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Abstract: Intensive care patients often experience hyperglycemia, insulin resistance (low insulin 

sensitivity), and high endogenous glucose production due to their critical situation. STAR is a model-based 

glycemic control protocol that uses insulin sensitivity (SI) identified on hourly bases to define patient 

variability. The numerical calculation during the identification phase of SI may result in negative SI value, 

which is an indication of high insulin resistance or another pathological patient state. Negative values of 

SI are physiologically not possible and are prevented in the parameter identification phase by a non-

negative constraint. These cases, when SI is forced to take a non-negative value, potentially result in poor 

blood glucose (BG) fitting and signaling some model limitations like an estimated low EGP. 

Using clinical data of 717 patients from three independent ICUs (Malaysia, New Zealand, and Hungary), 

the time occurrence and durations of constrained SI situations are analyzed, and different practical 

scenarios were suggested to estimate and handle patient's EGP levels in clinical application. An EGP 

estimation method is used to estimate the most suitable EGP value based on model fitting. By setting 

different EGP higher limit values, the fitting error and remaining constrained SI values are also analyzed 

and assessed.   

Results show that 96% of these constrained SI situations happen within the first 96H, and 95% of it lasts 

for 3h. Results also confirm that using an EGP limit higher than 3.5 s shows no further improvement in 

terms of modeling accuracy. 

Based on results, the most practical scenario to handle these situations is to keep the increased EGP until 

four days of treatment passed; after that, if it happens again, we may set back EGP to the initial value after 

3h each time we increase it. 

Keywords: Blood glucose; Glycemic control; Intensive Control Insulin-Nutrition-Glucose; Insulin 

resistance; Insulin sensitivity; Endogenous glucose production. 



1. INTRODUCTION 

Critically ill Intensive care unit (ICU) Patients can develop 

acute insulin resistance manifesting as hyperglycemia which 

can be induced primarily by stress and linked to raising the rate 

of morbidity and mortality  (Krinsley 2003). Safe, effective 

and consistent glycaemic control results have proven difficult 

(Bagshaw, Bellomo et al. 2009, Signal, Le Compte et al. 

2012), often caused the lack of patient-specificity and 

consideration of patient variability. This outcome illustrates 

the need for model-based patient-specific glycaemic control 

solutions. 

The Stochastic TARgeted (STAR) protocol is a model-based 

Glycemic control (GC) protocol (Evans, Shaw et al. 2011, 

Evans, Le Compte et al. 2012), directly capturing and 

modeling patient-specific intra and inter potential variability. 

STAR is driven by a model-based insulin sensitivity (SI), a key 

parameter to assess patient state variability (Docherty, Chase 

et al. 2011, Docherty, Chase et al. 2012). SI identification 

constraints negative values to a low minimum value as 

negative values are non-physiological. In this case, the model 

prediction will be biased and the fitting error becomes 

significant, signaling some model limitations (Pretty 2012). 

This situation may happen because of the complexity and 

severity of critical illness, such as severe sepsis (McCowen, 

Malhotra et al. 2001, Pretty 2012). 

In prior work (Anane, Benyo et al. 2019) we assessed the 

assumption that one of the model key parameters, endogenous 

glucose production (EGP), which is set to a fixed cohort-based 

value, is too low to represent the real physiological value of 

certain patients. A constrained SI value is thus an indication 

that EGP needs to be raised to a higher value. Increasing EGP 

enabled the model to follow the observed BG dynamics and 

surpass this limitation, also showed impressive results in error 

reduction and change in the insulin sensitivity distribution. 

In this study, practical scenarios were suggested for the clinical 

implementation of an EGP estimation method by analyzing the 
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time occurrence and duration of these episodes, using clinical 

data of 717 patients from 3 different ICUs. 

2. METHODS 

2.1  ICING model 

STAR utilizes the Intensive Care Insulin-Nutrition-Glucose 

(ICING) model to simulate the fundamental metabolic 

dynamics of the glucose/insulin system of the human body. 

The main 3 of 7 total equations are defined: 

𝐺̇ = −𝑝𝐺𝐺(𝑡) − 𝑆𝐼 ∗ 𝐺(𝑡)
𝑄(𝑡)

1 + 𝑎𝐺𝑄(𝑡)
+

𝑃(𝑡) + 𝐸𝐺𝑃 − 𝐶𝑁𝑆

𝑉𝐺  
 (1) 

𝐼̇ = −𝑛𝑘𝐼(𝑡) − 𝑛𝐿

𝐼(𝑡)

1 + 𝑎𝐼𝐼(𝑡)
− 𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡)) + 

𝑢𝑒𝑥(𝑡)

𝑉𝐼

+ (1 − 𝑥𝐿)
𝑢𝑒𝑛(𝐺)

𝑉𝐼

      (2) 

𝑄̇ = 𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡)) − 𝑛𝐶
𝑄(𝑡)

1+𝑎𝐺𝑄(𝑡)
       (3) 

Table 1.  MAIN PARAMETERS, INPUTS AND VARIABLES OF THE ICING 

MODEL 

Main 

Variable 

Description Values 

G Blood glucose  (mmol/liter) 

Q Interstitial insulin 

concentration 

(mU/liter) 

I Plasma insulin 

concentration 

(mU/liter) 

Key 

Parameter 

Description Values 

PG Insulin independent 

glucose removal  

0.006 (min−1) 

SI Insulin-mediated 

glucose removal  

(liter/mU/min) 

EGP Endogenous glucose 

production 

1.16 

(mmol/min) 

All equations, parameters, inputs, and variables are defined in 

(Stewart, Pretty et al. 2016). 

2.2 Patient data /cohorts 

Clinical data that contains a patient's personal information, 

blood glucose measurements, and insulin/nutrition treatment 

was collected from 3 different cohorts of 717 ICU patients.  

216 from the International Islamic University Malaysia 

Medical Centre, Malaysia, 408 from Christchurch Hospital, 

New Zeeland, 93 patients from Kalman Pandy Hospital, 

Gyula, Hungary. 

Patients with glycemic control of less than 10 hours were 

excluded. The 3 cohorts were treated with STAR. Malaysian 

patients were using a target range of 6.0-10.0 mmol/L with 

continuous insulin infusions. New Zealand patients had a 

lower BG target range 4.4-8.0 mmol/L and insulin delivered 

via bolus. Hungarian patients were treated with continuous 

insulin infusion to the lower range (Lin, Razak et al. 2011). 

2.3  Insulin sensitivity identification 

SI, as a single parameter, is used to represent the 'whole body' 

metabolic state condition, and it captures patient-specific 

deviation from model population parameters. 

Clinical data including two last BG measurements, 

insulin/nutrition inputs, and ICING model Equations (1)-(7) is 

utilized to identify SI in hourly bases using the integral-based 

method (Lin, Razak et al. 2011). 

The Identified SI is used for the prediction of the blood glucose 

outcomes based on current treatment suggestions.   

In the identification phase, Negative SI values are prevented 

and constrained to a minimum value = 1e-7. Negative values 

of SI are also an indication of insulin resistance but are 

physiologically not possible. 

2.4 Insulin resistance, constrained SI and low EGP 

Insulin sensitivity (SI), is uniquely identified from clinical data 

on an hourly basis. Patient variability is assessed by the hour-

to-hour change in SI levels. Low values of SI indicate insulin 

resistance and the need to either add insulin or reduce nutrition 

to achieve lower glycemic levels (Lin, Razak et al. 2011).  

Another key parameter is the endogenous glucose production 

(EGP) representing the net glucose produced by the body and 

released into the blood. It directly impacts SI by contributing 

to the net glucose flux to be balanced by insulin-mediated 

glucose uptake in equation (1) (McCowen, Malhotra et al. 

2001, Thorell, Rooyackers et al. 2004). In the STAR 

Treatment protocol, EGP is set to a cohort-based value of 1.16 

mmol/min. 

Cases, where SI is constrained to a non-negative value, are 

often preceded by an unexpected rise in blood glucose levels, 

potentially resulting in a poor BG fitting. One main cause is 

the assumed EGP value is too low to represent the real 

physiological value at that specific situation. These situations 

affect 22-62% of ICU patients from the 3 different cohorts. 

2.5  EGP estimation approach 

The model-based EGP estimation method developed in 

(Anane, Benyo et al. 2019) is used to adjust EGP levels based 

on patient-specific SI levels and runs only when the identified 

SI value hits the lower constraint limit (see fig. 1). The EGP 

parameter value range in this paper is 1.25<EGP<3.5 

mmol/min with a step of 0.25 selected experimentally which 

gives a vector of N=10 after the initial fixed value of EGP = 

1.16. The upper range limit value (3.5) selected based on 

results to be shown in the result section. 
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Fig. 1. Illustration of the implementation of the new EGP 

estimation method in the SI identification phase. 

2.6  Analysis 

In this paper, in order to provide practical scenarios of how we 

can handle these constrained SI situations, we analyzed the 

time occurrence and duration of these episodes for the three 

different ICUs. We analyzed and compared different EGP 

upper limit values and the number of remaining constrained SI 

values using a cohort of 22 most affected Malaysian patients. 

3. RESULTS 

3.1  Insulin resistance, constrained SI and low EGP 

Fig. 2 shows the distribution in time per day of constrained SI 

for the 3 different cohorts. The overall trends for the New 

Zealand and Malaysian cohorts are exponential with most 

episodes arising in the first 3-4 days, as expected given stress 

response physiology. The Hungarian cohort has quite a similar 

pattern except on the third day where there was a rise in the 

rate of occurrence compared to the first 2 days. 

 

 

 

Fig. 2. Constrained SI probability of occurrence per day (1bin= 

24h) for MLS (top), NZ (middle) and HU (bottom). 

Overall results show ~30-60% of the occurrence situations 

happen in the first 24H (first day), ~46-80% of the occurrence 

situations happen in the first 48H, ~78-90% of the occurrence 

situations happen in the first 72H and ~90-96% of the 

occurrence situations happen in the first 96H across all 

cohorts. Less than 10% of constrained SI occurrence occurs 

after the 4th day. 

3.2  Duration of episodes 

Fig. 3 shows the time duration in hours of constrained SI for 

the 3 different cohorts. All 3 cohorts have similar exponential 

trends with most episodes lasting up to 4 hours. 

A small minority of New Zeeland patients have constrained SI 

duration up to 18 hours, where in Hungarian and Malaysian 

patients, the maximum is 7-8 hours. 
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Fig. 3. Duration of constrained SI episodes when it occurs 

(1bin= 1hour) for MLS (top), NZ (middle) and HU (bottom). 

Overall results show ~53-71% of the insulin resistance 

situations last for 1 hour, ~19-27% of the insulin resistance 

situations last for 2 hours and ~5-11% of the insulin resistance 

situations last for 3 hours. Thus ~89-95% of the insulin 

resistance situations last between 1-3 hours across all the 

cohorts. 

3.3  EGP parameter value limits, fitting error and remaining 

constrained SI values 

Out of 216 Malaysian patients (the most affected cohort), we 

selected patients with the poorest BG fitting (BG error > 20%) 

to analyze the effect of applying different EGP upper limits 

mainly on modeling error (the result of the selecting is 22 

patients). Table 2 shows Mean/Max fitting error and remaining 

constrained SI hours after increasing EGP with different limits 

compared to using a fixed EGP (1.16 mmol/min). 

Table 2.  MEDIAN IQR OF ERROR PER COHORT AND MEDIAN IQR 

OF MAXIMUM ERROR PER PATIENT. 

 

EGP(mmol/min) 1.16 2.5 

Mean/Max Mean Max Mean Max 

Fitting Error (%) 18 48 2.03 16.89 

N° of remaining 
constrained SI 

468 18  

 

3 3.5 6 

Mean Max Mean Max Mean Max 

1.04 6.38 0.77 2.33 0.63 2.23 

9  6  3  

 

Using fixed EGP values comes with significant fitting error 

and a large number of constrained SI hours. Increasing the 

limit of EGP to 2.5 mmol/min shows a reduction of 96% in the 

constrained SI value, but still, have a slightly large maximum 

fitting error. In contrast, setting the limit of EGP up to 3.5 

mmol/min shows a large reduction in BG fitting error to a very 

low value (2.33%) and reduction of constrained SI values by 

98%. Using EGP values higher than 3.5 mmol/min did not 

show any further improvement and using 6 mmol/min as a 

limit has similar results to using 3.5 mmol/min. 

Forcing SI to take a non-negative value is a model limitation, 

and the identified constrained SI will result in a poor SI 

prediction in the real clinical application, which also will result 

in a poor BG prediction. 

In the method presented in the paper, there is a situation where 

the EGP values minimizing the BG fitting error results in also 

a constrained SI value (see Table 3). This leads to the idea of 

modifying the estimation method to prioritize the positive SI 

values over a constrained value with the acceptance of a small 

BG fitting error. 

Table 3.  THE NUMBER OF REMAINING CONSTRAINED SI IN ALL THE 

COHORTS USING FIX EGP VS. ESTIMATED EGP (EST EGP) 

 

Cohorts  MLS NZ HU 

EGP value 
Fix 

EGP 

Est 

EGP 

Fix 

EGP 

Est 

EGP 

Fix 

EGP 

Est 

EGP 

N°of 

constrained SI 
1002 20 1117 11 63 1 

 

Results show over 98% of the constrained SI disappears when 

estimating EGP up to 3.5 mmol/min. This means no need for 

any further modifications of the current estimation method. 

4. DISCUSSION 

4.1  Insulin resistance and patient's condition relationship 

For those hours where SI was hitting the lower limit, 90-96% 

of them occurred in the first 96 hours of stay for the Malaysian, 

New Zealand and Hungarian patients, as shown in Fig. 2. This 

early occurrence is likely due to the surge in EGP seen 

particularly in severe sepsis and septic shock patients in the 

first 12-24 hours of the stay (Shaw, G.M. 2012, Chase, J.G. 

2012). Thus, the location of these hours qualitatively matches 

broad clinical expectations, where severe sepsis is one of the 

leading causes of ICU admission (McCowen, Malhotra et al. 

2001, Pretty 2012). 

Around 50% of the constrained SI situation happens in the first 

24H for Malaysian and New Zealand patients where only 30% 

for the Hungarian cohort with the highest rate was on the third 

day of the ICU stay. These differences may also reflect cohort 

differences in the incidence of greater complexity and level of 

critical illness, such as incidence of severe sepsis, in some 

cohorts, which can occur from the areas and types of patients 

treated, as well as from treatment selection or failure bias. 

4.2  Handling EGP and constrained SI 

Using a limit higher than 3.5 mmol/min shows no further 

improvement and for that, there will be no reason to go above 

that. The 3.5 mmol/min limit of EGP still an acceptable 

physiological value for a patient with a very high EGP. 
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The question now is, what should we do after we increase 

EGP? And For how long should we keep it high? 

Based on the results achieved, we suggest different practical 

scenarios to handle EGP and the identified constrained SI in 

the clinical application: 

1) Set back EGP to the initial value after 72H-96 of treatment: 

As ~78-96% of the occurrence situations happen in the first 

72-96H, this scenario tends to be the most preferable, because 

once we identify a patient with an insulin resistance 

(constrained SI) it is more likely to happen more frequently 

and it will continue until the 4th day where up to 96% of the 

situations happens within. 

2) Set back EGP to the initial value after 3-4H from increasing 

it: As ~90-95% of the cases last between 1 and 3 hours, it is 

possible to set back the estimated EGP to the initial value, 

which is 1.16 once 3 hours passed. However, the downside of 

this scenario that random frequent occurrence of the 

constrained SI may lead to an 'increase–set_back–

increase_again' loop, also we will be always missing the first 

occurrence as the identification stats right after having the new 

BG measurements.     

3) Keep EGP high for the entire treatment period: We assume 

once we identify a patient with a constrained SI it is more 

likely that it will happen again, and this patient will have a high 

EGP level during the entire stay in the ICU, the downside of 

this choice is we may overestimate the EGP level especially 

after patient state stabilize. 

The more practical way to handle EGP estimation is to use a 

mix of approaches 1 and 2: 

If the constrained SI happens in the first days of treatment, we 

keep the increased EGP value until the 4th day of stay. If it 

happens after the 4th day, we set back the initial EGP values 

after 3 hours of each time we increase it. 

The first reason behind this choice is that we know patients 

have a higher EGP in their first days after ICU admission, so 

we want to increase our estimation only for those four first 

days. After that period, if we keep our high estimated value, 

we may end up overestimating the EGP level. The second 

reason is that after the first four days, a patient may have some 

spikes in EGP as we saw in Fig. 2, so increasing and keeping 

it four 3 to 4 hours before setting back to initial value seems to 

be also a good solution. 

7. CONCLUSIONS 

Understanding the relationship between hyperglycemia, 

insulin resistance, and high endogenous glucose production 

has a huge impact on model-based control and treatment in 

intensive care units. Underestimating the EGP in situations 

where patients are experiencing insulin resistance showed 

poor modelling results. By the estimation of the right EGP 

level, it significantly improves the outcomes and surpasses the 

model limitation. The next step is to design a practical way of 

implementing the new EGP estimation method on the STAR 

clinical application. Based on results, 96% of these constrained 

SI episodes happen within the first 96H and 95% of it lasts for 

3h, for this the most practical scenario to handle these 

situations is to keep the increased EGP until 4 days of 

treatment passed, after that if it happens again we may set back 

EGP to the initial value after 3h each time we increase it. In 

summary, the clinical implementation of the EGP estimation 

method presented can effectively capture and handle patients' 

EGP variability, improve the model outcomes, enhance 

glycemic control and create a space for further development. 
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