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Abstract: In this paper, we present a method to obtain explicit, expressive and interpretable
gait feature signals from an inertial sensor, mounted on any segment of the lower limbs.
The proposed method is invariant to the mounting orientation of the sensor, works without
magnetometer information, requires no prior knowledge and can be used in real-time scenarios.
Moreover, the constructed signals are robust for a wide variety of changing walking speeds
and directions. We investigate the informational content of our three feature signals lying in
the human sagittal plane with respect to the gait phase segmentation problem and compare
them to other commonly used signals, such as the sagittal angular velocity and the norms of
accelerations and angular velocities. To this end, we make use of the filter-based maximum
relevance minimum redundancy algorithm, which is a classifier-independent feature selection
method. For validating our approach, we consider gait data of twelve healthy subjects walking
straight and in curves at self-chosen speeds with inertial sensors attached to either the thigh,
shank or foot. Additionally, pressure measuring insoles are used to obtain ground truth toe-off
and heel-strike gait events for reference. With those events as the gait phase transitions, the
event detection is cast into a classification problem. To support the theoretical findings of the
feature selection and ranking, we finally evaluate different choices of feature sets with a simple
linear support vector machine classifier in an online fashion and obtain superior segmentation
results with our feature signals.

Keywords: Gait segmentation, bio-signals analysis and interpretation, human body motion
capture, information and sensor fusion, motion estimation, parameter and state estimation,
inertial sensors, signal processing, machine learning

1. INTRODUCTION

Inertial measurement units (IMUs) are nowadays used
for many on-body scenarios and mostly comprise three-
axis gyroscopes, accelerometers and sometimes magne-
tometers. The microelectromechanical systems (MEMS)
technology allows to construct them in a small, lightweight
and low-energy consuming manner, which facilitates an
easy attachment on the human body. As pointed out in
Aminian et al. (2002), this might be one of the major
reasons, why they emerged in various fields of application
such as sports, rehabilitation or daily life monitoring over
the past decade.

Particularly in the field of human gait analysis, MEMS
IMUs proved to deliver reliable results. Many publications
show that gait segmentation and event detection relying on
inertial data works fairly well. An overview of existing gait
analysis methods, using IMUs and adaptive algorithms, is
given in Caldas et al. (2017).
To detect gait phases, IMUs are typically attached to the
feet, shanks or thighs. Methods for biomedical gait analysis
applications based on sensors, attached to the thighs or
shanks, are presented in Kotiadis et al. (2010), Bötzel
et al. (2016), Maqbool et al. (2017) and Abhayasinghe and
Murray (2014).
Algorithms to detect different gait phases from a foot-

worn inertial sensor are proposed f.i. by Seel et al. (2014),
Mariani et al. (2013), Rueterbories et al. (2014), Mannini
et al. (2014) and Schicketmueller et al. (2019).
In the context of indoor positioning, an IMU can be inte-
grated into a shoe to detect gait phases as done by Kim
et al. (2014) and Wang et al. (2015).
All aforementioned approaches have the common disad-
vantage that they cannot be easily ported from one limb
to the other, without the effort of additional adaptions.
Solutions to overcome this are addressed by the work of
Guenterberg et al. (2009), Aung et al. (2013) and Taborri
et al. (2014). They present approaches based on learned
Hidden Markov Models, which can be used with sensors,
that are attached arbitrarily on the lower limbs or even
the upper body after a training phase, but are hence
dependent on data sets.

In order to comprehend the basic idea of the work
introduced above, one might ask, where and how the
most relevant information for inertial gait segmentation
is encoded — particularly in view of the heuristic, but also
the data-driven learning approaches.
Fig. 1 illustrates the human body planes and axis. During
the normal gait cycle, the predominant motion in the lower
limbs in terms of absolute ranges of motion is contained
within the sagittal plane. When walking straight, flexion-
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extension occurs at the ankle, knee and hip and the related
joint axes are approximately coincident with the mediolat-
eral axis, as discussed in the work of Perry and Burnfield
(2010).
Studying the related work, it can be summarized that
segmentation methods, using gyroscope or accelerometer
data, mainly exploit sagittal information. In particular,
three complementary and orthogonal signal components
can be identified from literature and appear to be most
relevant:

(1) sagittal angular velocity,
(2) accelerations in anteroposterior direction,
(3) vertical accelerations, esp. when the foot strikes and

lifts off the ground.

SagittalPlane

Anteroposterior
Axis

Craniocaudal Axis

Mediolateral Axis

GroundPlane

TransversePlane

Fig. 1. Anatomical human body planes, cf. Wikimedia
Commons (2014). Sensors at the lower limbs are
aligned with a coordinate frame composed of the three
body axes, which coincide with the directions of the
relevant gait signal components ax, ωy and az.

Most of the heuristic methods directly use one or more of
these signals as done e.g. in Wang et al. (2015), Mariani
et al. (2013) and Schicketmueller et al. (2019). Some derive
closely related features from the signals as done by Seel
et al. (2014) or Kotiadis et al. (2010).

We assume that during normal gait, an IMU mounted
to any lower limb segment measures most of the signal
variance related to progressive motion within the sagittal
plane. The remaining components might be merely super-
imposed with additional accelerations and angular veloci-
ties due to changes of the heading direction, when walking
in curves, or caused by pathological gait deviations, soft
tissue and clothing artifacts.
Supposing a favorable sensor alignment with the IMU’s
y-axis parallel with the mediolateral axis and its z-axis
pointing opposed to the gravity vector, the three most
relevant gait signals would be given by the sensor measure-
ments immediately, cf. Fig. 1. The contiguous inertial time
series of the aforementioned components, measured at any
lower limb segment, are hereinafter referred to as the three
(gait) feature signals. This term is intended to distinguish
these intuitively interpretable signals from more abstract,

implicit or hidden features, appearing in the context of
machine learning and automatic feature extraction in par-
ticular. However, in context of the introduced approaches
from literature, obtaining these signals either requires a
fixed and invariant sensor mounting w.r.t. the respective
limb, prior knowledge of the sensor-to-segment alignment
or an entangled learning process of the alignment, along
with some implicit features.

In contrast to existing work, our proposed approach is
independent of prior knowledge, while still exploiting the
sagittal information for all lower limbs explicitly. More-
over, our proposed method is independent from a labora-
tory environment and can be used for arbitrary walking
directions and a wide range of speeds.
In summary, the contributions of this work are:

• Construction and online tracking of informative fea-
tures, aligned with sagittal and ground plane, without
using magnetometers at any time.

• Comparison to commonly used features, regarding
predictive power and information gain.

• Evaluation of features for online gait segmentation,
using common classifiers.

2. METHOD

Fig. 2 illustrates the overall methodology of obtaining and
evaluating our proposed gait feature signals. Each of the
following sections corresponds to a box in the figure and
will be discussed in detail subsequently.
Finally, the data recording and processing is described.
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Fig. 2. Schematic illustration of the proposed gait feature
signal methodology.

Notation The processing method of the gait feature
signals was the same for any lower limb IMU. Therefore,
the coordinate frame of an IMU is denoted by I and
assumed to be aligned with the sensor casings at the foot,
shank or thigh, respectively. Accelerations and angular
velocities are a, ω ∈ R3 and g is the local gravity constant.
The estimated gravitational direction and sagittal plane
normal are denoted by ĝ and ŝ ∈ R3. The angular ve-
locity and acceleration frames, after applying some initial
rotations for sensor-to-segment alignment, are denoted Sω
and Sa. The acceleration frame after an additional rotation
for inclination compensation is denoted S̄a and G is the
inertial frame of reference. A rotation matrix RAB ∈ R3×3

rotates a three dimensional vector from frame B to A.
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2.1 Calibration

As a first step to obtain pure sagittal inertial data, an
initial transformation is required, which rotates the sensor
from its unknown mounting orientation into a segment-
aligned coordinate frame. For estimating this rotation
matrix, a two-staged calibration phase was performed,
where measurements during a quasi-static standing pose
and afterwards a dynamic sequence of one step in walking
direction, were collected.

Estimating the Ground Plane Normal For estimating
the gravitational direction, i.e. the normal of the ground
plane, a set of IMU measurements was required to fulfill
the following conditions of a quasi-static sensor pose:

||aI ||2 − g ≤ τa, (1a)

||ωI ||2 ≤ τω , (1b)

with some small thresholds τa, τω.
These accelerations during static conditions were aggre-
gated in A ∈ Rn×3 with n the number of static pose
measurements. Then the column-wise mean of A was com-
puted and normalized, yielding the desired gravitational
direction ĝI in the inertial sensor frame.

Estimating the Sagittal Plane Normal In a second cal-
ibration stage, the subject was expected to take a step
in walking direction with the leg, where the considered
sensor was attached to. This process was started when
both conditions in Eq. 1 were invalidated and stopped
as soon as they evaluated true again. We aggregated the
angular velocities during the supposed step in Ω ∈ Rn×3,
with n the number of measurements. As a precaution to
remove any potential gyroscope biases, we centered the
data by subtracting the column-wise means from each row
yielding Ω̄. We then applied a principal component anal-
ysis (PCA) on Ω̄ implemented via singular value decom-
position, cf. Jolliffe (2002). The first principal component
gave us an estimate of the desired local sagittal normal ŝI

in the inertial sensor frame.
Note, that the PCA is ambiguous in terms of the sign
of a principal component. Hence, the collected data was
projected onto ŝI , the first significant local extremum of
the resulting signal was checked and ŝI was inverted in
case of a minimum. After that, ŝI formed a right-handed
coordinate frame together with −ĝI and the positive walk-
ing direction.
All further incoming gyroscope measurements ωIt could
then be likewise projected and yielded the sagittal angular
velocity component of the desired gait feature signal:

ωSω
t,y = ωIt · ŝI . (2)

2.2 Extraction

In order to continuously extract the gait feature signals
in an online fashion, the previously estimated ground and
sagittal axes were used to construct the initial rotation
matrix. This allows to transform the sensor measurements
into a known, segment-aligned coordinate frame with its
x-y-plane parallel to the ground with regard to a neutral
standing pose.

Pre-rotating the Measurements The initial rotation ma-
trix RSaI was constructed based on ĝI and ŝI :

RSaI =


(
ŝI ×−ĝI

)T(
−ĝI ×

(
ŝI ×−ĝI

))T(
−ĝI

)T
 (3)

Note, that the local sagittal normal ŝI , technically speak-
ing the estimate of the limb’s mediolateral axis, is not
necessarily orthogonal to ĝI . In respect of proper an-
teroposterior and vertical accelerations, the z-axis of the
segment-aligned acceleration frame was forced to coincide
with gravity and hence ŝI was not used as the y-basis of
RSaI .
The incoming sensor measurements were finally be pre-
rotated:

aSa
t = RSaI aIt , (4a)

ωSa
t = RSaI ωIt . (4b)

Tracking the Inclination Subsequently, the sensor incli-
nation was estimated over time, using an extended Kalman
filter (EKF), which allowed for a compensation of the
time-dependent variations in orientation in the roll and
pitch directions. This way, the accelerometer measure-
ments could be rotated into a frame, aligned with the
sagittal and ground plane, thus yielding pure vertical and
anteroposterior accelerations in the x and z-components.
The aforementioned pre-rotation of the measurements al-
lowed for an initialization of the roll-pitch tracking with
a zero-inclination guess, reducing the initial settling time
and also avoiding a potential Gimbal lock.
Assuming a gravity-dominant acceleration measurement
model, the instantaneous roll φGt and pitch θGt Euler angles
in the inertial frame were estimated from the pre-rotated
accelerations aSa

t :

φ̂Ga,t = arctan

 aSa
t,y√(

aSa
t,x

)2

+
(
aSa
t,z

)2

 , (5a)

θ̂Ga,t = arctan

 aSa
t,x√(

aSa
t,y

)2

+
(
aSa
t,z

)2

 . (5b)

The instantaneous Euler rates of change of roll and pitch
φ̇Gω,t, θ̇

G
ω,t can be expressed in the inertial frame depending

on the previous segment inclination and the pre-rotated
angular velocity measurements as follows, cf. Gustafsson
(2012):(

φ̇Gω,t
θ̇Gω,t

)
=

(
1 sinφGt−1 tan θGt−1 cosφGt−1 tan θGt−1

0 cosφGt−1 − sinφGt−1

)
ωSa
t

(6)

Note, that Eq. 6 is prone to a Gimbal lock when pitch
approaches ±π/2. However, using the initial pre-rotation,
this was not an issue during gait motion. One might want
to eliminate this singularity with a quaternion orientation
representation.
With the aforementioned relationships, the roll-pitch
tracking was implemented in an EKF manner, cf. Gustafs-
son (2012). The state xt was tracked using the roll and
pitch rates of change from Eq. 6 as inputs ut and the roll
and pitch estimates from Eq. 5 as measurements yt:
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xt =
(
φGt bGφ,t θ

G
t bGθ,t

)T
, (7a)

ut =
(
φ̇Gω,t θ̇

G
ω,t

)T
, (7b)

yt =
(
φ̂Ga,t θ̂

G
a,t

)T
, (7c)

with bGφ,t, b
G
θ,t the gyroscope biases related to roll and pitch

at time t.
The state and measurement equations were then defined
in state-space form:

xt =

1 −T 0 0
0 1 0 0
0 0 1 −T
0 0 0 1

xt−1 +

T 0
0 0
0 T
0 0

ut + wt , (8a)

yt =

(
1 0 0 0
0 0 1 0

)
xt + vt , (8b)

where T is the sampling time and wt ∼ N (0, Q) and
vt ∼ N (0, R) are zero-mean Gaussian processes with
some process and measurement noise covariance matrices
Q ∈ R4×4 and R ∈ R2×2.

Compensating the Inclination Using the tracked roll and
pitch angles, all incoming pre-rotated acceleration mea-
surements were rotated into an inclination-compensated
acceleration frame S̄a, remaining parallel to the ground
plane over time:

aS̄a
t = Ry(θGt )Rx(φGt ) aSa

t , (9)

with Rx(·), Ry(·) the elemental rotations around the x and
y-axis, in the reference frame, respectively.
The final gait feature signal vector ft ∈ R3 is defined with
the previously computed sagittal angular velocity signal
ωSω
t,y and the x and z-components of the aforementioned

inclination-compensated accelerations minus gravity:

ft :=
(
aS̄a
t,x ω

Sω
t,y a

S̄a
t,z − g

)T
. (10)

2.3 Evaluation

The relevance and performance of our proposed gait
signals were investigated in respect of a binary stance-
swing phase segmentation. For ground truth reference,
gait events were obtained from pressure measuring insoles,
where toe-off (TO) and heel-strike (HS) events were inter-
preted as the transitions between stance and swing phases
and vice versa.

To state, which of the feature signals, obtained from dif-
ferent limbs, is particularly relevant for the task of gait
phase detection, a classifier-independent feature selection
method, capable of ranking the features with respect to
the discriminative information, is desirable.
Feature selection methods can be roughly grouped into
three categories: filter-based methods, wrapper methods
and embedding methods. In this work we exploited filter-
based methods, which have the advantage of scoring fea-
tures, based on a proxy measure instead of an error rate,
obtained by any specific classifier, cf. Blum and Langley
(1997). Moreover, when dealing with m > 1 features, it is
well known that “the m best independent features are not
necessarily the best m features” for a classification task,
due to correlation and redundancy, Cover (1974).
The minimum redundancy maximum relevance (mRMR)

algorithm, originally proposed in Ding and Peng (2005a),
Ding and Peng (2005b), solves this problem, and delivers,
given a set of features and target classes, a feature ranking
through the amount of relevant information for the class,
while optimizing with respect to least redundancy. Several
variants of the mRMR method have been proposed, in-
cluding the mutual information quotient (MIQ), the F-test
correlation difference and non-linear extensions, cf. e.g.
Ding and Peng (2005a), Vinh et al. (2010), Zhao et al.
(2019). We chose the mRMR method as introduced by
Ding and Peng (2005b) and implemented in Matlab 2019b.

In literature, the Euclidean norms of accelerations and
angular velocities are frequently considered for gait phase
detection, since they do not require any decomposition
into sagittal components and are independent of the sensor
mounting orientation, cf. Mariani et al. (2013), Kim et al.
(2014) and Seel et al. (2014).
In order to compare the amount of relevant information
of the proposed feature signals with the signal norms, we
evaluated subsets of the following extended feature set
vector including f :

f̄t :=
(
fTt ||ωIt ||2 ||aIt ||2 − g

)T
. (11)

2.4 Classification

To finally illustrate the effectiveness for gait phase segmen-
tation, a support vector machine (SVM) classifier with a
linear kernel was trained and evaluated in an online walk-
forward manner. Since the main goal of this work was
to develop and evaluate expressive feature signals, rather
than selecting and tweaking a specific classifier, we utilized
this simple, but representative classification approach.
The SVM has shown to be a reliable machine learning
tool for pattern recognition in human gait, as concluded
in the recent review of Figueiredo et al. (2018). In order to
exemplify the gain in accuracy and reliability due to the
proposed feature signals, we applied a SVM with a linear
kernel for gait phase classification.
Determining the current phase, given only the recent time
instance of a feature set vector, is not robust due to
spurious class transitions as no temporal information is
present at all. Maintaining the real-time applicability of
our approach, a look-back window of size N was thus
introduced and the classification problem was formulated
to predict the current class of the gait phase, given a
batch of the N recent time instances of a feature set. The
gait events were then defined as the transitions between
different gait phases.

2.5 Data Recording

We captured the motion of the lower limbs, using six
IMUs (MTW Awinda Xsens Technologies BV, Enschede,
The Netherlands). The IMUs were attached to the thighs,
shanks and feet. In order to obtain ground truth gait
segmentation information, we used foot pressure distri-
butions measured with two sensor insoles (Smart Foot
Sensor, IEE S.A., Bissen, Luxembourg) and respective
data loggers (Dialogg data logger, Envisible, Steinbeis-
Forschungszentrum, Chemnitz, Germany). The data log-
gers of the pressure insole also contained an IMU. For
synchronization purposes, both foot IMUs and pressure
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data loggers were stacked together in 3D printed mounting
brackets, which were then laced to the shoes. The overall
setup is shown in Fig. 3 and Fig. 4.
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Fig. 3. Subject wearing
IMUs (orange), pres-
sure insoles and sen-
sor brackets (white)
laced to the shoes.

Fig. 4. Eight-channel pressure
insole with data logger
and foot IMU stacked to-
gether in a single shoe-
mountable bracket.

Data Synchronization The IMU measurements included
each three-axis accelerations and angular velocities and
were recorded at a sampling frequency of 60 Hz. The
pressure data loggers provided eight-channel pressure data
at different regions of the foot and additional accelerations
and angular velocities at a sampling frequency of 100 Hz.
In order to post-synchronize the recordings of our two
systems, we up-sampled the gyroscope measurements of
the stacked foot IMUs and pressure data loggers to their
least common multiple frequency. After that, the cross-
correlation lag of the angular velocity norms was computed
over the entire sequence and the pressure data was shifted
and re-sampled accordingly, to match the time frame of
the IMUs.

Ground Truth Gait Segmentation We investigated two
main gait phases: stance and swing as shown in Fig. 5 and
obtained our ground truth data, using the pressure insoles
consisting of eight force sensing resistor cells, cf. Fig. 4.
The method was similar to those mentioned in Storm et al.
(2019) and Maqbool et al. (2017). The transitions between
both phases were defined as the occurrence of a TO and
HS event, respectively. A HS was detected when the sum
of pressures at the heel sensor cells, as illustrated in Fig. 4
showed a significant rise. Analogously, a TO event was
defined as a fall of the sum of the pressures of the toe and
hallux cells.

Collected Data A straight, ground-leveled walking track
with a distance of about 8 m was marked with two pylons
at the ends. Twelve healthy subjects (two female, ten
male) were asked to stand still for a few seconds, walk
one straight step for calibration purposes and then follow
the track for a period of two minutes, while turning
in smooth curves around the pylons. After each turn,

the subjects were encouraged to arbitrarily change their
walking speeds.
In total, we collected data of 2266 steps with walking
speeds ranging from 0.25 m/s to 2.28 m/s, an average speed
of 0.98 m/s and a standard deviation of 0.34 m/s.

3. EXPERIMENTAL RESULTS

Computed exemplary gait feature signals for one gait cycle
are illustrated in Fig. 5. These signals are qualitatively
representative for the evaluated subjects during all walking
conditions.
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Fig. 5. Exemplary feature signals of each limb segment
for one gait cycle: the sagittal angular velocity ωSω

y

(green) and the anteroposterior and vertical acceler-

ations aS̄a
x (red) and aS̄a

z (blue). The green dashed
lines refer to the norms of the angular velocities (dark
green) and accelerations minus gravity (purple).

3.1 Feature Signal Ranking

We ranked different feature subsets, using the mRMR
method with respect to the ground truth gait phases. As
feature sets, the sagittal angular velocity, our gait feature
set vector f , the extended feature set vector f̄ including
the acceleration and gyroscope norms and the acceleration

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16215



and gyroscope norms only were chosen. Only a single time
instance of the feature vector, given the labeled class, was
used to compute the MIQ, since no significant difference
in the score relations has been observed, when a window
of N features was used.
Fig. 6 shows the resulting MIQ scores of each feature
computed over all subjects and for each limb segment.
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Fig. 6. The mRMR feature ranking and MIQ scores for
each feature and each segment computed over the
entire data set.

In every case, our three feature signals were ranked higher
than the norms of the signals, where the sagittal angu-
lar velocity was consistently the most relevant compo-
nent. The vertical and anteroposterior accelerations still
achieved high scores, indicating that they provide relevant
additional information.
In case of the foot and shank, the vertical acceleration was
chosen as the second most relevant feature in conjunction
with the angular velocity, whereas the anteroposterior
acceleration was preferred for the thigh. Particularly for
the foot and shank, the scores dropped after the first three
feature signals at the norms.
However, the thigh signals appeared to provide notably
less information relevance in respect of the gait phase clas-
sification problem compared to the other limbs. In general,
the absolute maximum angular velocities and accelerations
at the thigh were significantly smaller with less pronounced
characteristic points compared to the foot, cf. Fig. 5.

3.2 SVM Gait Phase Classification

We trained four different SVM classifiers on the same pre-
viously mentioned feature subsets, using a cross-validation
approach to learn and test. To this end, eleven subjects

were selected for training and a single one for testing,
i.e. a leave-one-subject-out cross validation. The look-back
window was defined as half a second (N= 30 samples) in
all cases. For each limb segment and every feature set we
evaluated the gait events in terms of precision p = tp/(tp+
fp) and recall r = tp/(tp + fn) with tp, fp the true and
false positives and fn the false negatives. Additionally,
we reported a recall-10 rate, which accepted only those
predictions that were at maximum 10 frames away from
the ground truth events. Moreover, the mean and standard
deviation of the absolute frame lags between classified and
true events were computed. A lag of one corresponds to a
time delay of 16.6̄ ms due to the sampling rate of our setup.
All results are summarized in Tab. 1.

precision recall recall-10 abs. lags
Foot

HS ωSω
y 0.772 1.000 0.992 2.91 / 1.72
f 0.942 1.000 0.997 1.48 / 1.51
f̄ 0.978 1.000 1.000 1.28 / 1.18

||a||2 , ||ω||2 0.903 1.000 0.995 1.80 / 2.02

TO ωSω
y 0.778 1.000 1.000 1.33 / 1.21
f 0.949 1.000 1.000 1.08 / 0.91
f̄ 0.984 1.000 1.000 1.16 / 0.96

||a||2 , ||ω||2 0.907 1.000 0.996 1.59 / 1.17

Shank

HS ωSω
y 0.726 1.000 0.998 2.96 / 1.72
f 0.907 1.000 0.999 1.59 / 1.46
f̄ 0.941 1.000 1.000 1.42 / 1.30

||a||2 , ||ω||2 0.716 1.000 0.979 1.71 / 2.09

TO ωSω
y 0.730 1.000 0.999 3.01 / 1.50
f 0.912 1.000 0.997 1.14 / 1.11
f̄ 0.946 1.000 0.998 1.14 / 1.04

||a||2 , ||ω||2 0.723 1.000 0.996 1.65 / 1.39

Thigh

HS ωSω
y 0.938 1.000 0.944 3.29 / 2.44
f 0.887 1.000 0.972 2.31 / 2.15
f̄ 0.890 1.000 0.980 2.10 / 2.03

||a||2 , ||ω||2 0.455 1.000 0.849 3.80 / 2.99

TO ωSω
y 0.946 1.000 0.988 1.58 / 1.39
f 0.895 1.000 0.989 1.44 / 1.45
f̄ 0.898 1.000 0.989 1.38 / 1.45

||a||2 , ||ω||2 0.478 1.000 0.923 2.13 / 2.60

legend
1.00 > v ≥ 0.99 0.99 > v ≥ 0.90 0.90 > v ≥ 0.80 0.80 > v

Table 1. Gait phase detection results for a SVM
classifier with a linear kernel.

For every feature set and event the recall rate was 1.0,
meaning that no false negatives occurred within the test
data set in any setup.
A classifier considering only the sagittal angular velocity
ωSω
y showed recall-10 rates consistently over 0.94. The

precision rates for the foot and shank were below 0.8 and
therefore belonged to the worst among all features. For the
thigh, instead, the precision was superior compared to the
remaining feature sets.
From foot to the thigh, the recall-10 dropped for the
HS from 0.992 to 0.944 and for the TO from 1.0 to
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0.988. This is in accordance to the mRMR scores for the
sagittal angular velocity, which showed decreasing feature
relevance as limbs further away from the ground were
considered.

4. DISCUSSION

The three proposed feature signals f yielded consistently
high precision and recall rates and reduced absolute lags,
which indicates that the acceleration signals provide valu-
able additional information. Regarding the absolute lags,
using angular velocity only caused the biggest delay, i.e.
temporal detection uncertainty, w.r.t. to the ground truth
events at the foot and shank.
The extended feature set f̄ showed the best performance
for each segment and events. In terms of the precision,
it outperformed the three feature signals marginally, while
the additional benefits were rather low. The recall-10 rates
of f̄ and f were equally high.
The feature set of the signal norms ||a||2, ||ω||2, containing
no directional information, performed comparably poor
overall, which is in accordance with the evidence of the
mRMR scoring. At both shank and thigh the precision
dropped considerably and in case of the thigh also the
recall-10 rates decreased markedly.

The proposed gait feature signals provide intuitive and
predictive gait features, which are considerably more in-
formative for segmentation tasks, when compared to com-
monly used signals, such as norms of acceleration and
angular velocity data.
The classifier-independent mRMR feature ranking clearly
emphasized the advantages of the directional information
in the sagittal feature signals and especially showed the
importance of the sagittal angular velocity. The vertical
and anteroposterior accelerations still provide valuable
additional information in terms of the precision and time-
liness of event predictions, whereas norm signals were
consistently ranked last.
Reliable gait phase segmentation, using inertial data, ap-
pears to become more challenging as the sensor is mounted
farther away from the foot, being the limb, where events
immediately emerge. While for foot and thigh the differ-
ences were minor, the relevance of the first selected feature,
namely the sagittal angular velocity, dropped considerably
in case of the thigh.
In any case, we were still able to detect the TO and HS
events reliably in an online scenario. Applying a simple lin-
ear SVM classifier on the proposed feature signals, yielded
high precision and high to excellent recall rates for any
lower limb segment, even at the thigh. Note, that we did
not smooth the transformed raw data in any way and
the precision rates are likely to increase if spurious phase
transitions related to the formulation of the classification
problem can be avoided.

5. CONCLUSIONS AND OUTLOOK

Our approach is real-time capable, invariant of any prior
knowledge, regarding the sensor mounting orientation and
can be computed without the use of magnetometers. We
extracted explicit feature signals from an IMU attached
to any lower limb segment, using the same consistent
method: Raw accelerometer and gyroscope measurements

were transformed into a favorable coordinate frame and
continuously compensated for inclination changes, which
allows to directly measure the sagittal information, partic-
ularly relevant during gait.
The resulting feature signal curves are biomechanically
interpretable with characteristic points at the events of
interest, cf. Fig. 5. Especially in case of the foot and shank,
a more fine-grained gait segmentation including, f.i. foot-
flat and heel-off events, appears to be attainable.

There are several possibilities of further improvements and
applications in different contexts. Regarding the gait phase
segmentation task, the classification approach could be
changed or improved, ranging from non-linear kernels of
the SVM, applying other classification approaches like k-
nearest neighbors, decision trees, Gaussian processes or
ensemble / boosting variants, to additional implicit feature
extractors like neural networks with one of their deep
variants. Moreover, the currently fixed look-back window
might need adaptions, if the motion speed or style varies
considerably and additional smoothing of the feature sig-
nals or the class predictions might further improve the
classification robustness.
The features could certainly be used for other tasks at the
lower limbs, like activity recognition or automatic detec-
tion of the sensor mounting orientation, i.e. the sensor-
to-segment alignment implicitly computed with our ap-
proach, during the initial one-step calibration.
An extension to the pelvis or even the upper body seg-
ments, however, is not straight forward, since the pre-
dominant changes in motion are not necessarily con-
strained to the sagittal plane. In case of the pelvis, a
similar approach is conceivable, including the angular ve-
locity around the anteroposterior axis to distinguish the
gait events of both legs.
Deeper investigations should be undertaken in order to
evaluate the robustness of the feature signals under chal-
lenging conditions, such as walking in sharper curves and
on inclined or uneven terrain.
Future work will evaluate the proposed method applied
to pathological gait data of patients, suffering from lin-
gering musculoskeletal restrictions after total hip arthro-
plasty, cf. Teufl et al. (2019).
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Bötzel, K., Marti, F.M., Rodŕıguez, M.Á.C., Plate, A.,
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