements and connect-
ing those through Dirac structures. The so-called energy-

Casimir method is used to design stabilizing controllers
for pH systems. However, there is an important class of
dissipative systems that are not amenable to be controlled
using this methods. This issue has come to be known as the
dissipation obstacle (see e.g. Ortega et al. (2001); Van der
Schaft and Jeltsema (2014); Van der Schaft (2017)).

This paper draws on both the symplectic theory of the
mathematical tradition and the complex theory of quan-
tum mechanics, to develop complex Hamiltonians that
systematically overcome the dissipation obstacle in pH
systems theory. The paper is organized as follows. In
Section 2 we overview the relevant pH systems theory
and identify the problems connected with the dissipation
obstacle. In Section 3 we develop our strictly symplectic,
bicomplex Hamiltonian system together with its Casimir
elements. In Section 4 we apply it to the simple damped
harmonic oscillator and analyze the symplectic geometry
of the solution. Finally, in Section 5 we show how our
bicomplex theory can be used in the context of control-
by-interconnection and deal with the stability, Lyapunov
and Casimir functions, and constructively show how a
stabilizing controller can be found for any damped har-
monic oscillator, irrespective of the placing of the resistive
elements, thus overcoming the dissipation obstacle.

2. STRICTLY SYMPLECTIC HAMILTONIAN
MECHANICS AND THE DISSIPATION OBSTACLE

2.1 Hamiltonian Systems

In order to be a Hamiltonian system, a system needs to
contain the following (Arnol’d, 1989, p. 161):

(i) an even-dimensional manifold: the state space,
(ii) a symplectic structure on it, and
(iii) a function on it: the Hamiltonian.

The prototypical example of such a strictly symplectic
Hamiltonian system is the harmonic oscillator with iner-
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tance I, compliance C, and a state vector x =
[
q p
]ᵀ

,
representing the position and the momentum respectively.
In the Hamiltonian formalism, the dynamics of this system
are expressed as

ẋ = J∇H(x) (1)

Here ∇H(x) is the gradient of the Hamiltonian H(x) =
p2

2I + q2

2C , H(x) : R2 −→ R. Matrix J is a 2 × 2 symplectic
matrix, i.e. a matrix with determinant ±1 satisfying

J†ΩJ = Ω, (2)

where J† is the (conjugate) transpose of J and Ω is
any 2 × 2 nonsingular, skew-symmetric matrix (see Rim
(2015)). For the system in (1), the symplectic structure is
represented by the matrix

J =

[
0 1
−1 0

]
(3)

This system clearly contains the three requirements for a
system to be a Hamiltonian system: (i) the state space
of x, (ii) the structure represented by J , and (iii) the
Hamiltonian function H(x).

2.2 Port-Hamiltonian Systems

Port-Hamiltonian (pH) systems theory employs the Hamil-
tonian formalism in an input-output-based analysis of
engineering systems. In addition, dissipative elements are
incorporated by using a positive semi-definite dissipation
matrix R. The input-state-output description of a pH
system with input u and output y is (Ortega et al. (2001))

ẋ = [J −R]∇H(x) + gu

y = gᵀ∇H(x)
(4)

Here, the matrix g represents the input structure of
the system and its transpose, gᵀ, represents the output
structure of the system.

However, this system does not satisfy (ii) due to the
positive semi-definiteness of R. Therefore, dissipative pH
systems are not strictly symplectic Hamiltonian systems.

2.3 Dissipation obstacle

In the pH framework (see e.g. Ch. 15 of Van der Schaft and
Jeltsema (2014)), a controller is modeled as another pH
system with state xc, Hamiltonian Hc(xc), input structure
gc that interfaces the system with an input uc and output
yc. The input-state-output description of the controller is
of the same form as (4). The plant and the controller are
interconnected in a negative feedback loop. This results in
the closed-loop system[

ẋ
ẋc

]
=

[
J −R −ggᵀc
gᵀc Jc −Rc

] [
∇H(x)
∇Hc(xc)

]
[
y
yc

]
=

[
gᵀ 0
0 gᵀc

] [
∇H(x)
∇Hc(xc)

] (5)

A problem arises when designing controllers that stabilize
the closed-loop system at a non-trivial equilibrium point
x∗ using the energy-Casimir method (See Ortega et al.
(2001)). This problem is known as the “dissipation ob-
stacle” and we briefly sketch how this comes about for
comparison with our solution.

The strategy consists of finding a Lyapunov function of
the closed-loop system

V (x, xc) = H(x) +Hc(xc) + C(x, xc) (6)

that has a minimum at the desired equilibrium point x∗.
This is achieved with a Casimir function C = C(x, xc).
One shows that any such Casimir needs to satisfy[
∇ᵀ
xC(x, xc) ∇ᵀ

xc
C(x, xc)

] [J −R −ggᵀc
gcg

ᵀ Jc −Rc

]
= 0 (7)

This implies that when R � 0 and Rc � 0 that

R∇xC(x, xc) = 0 and Rc∇xcC(x, xc) = 0 (8)

Effectively, this prescribes that a candidate Casimir func-
tion cannot depend on any states that are influenced by
the dissipation and, hence, the energy-Casimir method is
inapplicable to a vast collection of engineering systems
that have dissipation acting on the controlled states. This
is known as the dissipation obstacle (see e.g. Ortega et al.
(2001); Van der Schaft and Jeltsema (2014)).

We see that the dissipation obstacle indeed arises from
the positive semi-definiteness of the dissipation matrix R.
From a mathematical perspective, the problem appears to
be that R is a metric tensor rather than a 2-form, endowing
the state space with a Riemannian structure rather than
a symplectic one.

In the following section we show how dissipation can be
modeled using a symplectic structure, albeit a bicomplex
one.

3. OUR PROPOSAL: STRICTLY SYMPLECTIC
BICOMPLEX HAMILTONIAN SYSTEMS

In this section, we introduce what we call “bicomplex
Hamiltonian systems”. These will be seen to adhere
strictly the three requirements ((i)-(iii)) for a Hamiltonian
system, while incorporating any dissipation that may be
present.

To this end, we write the dynamics of a bicomplex Hamil-
tonian systems as

χ̇ = J∇H(χ), (9)

which is manifestly in strict Hamiltonian form. The state
variable χ will take values in χ ∈ C2, hence our choice
of bicomplex. Section 3.1 shows how the bicomplex state
χ relates to the usual state x ∈ R2. In Section 3.2 we
introduce the symplectic structure matrix J . Finally, in
Section 3.3 we derive a complex Hamiltonian function
H(χ) : C2 → C on the bicomplex state space.

3.1 Bicomplex State-Space

Let the state x =
[
q p
]ᵀ

be a point in the 2n-dimensional
phase space spanned by the generalized positions q =[
q1, . . . , qn

]ᵀ
and momenta p =

[
p1, . . . , pn

]ᵀ
. Define

complex states xj and x̄j as follows: 1

xj =

√
Iω

2

(
qj +

i

Iω
pj

)
, (10)

1 This is inspired by the ladder operators developed by Paul Dirac
for the quantum harmonic oscillator (Shankar, 1994, p 203).
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and

x̄j =

√
Iω

2

(
qj −

i

Iω
pj

)
(11)

Here ω =
√

1/IC is the generalized natural frequency,
I is the generalized inertance, and C is the generalized
compliance. Some domain specific examples of inertances
and compliances are listed in Table 1.

Table 1. Elements

Generalized Mechanical Electrical

Compliance, C Spring, 1/k Capacitor, C
Inertance, I Mass, m Inductor, L
Resistance, r Damper, b Resistor, R

To define the bicomplex state χ, let x =
[
x1, . . . ,xn

]ᵀ
and

x̄ =
[
x̄1, . . . , x̄n

]ᵀ
and set

χ =
[
x x̄

]ᵀ
(12)

We can consider the bicomplex state as a conjugate pair,
for instance by thinking of x as the generalized complex
positions and x̄ as the conjugate generalized complex
momenta. The bicomplex state is an element of C2n and
clearly even-dimensional, thus meeting requirement (i).

3.2 Bicomplex Symplectic Structure

Such bicomplex states are used in Quantum Mechan-
ics where they are known as ladder operators (See e.g.
(Shankar, 1994, p 203)). 2 In the quantum-mechanical
literature, the bicomplex state space is endowed with a
bicomplex Poisson bracket (see e.g. Novaes (2004))

{U ,V} = −i
[
∂U
∂x

∂V
∂x̄
− ∂V
∂x

∂U
∂x̄

]
(13)

Here U(χ) and V(χ) are holomorphic functions on the
bicomplex state space.

From this Poisson bracket we can reverse-engineer the
symplectic structure matrix J (see (Marsden and Ratiu,
2002, p. 65)). In general,

{U ,V} =

[
∂U
∂x

∂U
∂x̄

]
J

∂V∂x∂V
∂x̄

 , (14)

and comparing this with (13), we see that

J =

[
0 −i
i 0

]
(15)

We can check that J is symplectic by taking the skew-
symmetric

Ω =

[
0 −1
1 0

]
,

and verifying that

J †ΩJ = Ω, (16)

and that det(J ) = −1. Here J † is the conjugate transpose
of J . This completes requirement (ii).

2 Interestingly, it was Paul Dirac who developed them, the namesake
of the Dirac structures in pH systems.

3.3 Complex Hamiltonian

For a function H to be a Hamiltonian, it should give the
time derivative of a function under the Poisson bracket. In
particular, using the bracket (13) for the complex position
x requires that

ẋ = {x,H} = −i∂H
∂x̄

(17)

Although the complex conjugate momentum x̄ is not
holomorphic, it is nevertheless readily found by complex
conjugating the above expression that

˙̄x = {x,H} = i
∂H̄
∂x

(18)

If we collect ẋ and ˙̄x into a single expression for χ̇ and
express the bicomplex gradient as

∇H(χ) ,

[
∂H̄
∂x

∂H
∂x̄

]ᵀ
, (19)

we can summarize the dynamics in a strictly symplectic
manner as χ̇ = J∇H(χ). This reproduces (9) and com-
pletes our determination of a strictly symplectic bicomplex
Hamiltonian System.

3.4 Casimirs

The complex Hamiltonian itself is finally found by in-
tegrating expression (19). However, this determines the
Hamiltonian up to an integrating constant, so there will
be freedom of choice in choosing a Hamiltonian.

To determine the nature of such an integrating constant,
notice that evidently a function C that gives 0 under the
Poisson bracket can be added to the Hamiltonian for an
alternate Hamiltonian K = H+ C. This addition does not
affect the motion since

{x,K} = {x,H}+ {x, C} = ẋ + 0 = ẋ (20)

Functions such that {U , C} = 0 for any function U
are known as Casimir functions. This can be used to
advantage in closed-loop systems as we show in Section
5 for bicomplex systems.

4. APPLICATION: THE DAMPED HARMONIC
OSCILLATOR

In practice, the real-valued dynamics of a system in the A-
matrix representation are known. In this section we show
how this is used to determine the complex Hamiltonian
(up to a Casimir) for the case of the damped harmonic
oscillator (DHO).

Our strategy is to determine the bicomplex A-matrix
corresponding to the usual A-matrix and then to integrate
Aχ = J∇H.

4.1 DHO

Consider the system in Figure 2. We start with the familiar
state-space representation on R2 spanned by the position
(or charge) q and momentum (or flux linkage) p[

q̇
ṗ

]
︸︷︷︸
ẋ

=

[
0 1/I

−1/C −r/I

]
︸ ︷︷ ︸

A

[
q
p

]
︸︷︷︸
x

(21)
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Fig. 1. The Bicomplex Hamiltonian flow consists of three parts: a

rotation with orbits by ωxx̄ (green), a contraction with orbits

−iβ+
xx̄ (blue), and a squeeze with orbits −iβ−

(x2−x̄2

2
) (red).

The solid line represents a composite flow. The direction of the

squeeze flow reverses with the sign of β
−

.

.

To convert this into a state-space representation on C2

χ̇ = Aχ, (22)

invert the expressions for the complex states (10) and (11)
to recover

q =

√
1

2Iω
(x̄ + x), (23)

p = i

√
Iω

2
(x̄− x), (24)

substitute these into (21) and rearrange to obtain[
ẋ
˙̄x

]
︸︷︷︸
χ̇

=

[
−(β + iω) β

β −(β − iω)

]
︸ ︷︷ ︸

A

[
x
x̄

]
︸︷︷︸
χ

(25)

Here β = r/(2I) is the damping coefficient and ω =√
1/(LC) the natural frequency.

To express the dynamics in bicomplex pH form (9), we set

J∇H = Aχ,
substitute for the A-matrix in (25) and evaluate the left-
hand side using the bicomplex symplectic matrix (15) and
gradient (19), to obtain

−i∂H
∂x̄

= −(β + iω)x + βx̄, (26)

i
∂H̄
∂x

= βx− (β + iω)x̄, (27)

conform the expressions for the Poisson brackets in (17)
and (18).

Integrating, we find the following expression for the com-
plex Hamiltonian

H = ωxx̄− iβxx̄− iβ(
x2 − x̄2

2
) (28)

Its validity is readily checked by substituting into (26) and
(27).

I

C

r

I

C

r

Fig. 2. Damped harmonic oscillator with series configuration. The

symbols are listed in Table 1. This system can be modeled as

a Hamiltonian system with complex Hamiltonian in (28)

I

C r
r C

I

Fig. 3. Damped harmonic oscillator with parallel configuration. The

symbols are defined in Table 1. This system can be modeled as

a Hamiltonian system with complex Hamiltonian in (29)

4.2 Resistive Configurations

For the system in Figure 3 with the damper in series with
the spring (or resistor in parallel with the capacitor), we
can follow the same procedure as in Section 4.1 to find:

H = ωxx̄− iβxx̄ + iβ(
x2 − x̄2

2
) (29)

For this case the damping coefficient β = 1/(2rC). A
comparison of this Hamiltonian with (28) shows that
the only modification is the sign of the rightmost term.
Physically, this comes about because the damping is now
proportional to the position, instead of to the momentum.

In general, we can consider systems with two resistive ele-
ments as combinations of these two extremes. Combining
the Hamiltonians of these extremes, (28) and (29), we
obtain the general complex Hamiltonian of a DHO

H =
rotation
ωxx̄︸︷︷︸

Storage
Function S

−

contraction

iβ
+

xx̄ +

squeeze

iβ
−

(
x2 − x̄2

2

)
︸ ︷︷ ︸

Resistive Function R

(30)

Here β
+

= (βs + βp) and β
−

= (βs − βp) for βs = r/(2I)
and βp = 1/(2rC). This Hamiltonian is valid for the simple
DHO with any resistive configuration.

4.3 Geometry of the Complex Hamiltonian Flow

In equation (30) we indicate how the complex Hamiltonian
of the DHO can be decomposed into the sum of two func-
tions: an energy storage function S and a resistive function
R. Figure 1 shows the Hamiltonian flows corresponding to
these two motions.

Consider first the storage function. In the absence of

damping when β
+

= β
−

= 0, the complex Hamiltonian
reverts to the regular undamped Hamiltonian, since
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ωxx̄ =
1

2

p2

m
+

1

2
kq2, (31)

after substituting the expressions for the complex states.
This corresponds to the energy stored in the C and
I elements of the system, hence the choice of storage
function for this function. In the phase plane, the level lines
of S appear as circles, shown in green in Figure 1. These
circles are precisely the orbits of the rotation group acting
on the phase plane giving the familiar Hamiltonian flow
of the harmonic oscillator indicated by the green arrow
heads. This flow is symplectic even on R2.

The resistive function can be viewed as the sum of two
parts: one that appears as a contraction in the phase
plane (in blue) and one that appears as a squeeze (in red).
Physically, the contraction models the average dissipation
over a cycle, whereas the squeeze provides the dynamics
of the damping within a cycle. Analyzing the general
Hamiltonian shows us that systems with different resistive
configurations all share the direction of contraction, but
differ in the squeeze. In fact, by choosing βs = βp, the
squeeze disappears altogether and the system follows a
smooth hyperbolic spiral down to the equilibrium state.

The orbits of the squeeze map are shown as hyperbolae
and these are in fact symplectic on the real phase plane.
The contraction however compresses the phase volume and
therefore cannot be symplectic in R2. This underscores the
necessity of using the bicomplex phase space C2 to model
the dissipation in a symplectic fashion.

5. BICOMPLEX PORT-HAMILTONIAN SYSTEMS

In this section we employ the bicomplex Hamiltonian for-
malism in a port-based approach. We first connect our
bicomplex system to real inputs and outputs, then we
establish the passivity of the system, and finally control
any DHO by using Control-by-Interconnection (CbI), in-
cluding those that otherwise suffer from the dissipation
obstacle.

5.1 Input-State-Output Description

To connect the bicomplex internal-system dynamics to real
input and output signals u, y ∈ R, we use a bicomplex-
valued matrix G : R → C2. This leads to the following
input-state-output form:

χ̇ = J∇H(χ) + Gu
y = Gᵀ∇H(χ)

(32)

We will refer to a system of this form as a “bicomplex
port-Hamiltonian system”. Comparing it to the expression
(4) for its real counterpart, one sees that the bicomplex
approach obviates the need for the dissipation matrix R.
Otherwise the bicomplex system appears as a complexified
version of the real system.

In port-based approaches the input and output form a
power-conjugate pair, consisting of an effort (force or
voltage) and a flow (velocity or current). There are two
possible choices for G matrix, either the structure matrix
for an effort input:

Ge =

[
i

√
1

2Iω
−i
√

1

2Iω

]ᵀ
, (33)

or the structure matrix for a flow input:

Gf =

[√
Iω

2

√
Iω

2

]ᵀ
(34)

5.2 Passivity and Stability

In order to check whether a bicomplex pH system can be
stabilized around an equilibrium point, we must show that
the system is passive, i.e., that the rate of change of the
stored energy S at an equilibrium does not exceed the
power supplied to the system:

dS(χ)

dt
≤ yᵀu

To check this, we evaluate

dS(χ)

dt
= ∇ᵀSχ̇ = −∇ᵀSJ∇R︸ ︷︷ ︸

δ(χ)

+∇ᵀRG︸ ︷︷ ︸
φᵀ(χ)

u+ yᵀu (35)

For the second equality we have substituted (32) and the
fact that ∇ᵀSJ∇S = 0.

This expresses the rate of change of the stored energy as
the sum of three real-valued terms: the dissipation rate
δ(χ), the power drawn by the feedthrough signal φᵀ(χ)
and the power yᵀu supplied at the port. Using the stored
energy and resistive functions of the DHO (30), one checks
that the dissipation rate is positive and the feedthrough
power φᵀu non-positive. It follows that the DHO is passive.

In fact, one can check that the value of the bicomplex
dissipation rate δ(χ) equals the dissipation rate d(x) of
the real pH systems theory:

δ(χ) = ∇ᵀSJ∇R = ∇H(x)ᵀR∇H(x) = d(x)

Notice, however, that δ(χ) determines this value as the
area spanned by the vector gradients of the storage and
resistive functions consistent with the symplectic struc-
ture, whereas the d(x) determines it as a length of the
vector gradient of the Hamiltonian consistent with the
metric structure implied by the R matrix. This distinction
is essential to overcome the dissipation obstacle.

5.3 Overcoming the Dissipation Obstacle

Plant H(χ)
y

uc
Controller Hc(χc)

yc

−
u

Fig. 4. Control-by-Interconnection scheme of a plant and controller

in a negative feedback loop. The controller is another bicom-

plex Hamiltonian system with symplectic structure J in (15)

and complex Hamiltonian Hc(χc). The closed-loop system is

also a bicomplex Hamiltonian system with the interconnection

matrix Jcl ∈ C4 as symplectic structure and the closed-loop

Hamiltonian Hcl = H+Hc : C4 −→ C. The closed-loop system

can be stabilized at a non-trivial equilibrium by generating

Casimirs of the closed-loop Hamiltonian, without suffering from

the dissipation obstacle.

We now show how the dissipation obstacle can be overcome
for a general DHO. This includes the RLC circuit in Figure
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3 with voltage input that is known to suffer from it (See
e.g. Ortega et al. (2001)).

The objective is to stabilize this system at a non-trivial
desired equilibrium point using control by interconnection;
see Figure 4. The input-state-output description of the
DHO plant with effort input is as in (32) with Ge to
accommodate the effort input and H as in (30). The
controller is also as in (32), but with Gf to accommodate
the output flow as input to the controller. We pick a DHO
controller, so Hc is also as in (30).

Interconnecting the plant and the controller in the negative
feedback loop of Figure 4 yields the closed-loop system[

χ̇
χ̇c

]
︸ ︷︷ ︸
χ̇cl

=

[
J −GeGᵀf
GfGᵀe J

]
︸ ︷︷ ︸

Jcl

[
∇H(χ)
∇Hc(χc)

]
︸ ︷︷ ︸
∇Hcl

(36)

This closed-loop system is a 4-complex pH system χ̇cl =
Jcl∇Hcl with state χcl ∈ C4 and Hamiltonian that is the
sum of the plant and controller Hamiltonian

Hcl(χ, χc) = H(χ) +Hc(χc)
The structure matrix is indeed symplectic, i.e.,

J †clΩJcl = Ω

with Ω a skew-symmetric matrix and det(Jcl) = ±1.

The system in (36) has its equilibrium point at the origin.
To stabilize it around an equilibrium point χ∗, we simply
choose a complex Casimir C(χ, χc) in the manner outlined
in Section 3.4 to obtain a new Hamiltonian

V(χ, χc) = Hcl(χ, χc) + C(χ, χc) (37)

This new Hamiltonian V takes the place of the Lyapunov
function in the real pH theory. Notice how the complex
theory gives a natural interpretation for the Lyapunov
function in terms of energy and arises naturally due
to the freedom of choice in a Casimir for the complex
Hamiltonian. The existence of such a Lyapunov function
is guaranteed for the DHO.

An obvious candidate Lyapunov function that achieves
equilibrium at χ∗ is the “shifted” Hamiltonian

V(χ, χc) = H(χ− χ∗) +Hc(χc − χ∗c), (38)

that leads to a Casimir function

C(χ, χc) = H(χ−χ∗)−H(χ)+Hc(χc−χ∗c)−Hc(χc) (39)

Substituting the expression for the H Hamiltonians of the
DHO plant and controller gives the explicit expression.

There is no further need to verify that Casimir found this
way is indeed a Casimir, since it is one by construction.
However, it is perhaps instructive to make an explicit
complex comparison with the real requirement as in (7).
Expanding the complex Poisson bracket in terms of the
symplectic structure matrix, the requirement that the
bracket vanishes can be written as[

∇ᵀC(χ) ∇ᵀC(χc)
] [ J −GeGᵀf
GfGᵀe J

]
= 0 (40)

which is the complex analog to (7). One can substitute
(39) in this equality to check.

To complete the specification of the equilibrium, we find
the point χ∗c of the controller by setting χ̇c = 0 in (36) to
obtain

χ∗c = −(JHc)
−1GfGᵀe∇H(χ∗) (41)

Here Hc = χ−1c ∇Hc and JHc is invertible for every
ωc > 0.

The equilibrium point (χ∗, χ∗c) is stable since the plant
and the controller are both passive as was shown for the
general DHO in Section 5.2: both dS(χ)/ dt ≤ yᵀu and
dSc(χc)/dt ≤ yᵀc uc.
We see that bicomplex pH systems theory allows us to con-
trol any DHO using the control-by-interconnection method
without being impeded by the dissipation obstacle. The
resulting closed-loop systems will be guaranteed to be
stable. If needed, the controller can be further tuned by
adjusting its natural frequency ωc to achieve some desired
speed and its damping coefficient βc achieve some desired
damping rate.

6. CONCLUSIONS

In the preceding section we have shown how the dissipation
obstacle of pH systems theory can be overcome for any
DHO using bicomplex pH systems. We have shown how
this can be done constructively in a CbI context, allowing
one to systematically identify the requisite Lyapunov and
Casimir functions. A fortunate by-product is that these
obtain a direct physical meaning in terms of energy and
that the mathematics is much simplified, at least on a
formal level.

Although the bicomplex theory in the paper is quite
general, the CbI applications are limited to linear time-
invariant damped harmonic oscillators. We hope to explore
the opportunities to expand the bicomplex theory to a
broader class of systems.
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