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Bogotá, Colombia

Abstract. This paper proposes an aggregator for the optimal scheduling of a Electric Vehi-
cle (EV) charging station. Assuming that the station charging can consume energy from the
power grid and also from a renewable source at no cost, Day-Ahead and Real-Time strategies are
developed for the station, considering uncertainty in the local renewable generation source. First,
a scheduler decides the energy to buy in the day ahead market from the power grid considering a
renewable source forecast and an EVs schedule. An autoregressive model developed from 5 years
of historical solar radiation data is applied. In real time, a model predictive control strategy
is designed to follow the scheduled power from the grid, compensating variations in renewable
generation by exploiting flexibility in the EVs charging process. The resulting optimization
problems are convex programming problems that can be solved efficiently. Simulation analysis
show the effectiveness of the strategy in absorbing the variability of the renewable source,
minimizing the deviations between the day ahead schedule and the actual real time consumption
from the grid.

Keywords: Energy Management, Renewable Integration, Electric Vehicles, Flexible Loads,
Model Predictive Control.

1. INTRODUCTION

Renewable Energy Sources (RES) are increasing world-
wide by an average of 2.8%/year [Energy U.S., 2017],
leading to a potential imbalance between supply and de-
mand in the electrical grid. The RES uncertainty has a
significant impact on the scheduling of conventional gen-
eration [Nghitevelekwa and Bansal, 2018]. The main effects
of the uncertainty appear both on power system operation
and on the need for procuring sufficient reserve capacity to
maintain acceptable levels of reliability and security [Pan-
durangan et al., 2012]. Then, a transformation to load
response instead of generation response is needed, in which
customers reduce their consumption [Vuelvas et al., 2018].

Several schemes to provide flexibility at the demand side
have been proposed. Thermostatically Controlled Loads
(TCL) are a potential source of flexibility, as shown
in Hao et al. [2015] for a collection of TCLs. Nevertheless,
also water booster pressure systems [Diaz et al., 2017],
heat pumps [Papadaskalopoulos et al., 2013] and Electric
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Vehicles (EVs) [Pavić et al., 2015] have been previously
studied to exploit their flexibility features.

In particular, EVs seams to be promising flexible loads
to improve RES integration in the grid, smoothing the
demand curves [Khemakhem et al., 2017], providing fre-
quency regulation services [Wenzel et al., 2018], incre-
menting self-consumption [Giordano et al., 2018], reducing
emissions and supporting green transport [Noel et al.,
2018]. Typically, an aggregator coordinates EV battery
charging. The EV flexibility to reduce the RES power
fluctuations is quantified in Schuller et al. [2015].

A framework to exploit EV flexibility in a charging station
is presented by Diaz-Londono et al. [2019], where the
optimization of the EV charging profiles aims to minimize
operation costs, while maximizing the flexibility capacity,
to offer secondary frequency regulation services. The opti-
mal charging scheduling problem formulated in Tang and
Zhang [2017] considers estimated statistical information
on the future EV arrival. In Su et al. [2014], a MPC-based
power dispatch approach (based on the combination of
updated current EV charging information with a short-
term forecasting model) addresses the operational cost
minimisation while accommodating the EV charging un-
certainty. Interestingly, Halvgaard et al. [2012] highlights
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how, especially concerning uncertain parameters as elec-
tricity prices, energy demand and driving patterns, fore-
casts should always find a balance between long prediction
horizons (implying a higher computation time) and how
much money can be saved.

In the smart grid research area, MPC has found a number
of applications to operation and control of distribution sys-
tems and microgrids with Distributed Energy Resources,
especially when the effect of uncertainties has to be taken
into account. One of the main concepts is to create pre-
dictions that take into account the uncertain information
and then use them to optimize the microgrid operation
for a given prediction horizon. Then, the decisions (e.g.,
the set points of dispatchable units) are applied only for
a limited time period, and a rolling horizon scheme is
used for updating the calculations, see for example, Palma-
Behnke et al. [2013].

In this paper an optimal scheduling strategy for a EV
Charging Station (EVCS) is proposed. Day-Ahead (DA)
and Real-Time (RT) strategies are developed for the
EVCS, considering the availability of a local renewable
generation source. First, the DA controller is based on a
renewable source forecast and on an EV schedule. This ap-
proach aims to define the electrical energy to be purchased
from the grid for the next day. Second, the RT controller
aims to follow the DA scheduled grid energy, taking into
account the fluctuations of the actual renewable genera-
tion and EVs behaviour. Then, the strategy is responsible
for deciding the injected power of each charger in the
EVCS, either from the electrical grid or the renewable
source, considering the EV owners’ preferences. Moreover,
these strategies consider a Photo-Voltaic (PV) generation
source.

The rest of the paper is organized as follows: Section 2
describes how the EVCS operates taking into account
the presence of a local renewable generation source. In
Section 3, a PV generation model is presented, considering
Bogotá (Colombia) whether conditions. In Section 4, the
DA formulation is proposed. Section 5 introduces the RT
strategy. In Section 6 case study is shown, along with the
related numerical results. Finally, Section 7 contains the
concluding remarks.

2. EVCS OPERATION WITH RES GENERATION

In this section, an operating model is presented for an
EVCS considering power from the electrical grid and a
PV source. The model is formed by two schedulers, one
for the DA planning of energy procurement from the grid
and another for the RT operation of the chargers. In
both strategies, a solar radiation forecast is employed to
calculate the RES production. The EVCS objective is to
minimize the operation costs formed by two terms, i.e., i)
the cost of acquiring energy in the DA market, and ii) the
penalties charged by the System Operator (SO) if the DA
scheduled energy profile is not properly followed.

Figure 1 shows the EVCS operation. A local PV source
is available and bilateral communication with the SO
is considered. It is assumed that the PV generator has
a local monitoring system that informs the aggregator
about the solar radiation GPV and the ambient temper-

ature Tamb in real time. This information is collected in
w={GPV , Tamb}. In addition, the communication between
the aggregator and the SO aims to request the energy
scheduled for the next day by the EVCS and this repre-
sents the DA scheduler output. The RT controller looks for
minimizing the tracking error between the DA purchased
power and the actual EVCS consumption, taking into
account the uncertainty in solar radiation.
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Figure 1. EVCS operation with PV generation.

The total power taken by the station PT at time k, is
composed of the grid power Pp and the RES one Pw, as:

PT,k = Pp,k + Pw,k. (1)

Therefore, the aggregator has three main elements:

• Solar radiation forecast.
• Day-ahead scheduler.
• Real-time MPC controller.

3. SOLAR RADIATION MODEL

In this section a forecast model is developed for the solar
radiation in Bogotá, Colombia. The model is estimated
considering five years of hourly solar radiation data. The
data pre-processing and the model, are carried out in
MATLAB R© software. The model comprises two elements:

(1) a deterministic seasonal average radiation signal;
(2) a Nonlinear AutoRegressive (NAR) signal model.

The hourly measured solar radiation data of Centro de
alto rendimiento in Bogotá, are evaluated. Five years of
data (from 2011 to 2015) have been analysed, for a total
of 8,760 samples per year. Considering that Bogotá has
almost the same sunlight time along the year (from 6:00
to 18:00), the signal is evaluated for these 13 hours only.

The predicted radiation G̃w,k at hour k is expressed as:

G̃w,k = Ḡw,k + Ĝw,k(Ĝw,k−1, Ĝw,k−2, . . . , Ĝw,k−r) (2)

The first element of the predictor Ḡw,k is the mean value
of the radiation at hour k in the 5 years dataset. Moreover,
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to estimate the average radiation, seasonal variations are
considered, dividing the data in four periods: a first dry
season from December to February, a first rainy season
from March to May, a second dry season from June to
August and a second rainy season from September to
November. It is found that the two dry seasons achieve
higher peak radiations than the rainy ones, obtaining
614 W/m2 for Dry 1 and 547 W/m2 for Dry 2 at 12:00,
while in the rainy ones, the peak is reached at 11:00.

The second element of the predictor is a non-linear autore-
gressive signal model for the residual between the origi-
nal data and the mean value resulting from the seasonal
averages. An Artificial Neural Network (ANN) with one
hidden layer and sigmoidal activation functions is used for
modelling the residual dynamics. 70% of the data is used
for estimation, while the last 30% is used for validation.
It is found that the best performance is obtained with a
predictor of order 13, i.e., employing the actual radiation
data of the previous 13 hours. Figure 2 illustrates the
behaviour of the model. It is shown the radiation between
the day 1512 (20/2/2015) and 1527 (7/03/2015). Note
that, there is a season change in 1520 (1/03/2015), from
Dry 1 to Rainy 1.
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Figure 2. Sample predictor behaviour for one-step ahead
forecast.

Considering the solar radiation model previously devel-
oped and the real-time ambient temperature data, the
generated solar power is estimated [Tascikaraoglu et al.,
2016],

Pw,k =
Gw,k
GSTC

Pnom(1 + γp∆T (Tk, Gw,k)) (3)

where,Gw,k is the solar radiation (either real or predicted),
GSTC is the solar radiation at Standard Test Conditions
(STC) given by GSTC=1000W/m2, Pnom is the nominal
power of the PV plant, γp is the short circuit current
thermal coefficient, and ∆Tk is the temperature deviation
function, that depends of the ambient temperature, solar
radiation and several parameters of the plant.

4. DAY-AHEAD FORMULATION

In this section it is presented the formulation of the DA
strategy for planning the optimal energy purchase that the
aggregator must perform in the market. The model looks
for minimizing the operation costs of the EVCS facing
uncertainty in the available PV source.

The station is formed by I chargers, whose power patterns
must be programmed through the aggregator for the
next day (β hours). Each day, the EVCS must serve J
EVs, where for each EV j, its charging time spans from
the arrival time aj to the departure time dj . In this

work, arrival/departure times and State of Charge (SoC)
are assumed deterministic parameters known one day in
advance, in order to focus on handling uncertainty in the
PV source. Previous analysis [Diaz et al., 2018b, Diaz-
Londono et al., 2019], show that the application of a MPC
strategy in the real time operation allows to mitigate
the effect of EV behaviour uncertainties or generation
disturbances [Diaz et al., 2018a].

Optimality refers to designing a charging profile plan
that minimizes the costs of buying energy in the day-
ahead market, guaranteeing for all the j=1, · · · , J EV the

minimum S̃oCj,dj at the departure time dj and exploiting
all the available PV energy. The operation time of the
EVCS is divided into β discrete time intervals of length 1
hour. Each of them being a discrete time slot k= 1, . . . , β,
lasting a sampling time ∆t in minutes.

The EVCS is modelled as a switched linear system, as
proposed in [Diaz et al., 2018b]. A state variable xi is
defined for each charger, i = 1, . . . , I (Eq. (4)). When
a vehicle is plugged in, the charger dynamics match the
behaviour of an ideal accumulator. ξi,k is a scheduling
variable that indicates when an EV arrives or leaves a
charger, causing jumps in the state variable, either from

0 to the arrival SoC S̃oCj,aj , at each EV arrival, or from
SoCj,dj to 0, at the EV departure.

xi,k+1=

{
xi,k + ∆t (Pp,i,k + Pw,i,k) if aj < k < dj
SoCj,aj if k = aj
0 if ξi,k=0 ∨ k=dj

(4)

The optimal scheduling problem is defined as,

min
Pp,i,k, Pw,i,k

∆t

β−1∑
k=0

(
ck

I∑
i=1

Pp,i,k

)
(5a)

s.t.

Eq. (4) (5b)

S̃oCj,dj ≤ xi,dj ≤ xi,max (5c)

∆k−1∑
k=0

I∑
i=1

Pw,i,k ≤ P̃w,k (5d)

Pp,i,k + Pw,i,k ≤ Pi,max (5e)

0 ≤ Pp,i,k ≤ Pi,max (5f)

0 ≤ Pw,i,k ≤ Pi,max (5g)

0 ≤ xi,k ≤ xi,max (5h)

∀ k = 1, 2, . . . , β, i = 1, 2, . . . , I,

In this strategy, each charger has two decision variables at
each time step, i.e., the power extracted to the grid Pp,i,k
and the power extracted to the PV source Pw,i,k. The cost
function considers the price for the grid power Pp,i,k, with
known time-varying costs ck, while, the renewable power
Pw,i,k is dispatched with zero cost.

The constraint in Eq. (5b) sets the dynamic behaviour of
the EVCS. Eq. (5c) sets the minimum state of charge of
any EV at its departure time. Eq. (5d) limits the available

PV power to the prediction P̃w,k (see Section 3) updated
every hour. Eq. (5e) fixes the maximum power that any EV
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can receive. Eqs. (5f) and (5g) restrict solutions to positive
power flows (no V2G capability) and upper limits to each
source, respectively. Eq. (5h) avoids overcharging events.
Note that the aggregator faces a Linear programming
(LP) convex problem. Feasibility is guaranteed if each EV
remains at the station for a time longer then the minimum
charging time at full power.

Problem (5) is an open-loop optimal control problem that
allows finding the power grid power to purchase in a DA
market to minimize the operation costs considering the PV
generation forecast. Given an optimal solution P ∗

p,i,k, the
power to buy is:

Pp,DA,k =

I∑
i=1

P ∗
p,i,k. (6)

5. REAL-TIME FORMULATION

In this section a Real-Time (RT) controller is proposed
to handle the uncertainty in PV generation. The aim of
the RT dispatch is to deliver a proper grid power Pp,i,k
at each time slot to each charger, while following the DA
power scheduling sequence Pp,DA,k. A MPC strategy is
adopted to achieve this goal exploiting the flexibility of
EVs in their charging trajectories. At each time sample the
power injected by each charger is adjusted to compensate
the fluctuations of the PV power Pw,i,k, while guaranteeing

for each EVj the minimum S̃oCj,dj at the departure time
dj .

At each sample time the EVCS deals with the following
optimal control problem,

min
Pp,i,k, Pw,i,k

∆t

H−1∑
k=0

φk( I∑
i=1

Pp,i,k − Pp,DA,k

)2
(7a)

s.t. Eq. (4), Eq. (5c), Eq. (5d), Eq. (5e),

Eq. (5f), Eq. (5g) and Eq. (5h) (7b)

The cost function in Eq. (7a) aims to minimize the
deviations between the scheduled DA grid power Pp,DA,k
and the power effectively extracted from the grid for an
horizon of H samples. The error is penalized by a price
sequence φk.

The aggregator has the same two decision variables Pp,i,k
and Pw,i,k used in the DA problem. The constraints are
the same as in problem described in Eq. (5). However, the

PV generation forecast P̃w,k, is recalculated every sample
for the next H intervals, assuming that the solar radiation
for the current sample is precisely known.

At each sample time, the aggregator recalculates the opti-
mal injected power considering the updated PV generation
forecast, obtaining sequences P ∗

p,i,k and P ∗
w,i,k for the next

H intervals. However, the chargers follow this power sig-
nals only during the k−th interval. Then, the EVs’ SoC
and radiation information are updated and the optimal
charging profile is obtained again, leading to a closed-loop
operation.

6. CASE STUDY

In this case study, a simulation campaign is set up consid-
ering the EVCS El Salitre located in Bogotá, Colombia. It
has 13 chargers (n=13) and a potential to implement a PV
plant of 50 kW (Pnom=50 kW). A set of Kia Soul EVs R© is
considered with SoCmax=30 kWh. The level 2 (semifast)
charging power is selected for the chargers, i.e., Pmax=8
kW. The number of EV charging requests to be handled
is equal to 34. All chargers are scheduled for charging up
to four EVs during one day.

For the DA scheduler one day (β=24 h) is considered. For
the RT (MPC strategy) the sample time is ∆t=10 min and
the prediction horizon is H=7 h (42-time steps). Hourly
solar radiation data of Centro de alto rendimiento in Bo-
gotá are used for forecasting the PV production with the
generation model developed in Section 3. In order to simu-
late high frequency variations in solar radiation, the actual
solar radiation is generated as the sum of the radiation in
the available dataset plus a random Gaussian component
with zero mean and standard deviation 90W/m2. Note
that this high frequency signal is not used in the predictor
design and operation.

The energy price sequence ck corresponds to real data
taken from the Colombian stock market for one particular
day. It is shown in Fig. 3. The penalization energy price
φk is assumed as the same time-variant energy cost ck.
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Figure 3. Energy price sequence.

Figure 4 depicts the amount of EVs arriving at the station
(red line) and the number of EVs connected (dashed-blue
line) at each time slot. For example, at 8:00 all chargers
have an EV connected.
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Figure 4. EVs arrival and EVs connected to the EVCS.

In Figure 5, the maximum power available in the PV plant
is presented in green, the predicted solar power in DA is
shown in red and the RT dispatched solar power is depicted
in blue. Notice that not always all the available PV power
was injected to the EVs, for example, at 12:00 the injected
PV power is lower than the available one. Table 1 present
the estimated, consumed and available PV production.

In Figure 6, the requested grid power is shown. It can
be seen that the power used by the EVCS closely follows
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Figure 5. Forecast and delivered PV power trajectories.

the power acquired in the day ahead market. The root
mean squared error between the power Pp purchased in
DA and the power consumed in RT is 7.37 kW, obtaining
a maximum error of 17.9 kW at 16:50, when there is a large
deviation between the predicted and actual PV power. In
fact, 514 kWh are purchased in DA, with a cost of 152$.
However, the consumed grid energy in RT deviates 5.9%
(32 kWh) from the DA. This produces a consumption of
546 kWh, generating a penalization cost of 15$. In Table 1,
the energy and cost of the DA and RT are reported.
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Figure 6. Day-Ahead and Real-Time grid power trajecto-
ries PP .

Table 1. Energy and cost for the Day-Ahead
schedule and Real-Time controller.

Step Energy [kWh] Cost [$]

DA
514 (Grid purchased) 152
192 (PV estimated) N.A.

546 (Grid consumed) 15 (Penalization)
RT 173 (PV consumed) N.A.

179 (PV available) N.A.

Note that the deviations between DA and RT grid power
are much lower than the forecast errors of the predictor
that is employed to design the day ahead schedule, mean-
ing that the MPC strategy is able to reduce the effect of
the uncertainty, distributing the power between the EVs in
real time, exploiting the flexibility in the charging process.
In fact, when the power curves of a single charger are
observed, the deviation between the DA and RT power
signals is larger. Indeed, Figure 7 shows the trajectories of
the predicted DA and the actual RT power to charge the
four EVs. Both trajectories respect the constraint on the
departure SoC. In Figure 8 the trajectories of the EV SoC
are reported, illustrating that the requested final SoC is
achieved with very different power profiles.

7. CONCLUSIONS

In this paper a strategy to operate an electric vehicles
charging station has been proposed, when a photovoltaic
source is available, considering uncertainty the available
renewable power. The strategy is formed by a Day-Ahead
scheduler (DA) and a Real-Time (RT) controller. The
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Figure 7. Day-Ahead and Real-Time power trajectories
P3,k in charger 3.
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Figure 8. Charger 3 SoC x3,k.

DA strategy aims to minimize the operation cost by
optimally exploiting the renewable source, while the RT
strategy looks for minimizing the error on following the DA
schedule, considering the variability of the solar radiation.

A PV generation model is developed using five-year data of
solar radiation in Bogotá, Colombia. A deterministic sea-
sonal average model plus a non-linear autoregressive signal
model are used to predict the solar radiation with accept-
able precision. A linear state-space model with switching
behaviour is used to model the charger dynamics while
it serves several EVs. A linear programming problem is
formulated to solve the optimal scheduling of each charger
in day-ahead, while a quadratic programming problem is
proposed for the real-time operation, minimizing opera-
tion costs and satisfying constraints on charging power
limits, final state of charge and solar energy availability.
The real time scheduling is used to build a MPC control
strategy that acts in closed-loop, updating the schedule at
each sample time, when new solar radiation information is
available.

Simulation results using real solar radiation data and EV
characteristics, show that the strategy is able to produce
a minimum cost day ahead energy provision that later (in
real time) is followed with a deviation of less than 5.9%,
considering real-time fluctuations of solar radiation. The
MPC strategy exploits the flexibility of the EV charging
curve to absorb the solar radiation variability in order to
minimize the penalties caused by any deviation from the
day ahead scheduled power.
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