
An Embedded FPGA Architecture for
Real-Time Model Predictive Control

Hussain I. Khajanchi ∗ Joseph N. Bruno ∗

Ambrose A. Adegbege ∗

∗Department of Electrical and Computer Engineering, The College of
New Jersey, 2000 Pennington Road, Ewing, NJ 08628

(e-mail: khajanh1@tcnj.edu, brunoj6@tcnj.edu adegbega@tcnj.edu).

Abstract: We develop a custom hardware architecture for real-time implementation of
embedded Model Predictive Control (MPC) on a Field Programmable Gate Array (FPGA). We
propose a novel modular framework that allows for easy and rapid prototyping of control with
capability for analog-to-digital conversion, numerical scaling, and digital-to-analog conversion.
We demonstrate the effectiveness of the proposed framework for real-time control on a quadruple
water tank system.

Keywords: Embedded Model Predictive Control, Primal-Dual algorithm, Real-Time Control,
Field Programmable Gate Array, Quadruple Tank System.

1. INTRODUCTION

Model Predictive Control (MPC) is a class of advanced
control algorithms in which the output control trajec-
tory is optimized for a linear or non-linear model of the
plant (Borrelli et al., 2017). MPC has inherent constraint
handling capability such that at every time step when a
new input is received, the controller solves a constrained
optimization problem online. The optimization solver typ-
ically calculates a new set of control moves over a control
horizon to optimize the predicted system state trajectory,
while constraining the output space to account for latent
constraints.

As the problem scope increases, the computational over-
head needed to solve the optimization problem becomes
increasingly intransigent. This can be unrealistic for real-
time systems, as controllers designed for fast processes
need to deliver control outputs quickly. To leverage the
inherent flexibility and robustness of MPC while retaining
a fast and efficient computing architecture, many opti-
mization algorithms have been developed with speed in
mind (Wang and Boyd, 2009; Richter et al., 2011; Patrinos
and Bemporad, 2013; Jerez et al., 2014).

To increase the computational dexterity of MPC, there are
many fast and simple solver algorithms tailored for the
underlying Quadratic Program (QP). These algorithms
include active-set methods (Borrelli et al., 2010), interior
point methods (Wang and Boyd, 2009), gradient projec-
tion methods (Patrinos and Bemporad, 2013), and op-
erator splitting methods (O’Donoghue et al., 2013). We
consider a primal-dual algorithm proposed in (Blanchard
and Adegbege, 2017) which solves an associated saddle
point problem by updating the primal and the dual vari-
ables iteratively in a Gauss-Seidel fashion (Adegbege and
Nelson, 2016) until the solver converges. This algorithm
lends itself to efficient matrix-vector multiplications and
projections which can be optimized for hardware imple-

mentation (Levenson et al., 2017; Sabo and Adegbege,
2018).

The contribution of this work is the implementation of
the primal-dual MPC algorithm using a custom hardware
architecture embedded within a Field Programmable Gate
Array (FPGA). Specifically, a novel modular framework is
developed that allows for treating signal conversion, signal
scaling and the solver circuit as individual blocks which
are interconnected via Register Transfer Level (RTL)
abstraction of the dataflow. The proposed framework is
attractive in that it is scalable and any solver algorithm
can be incorporated into the implementation.

The rest of the paper is structured as follows. In section
2, we provide background information on the primal-dual
algorithm we employed for solving the MPC underlying
quadratic programming problem. In section 3, we dis-
cuss the hardware architecture both for implementing the
primal-dual algorithm and for acceleration on an FPGA.
Finally in section 4, we discuss experimental results aris-
ing from the real-time control of a quadruple water tank
system using the proposed implementation architecture.

2. PROBLEM SET UP

We consider the problem of linear MPC for a nonlinear
system described by the following discrete-time state space
equation:

xξ[k + 1] = f(xξ[k], u[k]) (1a)

yξ[k] = h(xξ[k]) (1b)

where xξ ∈ Rn is the state vector, u ∈ Rm is the control
input vector, and yξ ∈ Rm is the output vector. For linear
MPC control design, we obtain a linearized version of (1)
using truncated Taylor’s series expansion of f(·) and h(·)
about a suitable operating point as:

x[k + 1] = Ax[k] +Bu[k]) (2a)

y[k] = Cx[k]) (2b)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 7931

where x ∈ Rn is the state vector, u ∈ Rm is the control
input vector, and y ∈ Rm is the output vector. We assume
that the pair (A,B) is controllable, the pair (A,C) is
observable and that the output matrix C is full row ranked.

To account for the mismatch between the actual system
model (1) and its linearized model (2) and to incorpo-
rate integral action for offset-free steady state behavior
(Maeder et al., 2009), we construct an observer of the form:[

x̂[k + 1]

d̂[k + 1]

]
=

[
A 0
0 I

] [
x̂[k]

d̂[k]

]
+

[
B
0

]
u[k]

+

[
Lx
Ld

]
(Cx̂+ d̂− y[k])

(3)

where x̂ and d̂ are the estimated state and disturbance
respectively, and Lx and Ld are appropriately chosen
observer gains to ensure stability and proper operation of
the observer. At steady state, the observer must satisfy:[

A− I B
C 0

] [
x̂∞
u∞

]
=

[
0

r∞ − d̂∞

]
(4)

where r∞ is the steady value of the reference input or set-

point r[k], x̂∞ and d̂∞ are the steady state values of the
observed state and disturbance respectively, and u∞ is the
steady state control input. Note that (4) is invertible if the
plant has no integrators and C is full row ranked, and so

for any r∞ and d̂∞, there exist x∞ and u∞. We will exploit
this parameterization in the MPC design.

2.1 Model Predictive Control Formulation

We formulate the MPC controller as (Maeder et al., 2009):

min
u0···uN−1

1

2
(||xN − xt||2p +

N−1∑
i

||xi − xt||2Q + ||ui − ut||2R)

subject to

xi+1 = Axi +Bui, di+1 = di, i = 0, · · · , N − 1

x ≤ xi ≤ x, i = 1, · · · , N
u ≤ ui ≤ u, i = 0, · · · , N − 1

x0 = x̂[k], d0 = d̂[k], r0 = r[k][
A− I B
C 0

] [
xt
ut

]
=

[
0

r0 − d0

]
where N ∈ R is the prediction horizon, Q ∈ Rn×n and
R ∈ Rm×m are weighting matrices, and P ∈ Rn×n is the
solution of an associated discrete Riccati equation. The
vectors xt and ut are the steady-state target to which the
state and the input are stirred by the MPC. The above
MPC can be reformulated as a Quadratic Programming
(QP) problem that must be solved at every time instant.
By defining an augmented variable zi = [uTi−1 x

T
i]T , i =

1, · · · , N , the QP problem can be expressed as:

min
z

1

2
zTHz + zT q (5a)

subject to Ez = e, z ∈ Z (5b)

where H ∈ R(m+n)N×(m+n)N , E ∈ RnN×(m+n)N are fixed
problem data that depend on system matrices A and B,
MPC matrices Q, R and P , and the prediction horizon N .
The vectors q ∈ R(m+n)N and e ∈ RnN , typically time-
dependent, are input vectors to the QP and z ∈ R(m+n)N

is the variable to be optimized. The matrices H and

E are typically large and sparse, and can be exploited
for computational efficiency. The set Z holds the simple
bound constraints of the system, while Ez = e is the
equality condition containing the complicating constraints.
We refer readers to (Blanchard and Adegbege, 2017) for
full description of matrices H and E. In a real-time control
configuration, the input vectors q and e are sampled
and/or estimated at every sample time to produce a new
solution for the QP (5).

2.2 Primal-Dual Solver for Quadratic Programming

The primal-dual solver adopted here follows that of
(Blanchard and Adegbege, 2017) which combines the
Bound-Constrained Lagrangian (BCL) method (Nocedal
and Wright, 2006) with the Successive Over-Relaxation
method (SOR) for saddle-point problems (Benzi et al.,
2005), to develop an iterative primal descent and dual
ascent algorithm for QP problem (5).

The bound-constrained Lagrangian approach involves ab-
sorbing the equality constraints into the quasi-Lagrangian

L(z, λ) =
1

2
zTHz + zT q + λT (Ez − e), (6)

and then enforcing the inequality constraint in the sub-
problem:

min
z
L(z, λ), (7a)

subject to z ∈ Z. (7b)

An efficient method for dealing with subproblem (7) is
the gradient projection method (Nocedal and Wright,
2006). Considering that the Karush Kuhn Tucker (KKT)
optimality condition for z to be a solution of (7) is given
by:

z − P (z −∇zL(z, λ)) = 0, (8a)

Pi(g) =

zi if gi ≤ zi,
gi if zi < gi < zi,

zi if gi ≥ zi.
(8b)

So, for fixed λ, an iterative procedure for updating z based
on the gradient projection method can be constructed as:

zk+1 = P
(
zk −∇zL(zk, λ)

)
. (9)

To incorporate an update strategy for λ into (9), we
employ the SOR strategy for the saddle-point problem:

min
z∈Z

max
λ

L(z, λ) =
1

2
zTHz + zT q + λT (Ez − e). (10)

The augmented or KKT system associated with (10) can
be expressed as: [

H ET

−E 0

] [
z
λ

]
=

[
−q
−e

]
. (11)

The SOR method involves the introduction of conditioning
matrices D and W , relaxation factors α and ω, and
the application of an appropriate matrix-splitting scheme
to (11) to arrive at the following iterative procedure
(Blanchard and Adegbege, 2017):

zk+1 = P
(
zk − αD−1(Hzk + ETλk + q)

)
, (12a)

λk+1 = λk + ωW−1(Ezk+1 − e). (12b)

The convergence properties and guidelines for choosing
the conditioning matrices and the relaxation factors are
discussed in (Blanchard and Adegbege, 2017). Observe

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7932

that the primal variable z and the dual variable λ are
updated in a Gauss-Seidel manner. A gradient descent
step is taken in the steepest descent direction followed by
projection onto the feasible set Z, and then a gradient
ascent step in λ using the most recent update of z.

3. HARDWARE ARCHITECTURE FOR
IMPLEMENTATION

For real-time control, we develop a custom hardware archi-
tecture for efficient control implementation and prototyp-
ing. The development is modularized to enable plug and
play capability for different solver circuits and to allow for
handling analog-to-digital conversion, numerical scaling,
and digital-to-analog conversion in one framework.

3.1 Hardware Development Environment

Field Programmable Gate Arrays (FPGA) have become
the tool of choice for both academia and industry for
hardware prototyping. They are typically comprised of
an integrated circuit containing configurable logic blocks,
which can be programmed to execute any logical function
through a Register-Transfer Language (RTL) like Verilog
or VHDL. Modern FPGAs also contain add-on ICs such as
memory components and multipliers. The heterogeneous
computing nature of the FPGA allows the control de-
signer a high degree of flexibility and system performance.
FPGAs are noted for their inherently parallel computing
framework; this can be exploited to accelerate the compu-
tation of matrix-based algorithms.

In this work, we target a Digilent Nexys 4 DDR Board
hosting a Xilinx Artix-7 XC7A100T1CSG324C FPGA.
This board is chosen for its accessibility and its ease of
use, and has low cost relative to the amount of features.
The FPGA itself contains 101,440 logic cells, 240 DSP
multiplier slices, 300 I/O pins and a running master
clock of 100 MHz. To implement the control algorithms
specified in section 2, we used an integrated design of
pure Verilog RTL and Vivado High-Level Synthesis (HLS)-
based modules.

To interface with the physical system, we integrate a Digi-
lent PMOD AD1 and DA2 for analog-to-digital (A/D) and
digital-to-analog (D/A) conversions. The PMOD AD1 can
support positive voltages in the 0-3.3V range with a 12-
bit resolution. Similarly, the PMOD DA2 can reconstruct
analog voltages in the 0-3.3V range with a 12-bit resolu-
tion. The PMOD AD1 contains two Sallen-Key filters for
anti-aliasing and the PMOD DA2 contains external filters
to prevent high-frequency noise in the analog output. We
adopt a sampling frequency of 95.1 kHz as an arbitrary
sampling rate; We deem this sampling rate sufficient for
our application.

3.2 General Control Architecture

The FPGA implementation requires a significant amount
of architecture design and experimentation to ensure
proper data flow and functional operation. The general
control architecture is shown in Fig. 1. There are several
key elements to note in the diagram:

Fig. 1. The General Control Architecture for Embedded
MPC

(1) PMOD AD1 Controller: This serves as the external
interface to the physical system. This module uses
a SPI-like interface to control an Analog Devices
AD7674A A/D chip on board a Digilent PMOD
AD1 peripheral. The sampling rate is parameterized
and set at 95.1 kHz, and samples both the external
setpoint voltage as well as the sensor signals.

(2) Fixed-Point Scaler: This converts the 12-bit sample
into a Q8.8 Fixed-Point format suitable for the HLS-
based control module. To accomplish this, the sam-
ple is zero-padded to 16-bits and then scaled by a
constant. The scaling accounts for the discrepancy in
between the raw Q8.8 interpretation and the actual
constituent voltage.

(3) Control Algorithm: This module contains an RTL
implementation of the MPC control algorithm. The
module is such that any algorithm or solver circuit
can be implemented without changing the external
interfacing logic.

(4) De-scaler: This module takes the Q8.8 output of the
control algorithm and converts it back into the raw
12-bit FPGA sample format for D/A processing.

(5) PMOD DA2 Controller: This module controls a Digi-
lent PMOD DA2, which hosts two Texas Instruments
DAC121S101 chips. The D/A chips can be controlled
using the same SPI-like interface as the PMOD DA1.
The two 12-bit control outputs are received and then
shifted out serially at every serial clock cycle to gen-
erate the analog output control signal. This module is
activated by a DAC-ENABLE signal from the Master
FSM to ensure that valid control outputs are being
converted into analog signals and to prevent further
data contention.

(6) Master Controller: This module serves as the central
control unit of the FPGA. The controller enables
each module per a Finite State Machine (FSM) that
ensures timely data delivery and adequate buffering
to prevent data contention and ensure functional
correctness. The controller issues enable signals to
each of the aforementioned modules in a sequential
manner - it keeps track of which module is complete
and what data is ready/valid, and then issues the
enable for the next downstream module once this
information is received by the controller.

3.3 Design Process and Considerations

Traditionally, FPGAs are programmed using a Hardware
Descriptive Language (HDL) which describes the behav-
ioral specifications of the circuit to be implemented. This

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7933

approach offers the FPGA Engineer the greatest level of
design control while abstracting the underlying circuit
synthesis - however this approach tends to be costly in
terms of labour hours and design verification. In the recent
years, High-Level Synthesis (HLS) has emerged as an alter-
native to traditional HDL design. HLS offers the designer
much higher levels of abstraction through C/C++ hard-
ware synthesis - instead of writing the HDL by hand, the
HLS compiler automatically maps the designer’s C/C++
specification into a logical circuit directed through user-
based pragmas. These pragmas allow the user to specify
synthesis directives such as latency, resource usage, and
parallelism/pipelining.

While HLS offers a significant speedup in design time,
there are some constraints that the designer must consider.
For one, the user has limited visibility into the resulting
synthesized design. This can be an issue for resource-
constrained systems in which the HLS-based design is
not completely optimized for resource-usage. Moreover,
hierarchical system design proved to be difficult to manage
as it is difficult to analyze the dataflow from one module
to another and to debug the system issues. HLS-based
hardware also has poor performance for I/O logic - thereby
making ADC/DAC interfacing with HLS difficult. Addi-
tionally, the C/C++ implementation needs to be written
in a very specific, low-level manner - typical software con-
structs such as dynamic memory allocation and recursion
are not supported for hardware synthesis.

To mitigate the drawbacks of HLS while exploiting the
advantages, we adopt a mixed approach to implementing
our hardware. We use RTL where it performs best - for
system level I/O and dataflow control and we use Ver-
ilog HDL for the ADC/DAC interface modules. Hardware
sythesis of the HDL-modules is carried out within Vivado
environment after extensive verification and testbenching.
A similar process is followed for the Master FSM develop-
ment.

In order to synthesize the controller module, we first verify
closed-loop functionality with MATLAB/Simulink. Using
MATLAB’s Fixed-Point Designer, we analyze the effects of
fixed-point quantization and evaluate the resulting perfor-
mance. The control algorithm is then ported into a C++
implementation which is converted into an RTL using
Vivado’s C-RTL co-simulation tool. The generated RTL
is then exported to the main Vivado development envi-
ronment as an Intellectual-Property (IP) module where it
could be integrated with the rest of the FPGA RTL mod-
ules (such as the ADC controller, master FSM, etc.) The
integrated system is tested end-to-end with SystemVerilog
testbenches for full functional verification and timing clo-
sure.

3.4 MPC Controller Architecture

While the HDL generation for a standard control algo-
rithm (e.g. PID) follows a typical MATLAB-to-HLS design
paradigm, we need a special design approach for the MPC
architecture since internal dataflow can be complicated.
To address this, we employ a mixed-model approach where
we synthesize the state observer and primal dual indepen-
dently, and then handle dataflow with a custom RTL. The
overall control architecture is shown in Fig. 2.

Fig. 2. High Level Control Architecture Block Diagram

The major components are elaborated as follows:

(1) MPC FSM: This module acts as a simple controller
that manages the dataflow between the state ob-
server, the Primal-Dual QP solver and the real-time
control interface. The controller waits for an MPC-
START signal from the bigger master controller,
which then triggers the state observer to run. When
the state observer asserts the STATE-OBSERVER-
DONE signal, the controller enables the Register
Stack to save the new values and to feed it on to the
QP solver. The controller then allows the QP solver to
run - when this is finished the MPC controller asserts
an MPC-DONE signal, which is read by the external
Master FSM.

(2) State Observer: This is implemented in HLS with the
same algorithm described in (3). This module reads
the fixed-point sensor voltages delivered by the ADC
and scaling logic, and is triggered by an enable signal
asserted by the MPC FSM.

(3) Primal-Dual QP Solver: This is implemented in HLS
and exported to the larger design as a synthesized
RTL IP. This module is triggered to run by the MPC
FSM, and delivers the next control outputs which sent
to the de-scaling logic and the DAC.

(4) Register Stack: In order to handle the feedback of the
state observer values, we implemented a sequential
register stack that stores the newest computed values
of the state observer. On every MPC run, the register
stack provides the state observer values and the
control outputs computed in the previous iteration.
This module is triggered simultaneously by the State
Observer and the MPC FSM.

4. CASE STUDY TO QUADRUPLE TANK SYSTEM

The Quanser Quadruple Tank Water System provides
a Multiple-Input Multiple-Output (MIMO) plant system
test-bed for control design, testing and verification. The
system consists of four water tanks, where the water is
pumped in by two pumps at the bottom of the system. The
pumps are driven by input voltages and feed water into the
bottom two tanks as well as the two respective diagonal
tanks as shown in Fig. 3. Water level is measured through
pressure sensors located at the bottom of each tank.
The range of the output sensor voltage is 0-4.2V, which
corresponds to 0-25cm of water height in the tank. All of
the interfacing is handled through the Quanser VoltPAQ
2-Channel Linear Amplifier System, which applies 3 times

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7934

Fig. 3. Quanser Quadruple Tank Configuration

linear amplification to the input control signals as well as
delivering the sensor voltages to the controller.

Plant Discretization For digital control implementation,
we discretized the continuous time state-space derivation
of the the quadruple tank system using Euler method with
a sampling time of 5s. The resulting state-space matrices
are given by:

A = eAcT , (13)

B =

(∫ T

τ=0

eAcτdτ

)
Bc (14)

C = Cc (15)

where Ac Bc and Cc are the linearized continuous-time
state-space matrices for the tank system about the operat-
ing heights of (10, 14, 2.6, 0.76) cm, and T is the sampling
time (we refer readers to Johansson (2000) for detailed
derivation).

4.1 Experimental Setup

In order to demonstrate the viability of our proposed
control architecture, we embed the primal dual solver on
an FPGA and close the loop with the Quanser Quadruple
tank system. The sensor voltages are measured with RCA-
to-differential voltage plugs from the Quanser VoltPAQ
system to the ports of the PMOD AD1 on the FPGA. The
outputs of the PMOD DA2 are wired to external signal
conditioning circuits, and then connected to the VoltPAQ
system using RCA connectors. The setpoints are gener-
ated using a National Instruments VirtualBench, which is
readily available for experimentation. The setpoints, tank
responses, and control inputs are all captured using Rigol
DS0422 Oscilloscopes that allow for longer data collection
and higher resolution than the NI VirtualBench. Each run
of the experiment is set at 140 seconds, which allows for
full exhibition of the plant and controller dynamics. To
investigate the effect of the tank coupling on the control
performance, we fixed one of the setpoints at 1.3 Volts

(corresponding to a height of 7.74 cm in the tank) and the
second as a square-wave signal with a period of 60s and a
50% duty cycle. The amplitude of the square wave is 1.8V
and drops to 0V for the second half of the period.

4.2 Experiment Result and Discussion

To benchmark the MPC implementation, we first imple-
ment a decoupled Proportional-Integral (PI) controller
operating independently on each of the tanks. Both PI
controllers are housed on the same FPGA and shared the
same resources (i.e the PMOD AD1 and the DA2) and are
synchronized to deliver control outputs at the same time.
The PI controllers are tuned using the Internal Model
Control (IMC) strategy and then implemented in digital
form. We do not include antiwindup mechanism in the
PI implementation, except that the integrator values are
capped to prevent excessive accumulation. For the MPC,
the constraints on input voltages are explicitly accounted
for during formulation. The input constraints arise because
the FPGA cannot output higher than 3.3V and lower than
0V. We set the prediction horizon of the MPC controller
to N = 10 as this was the maximum possible prediction
horizon we could implement without exceeding the FPGAs
resources.

Figs. 4 and 5 shows both the plant and the control re-
sponses for step changes in setpoints. As shown, the MPC
implementation shows a superior tracking performance as
compared to the PI and operates closely to the constraint
limits. On the other hand, the PI exhibited significant
steady-state offset. This is not surprising as the PI con-
trollers were not designed to handle input constraints and
do not include any anti-windup mechanism. Note that
aggressive control actions can be minimized by penalizing
control moves in the MPC formulation. While it is not our
intention to compare the two classes of controllers, the
developed modularized framework provides for easy and
straightforward implementation of different controllers for
purposes of testing and for comparisons.

5. CONCLUSION

In this work we have demonstrated the viability of MPC
for real-time control. We implemented a primal-dual QP
algorithm in a real-time control framework on an FPGA,
and benchmarked its performance with that of a PI im-
plementation. Future work includes optimizing the MPC
formulation to exploit the sparsity in the QP matrices
and to optimize resource usage on the FPGA. We also
aim to reuse the real-time framework to experiment with
several different MPC formulations and measure relative
real-time performance. We can measure the relative re-
source usage with respect to the formulation, providing a
holistic treatise on MPC formulations and their underlying
implementation latency/chip usage.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the TCNJ School of
Engineering and the New Jersey Space Grant Consortium
(NJSGC) for their continued support.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7935

0 20 40 60 80 100 120 140

Timestep (s)

-0.5

0

0.5

1

1.5

2

S
et

po
in

ts
 &

 T
an

k
R

es
po

ns
e

(V
)

0 20 40 60 80 100 120 140

Timestep (s)

0

1

2

3

4

C
on

tr
ol

 In
pu

t (
V

)

Fig. 4. PI Control Results: Setpoints (Tank 1-Orange and Tank 2-Blue), Responses (Tank 1-Purple, Tank 2-Yellow)

0 20 40 60 80 100 120 140

Timestep (s)

-0.5

0

0.5

1

1.5

2

2.5

S
e
tp

o
in

ts
 &

 T
a
n
k

R
e
sp

o
n
se

 (
V

)

0 20 40 60 80 100 120 140

Timestep (s)

-1

0

1

2

3

4

C
o
n
tr

o
l I

n
p
u
t
(V

)

Fig. 5. MPC Control Results: Setpoints (Tank 1-Orange and Tank 2-Blue), Responses (Tank 1-Purple, Tank 2-Yellow)

REFERENCES

Adegbege, A.A. and Nelson, Z.E. (2016). A Gauss–Seidel
type solver for the fast computation of input-constrained
control systems. Systems & Control Letters, 97, 132–
138.

Benzi, M., Golub, G.H., and Liesen, J. (2005). Numerical
solution of saddle point problems. Acta numerica, 14,
1–137.

Blanchard, H.A. and Adegbege, A.A. (2017). An SOR-
like method for fast model predictive control. IFAC-
PapersOnLine, 50(1), 14418–14423.

Borrelli, F., Baotić, M., Pekar, J., and Stewart, G. (2010).
On the computation of linear model predictive control
laws. Automatica, 46(6), 1035–1041.

Borrelli, F., Bemporad, A., and Morari, M. (2017). Pre-
dictive control for linear and hybrid systems. Cambridge
University Press.

Jerez, J.L., Goulart, P.J., Richter, S., Constantinides,
G.A., Kerrigan, E.C., and Morari, M. (2014). Em-
bedded online optimization for model predictive control
at megahertz rates. IEEE Transactions on Automatic
Control, 59(12), 3238–3251.

Johansson, K.H. (2000). The quadruple-tank process:
a multivariable laboratory process with an adjustable
zero. IEEE Transactions on Control Systems Technol-
ogy, 8(3), 456–465.

Levenson, R.M., Nelson, Z.E., and Adegbege, A.A.
(2017). Programmable logic controller for embedded

implementation of input-constrained systems. IFAC-
PapersOnLine, 50(1), 14412–14417.

Maeder, U., Borrelli, F., and Morari, M. (2009). Linear
offset-free model predictive control. Automatica, 45(10),
2214–2222.

Nocedal, J. and Wright, S. (2006). Numerical optimization.
Springer Science & Business Media.

O’Donoghue, B., Stathopoulos, G., and Boyd, S. (2013). A
splitting method for optimal control. IEEE Transactions
on Control Systems Technology, 21(6), 2432–2442.

Patrinos, P. and Bemporad, A. (2013). An accelerated
dual gradient-projection algorithm for embedded linear
model predictive control. IEEE Transactions on Auto-
matic Control, 59(1), 18–33.

Richter, S., Jones, C.N., and Morari, M. (2011). Compu-
tational complexity certification for real-time mpc with
input constraints based on the fast gradient method.
IEEE Transactions on Automatic Control, 57(6), 1391–
1403.

Sabo, J.R. and Adegbege, A.A. (2018). A primal-dual ar-
chitecture for embedded implementation of linear model
predictive control. In 2018 IEEE Conference on Deci-
sion and Control (CDC), 1827–1832. IEEE.

Wang, Y. and Boyd, S. (2009). Fast model predictive
control using online optimization. IEEE Transactions
on control systems technology, 18(2), 267–278.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7936

