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Abstract: We propose a new type of binary controller for control loops with two binary
measurements and an analog, continuous actuator. Unlike common binary controllers, the
proposed adaptive controller requires no continued oscillation of the plant output. Instead, the
proposed controller adapts an internal plant model to compute an optimal plant input so that
the plant output settles on a constant value in between the two binary sensors. The parameter
identification is fully automated and requires no user interaction, so that the proposed controller
is as simple to implement as a conventional on-off controller. We evaluate the controller in a
laboratory test setup and compare the energy comsumption to established control approaches.
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1. INTRODUCTION

Binary controllers are widely used in industrial and home
automation and are known for their simplicity and their
unique stabilizing capabilities. Binary control is one of
the simplest and most well-established control variants,
although certain aspects like stability of binary control
loops or the choice of optimal relay parameters are still
subject to current research. Fundamental results exist on
the stability of a binary control loop, e.g. by Åström
(1959), Goncalves et al. (2001) and Goncalves et al.
(2003). More recent results focus on specific system classes
as in Colombo et al. (2007) or Co (2010) to obtain more
general results for the regarded system class. Patents (e.g.
Bek and Dietzel (1996)) and safety critical applications
(e.g. in Yoon and Johnson (2017)) underline the industrial
relevance of binary controllers.

While conventional binary controllers are typically simple
on-off controllers, recent works propose to investigate the
input and output signal ranges to obtain an increased
control quality (e.g. Hetel et al. (2015), Afram (2016)) and
also to investigate the influence of on-off controllers on the
energy consumption of the controlled plant (e.g. Ahmad
(2019), Cetin et al. (2019)). Besides an increased energy
consumption, a major drawback of conventional on-off
control is the high stress on the control loop components,
in particular on the actuator. The widespread use of on-off
controllers in HVAC and water pumping applications leads
to a significant potential for optimization. In Leonow and
Mönnigmann (2019) we proposed a new type of adaptive
binary controller that is able to provide a much smoother
control. The controller acts on a continuous actuator but
still uses the simple and affordable binary measurement. In
Leonow et al. (2019) we proposed an improved variant of
the adaptive controller tailored for hydraulic applications,

allowing for a quicker convergence towards the optimal
parameters by adapting an internal plant model.

Here we further extend the adaptive binary controller
to systems that feature two binary measurements. Our
research is motivated by the observation that industrial de-
vices are often equipped with limit switches for lower and
upper bounds (cf. Fig. 1). While all other binary control
concepts known to the authors perform a continued switch-
ing of the binary sensors to not lose the information about
the process, the proposed adaptive controller converges
towards a constant control output, comparable e.g. to a
continuous PID control. The proposed controller is self-
learning and requires no parameter tuning by the user. In
the sample process in Fig. 1, the proposed controller could
achieve a constant fluid level centred between the two float
switches, without requiring information besides the two
binary measurements. A PID controller could obviously
achieve the same control quality, but would require tuning
and a more elaborate, continuous measurement of the fluid
level, both of which are expensive.
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Fig. 1. Storage tank control with a variable speed pump
and two float switches.
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We organized the paper as follows: Section 2 introduces the
regarded system class and the notation. Section 3 outlines
the computation of the optimal controller parameters,
while section 4 focuses on the controller algorithm. Section
5 gives results on the adaptive binary controller from a
laboratory test setup.

2. PRELIMINARIES

The controlled plant is assumed to have a first order
behaviour

T ẏ(t) = −y(t) + k(t)u(t) + z(t) (1)

with T > 0. The plant input is assumed to be bounded
to u(t) ∈ [u, u] with 0 ≤ u < u. We assume that the
plant gain k(t) > 0 and the output disturbance z(t) change
slowly compared to the time constant T and that the plant
allows to be controlled by a conventional on-off controller.

Let the plant have two binary sensors that transform the
process variable y(t) into binary measurements s(t) ∈
{0, 1} by

si(t) =
{

1 : (y(t) > wi + hi) ∨ (y(t) > wi − hi ∧ si(t−) = 1)

0 : (y(t) < wi − hi) ∨ (y(t) < wi + hi ∧ si(t−) = 0),
(2)

where w1 < w2 and h1, h2 ≥ 0 as depicted in Fig. 2.
The sensor setpoints wi as well as the hystereses hi are
considered to be unknown but constant. We denote the
outer bounds of the measurement range covered by the
sensors by y = w1 − h1 and y = w2 + h2 and the overall
hysteresis span by H = y − y.

The binary controller closes the control loop by generating
a plant input u(t) according to the sensor outputs si(t):

u(t) =







µ+ γδ , s1(t) ∨ s2(t) = 0

µ− γδ , s1(t) ∧ s2(t) = 1 ,

u(t−) , otherwise

(3)

where u(t) = u(t−) means that the controller holds the
current value of u(t). The binary parameter γ ∈ {0, 1} is
initially set to 1 and will be further explained in section
4. We define a feasible controller by a set of parameters
µ and δ that fulfill y > k(µ − δ) and y < k(µ + δ), i.e.
the controller is able to apply inputs u(t) large enough to
reach the switching points of the binary sensors.

We assume all model and sensor parameters to be un-
known and will outline in the following section 3 how
to derive the parameters required to set up the binary
controller parameters µ and δ in an automated algorithm
that requires no interaction by the user.

3. OPTIMAL CONTROLLER PARAMETERS

Let the optimal controller parameters µ∗ and δ∗ be defined
by the following rules:

• u(t) = µ∗ yields y(t) = y∗ = 0.5(y + y) and

• u(t) = µ∗ ± δ∗ yields y∗ ±H ,

in an undisturbed, steady state case of the plant. In other
words µ∗ is the plant input required to achieve y(t) = y∗,
i.e. centred between the two binary sensors, and ±δ∗ is the

minimal amplitude that has to be added to µ∗ to reach the
sensor switching points at y and y. The parameters µ∗ and
δ∗ are optimal in the sense that the resulting controller
(3) reduces the magnitude of the input oscillations to a
minimum, compared to a conventional on-off controller.

In the following we assume an initial controller with µ =
0.5(u+u), δ = u−µ that has completed one control cycle as
depicted in Fig. 2. The control cycle starts at a time t0 with

Fig. 2. One control cycle (highlighted in gray) with time-
spans t− and t+.

y(t0) = w2 + h2, so that s1(t0) = s2(t0) = 1. The initial
controller (3) operates like a conventional on-off controller
and applies u(t) = µ − δ = u to the plant, therefore y(t)
decreases until y(t0 + t−) = w1 − h1 is reached. Since
then s1(t0 + t−) = s2(t0 + t−) = 0, the controller applies
u(t) = µ+ δ = u and y(t) increases until y(t0 + t−+ t+) is
reached and the cycle is completed. Let τ− = t0 + t− and
τ+ = t0 + t− + t+ for better readability. By logging the
switching instances of the binary sensors, the timespans
t+ and t− can easily be measured by the controller.

3.1 Computation of µ∗

The computation of µ∗ is iterative. We therefore first in-
troduce a suboptimal ũ that is computed from the current
controller parameters and the measured timespans:

µ̃ =
(µ− δ)t− + (µ+ δ)t+

t+ + t−
. (4)

Proposition 1. Applying u(t) = µ̃ to the undisturbed plant
(1) yields ỹ ∈ [y, y] in steady state.

Proof. The desired ỹ ∈ [y, y] is given by the mean value
of y(t) from the completed cycle

ỹ =

∫ τ−

t0
y(t) dt+

∫ τ+

τ−
y(t) dt

t+ + t−
, (5)

since the first order model (1) does not exceed the limits
y and y. Solving (1) for y(t) and substituting in (5) yields

ỹ =

∫ τ−

t0
ku(t) dt+

∫ τ+

τ−
ku(t) dt− [Ty(t)]τ

−

t0 − [Ty(t)]τ
+

τ−

t+ + t−
.

(6)

Since [Ty(t)]τ
−

t0 = TH , [Ty(t)]τ
+

τ−
= −TH , u(t) = µ −

δ = const. for t ∈ [t0, τ
−) and u(t) = µ + δ = const. for

t ∈ [τ−, τ+), (6) can be simplified to

ỹ =
k(µ− δ)t− + k(µ+ δ)t+

t+ + t−
. (7)
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Since ỹ = kµ̃ in steady state, (4) results from dividing (7)
by k.

The timespans t+ and t− are measured by the controller
and the parameters µ and δ required to evaluate (4) are
the current, hence known controller parameters.

Proposition 2. µ̃ → µ∗ by repeated evaluation of (4) in
subsequent control cycles.

Proof. Assume a disturbed µ̃i = µ∗ + d with µ∗ = 0
and d > 0 in the current control cycle i. The disturbance

decays when 0 <
∣

∣

∣

µ̃i+1

µ̃i

∣

∣

∣
< 1, where µ̃i+1 results from (4)

evaluated using µ̃i. Without loss of generality we choose

k = T = 1 and y = −1, y = 1. With (4),
∣

∣

∣

µ̃i+1

µ̃i

∣

∣

∣
becomes

∣

∣

∣

∣

µ̃i+1

µ̃i

∣

∣

∣

∣

=

∣

∣

∣

∣

(t+ + t−) · µ̃i + (t+ − t−) · δ

(t+ + t−) · µ̃i

∣

∣

∣

∣

. (8)

With t+ = − log
(

(µ̃i+δ)−y
(µ̃i+δ)−y

)

and t− = − log
(

(µ̃i−δ)−y

(µ̃i−δ)−y

)

,

(8) satisfies the criterion 0 <
∣

∣

∣

µ̃i+1

µ̃i

∣

∣

∣
< 1 over the feasible

parameter range d ∈ (0, 1). Fig. 3 shows (8) evaluated over
the feasible parameter range. The proof extends to any
feasible parameter combination and holds analogously for
a case where µ < µ∗.

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

Fig. 3. Eqn. (8) evaluated over d ∈ (0, 1).

3.2 Computation of δ∗

The minimal amplitude δ∗ directly results from the steady
state gain k of (1) and the hysteresis span H :

Proposition 3. The minimal amplitude δ∗ is given by

δ∗ =
H

k
. (9)

Proof. Applying u(t) = µ∗ to (1) yields a steady state
y(t) = y∗ = 0.5(y + y), therefore applying u(t) = µ∗ +

δ∗ = µ∗+ 0.5H
k yields a steady state y(t) = y and therefore

guarantees switching. The same holds for the opposite case
with the lower switching point y.

A direct use of prop. 3 is impossible since we considered
the parameters k and H to be unknown, but the simple
structure of (1) can be exploited to compute δ∗. Assume
that µ∗ has been found as described in section 3.1 and
yields y(t) = y∗ with u(t) = µ∗, therefore one can
simplify the following equations by assuming y∗ = µ∗ = 0
without restriction. Let the controller have performed
two consecutive control cycles with plant responses y1(t)
and y2(t) resulting from control actions u(t) = δ1 and
u(t) = δ2, respectively, with δ2 < δ1. δ1 can be the initial
δ or any previously used one, while δ2 has to be chosen.
We comment on the choice of δ2 in section 3.3. Both plant

responses start at y1(t = 0) = y2(t = 0) = −0.5H and
end at y1(t = t+1 ) = 0.5H and y2(t = t+2 ) = 0.5H , with
t+1 < t+2 . Solving (1) for y(t) with u(t) = δ yields

y(t) = e
−t

T y(t = 0)− δk
(

1− e
−t

T

)

, (10)

where k, T and y(t = 0) = −0.5H are unknown. After
adding 0.5H to both sides of (10), y(t = 0) vanishes and
(10) becomes

y(t) + 0.5H =

(

δ +
0.5H

k

)

· k ·
(

e
−t

T − 1
)

. (11)

By substituting t+1 and t+2 into (11), two equations with
equal left hand side y(t+1 ) + 0.5H = y(t+2 ) + 0.5H = H
result. Rearranging then cancels H and

δ1

(

e
−t

+

1
T − 1

)

e
−t

+

1
T + 1

=

δ2

(

e
−t

+

2
T − 1

)

e
−t

+

2
T + 1

(12)

results. Solving (12) numerically for T yields the first
unknown model parameter. With known T , (11) can be
rearranged to
(

e
−t

+

1
T − 1

)

kδ1

0.5H
+ e

−t
+

1
T =

(

e
−t

+

2
T − 1

)

kδ2

0.5H
+ e

−t
+

2
T ,

(13)
which can be solved for k

0.5H . The inverse of k
0.5H equals

δ∗ according to prop. 3. The predicted timespan tp for the
next control cycle (with δ = δ∗ and µ∗) is found by solving
(

e
−t

+

1
T − 1

)

kδ1

0.5H
+ e

−t
+

1
T =

(

e
−tp

T − 1
) kδ∗

0.5H
+ e

−tp

T

(14)
numerically for tp with now known parameters k

0.5H and
T .

3.3 Considerations on the practical implementation

Due to the aperiodic first order behaviour of the plant
(1), the timespans to reach y or y when applying µ∗ ± δ∗

may become infinite and therefore impracticable for a real
world application. A relaxation of optimality is required,
e.g. by applying κδ∗ with κ > 1 instead of δ∗ to the
plant. We chose κ = 1.05 for the experimental validation
in section 5, thus added 5% to the computed optimal δ∗.

Measuring y2(t) requires a reduced δ2 < δ1. Using

δ2 = ρδ1 with 0 < ρ < 1 (15)

with ρ = 0.8 is appropriate for most applications in our
experience. However, if the plant gain k is small, ρ may
have to be chosen larger to prevent δ2 being lower than the
optimal δ∗ (which has not been identified at this point).
Strong process noise or a very high process gain k may, on
the other hand, require a smaller ρ to improve the signal
to noise ratio for the measured times t+1 and t+2 .

The proposed settings for κ and ρ proved successful in
different laboratory applications.

4. AUTONOMOUS PARAMETER IDENTIFICATION

The proposed controller shall perform all the required
steps to determine the controller parameters µ∗ and δ∗

without user interaction. The controller algorithm is di-
vided into two phases: An initial self-learning phase spans
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over the minimal number of control cycles required to col-
lect all required information to determine µ∗ and δ∗. The
self-learning phase is followed by a constant output phase,
where the plant is controlled with constant controller out-
put u(t) = µ∗. When y(t) leaves the hysteresis range [y, y]
during the constant output phase, e.g. due to disturbances,
the controller performs a disturbance rejection and restarts
an adapted self-learning phase. The two phases and the
disturbance rejection are outlined in the following.

4.1 Self-learning phase

The self-learning phase requires a total of n+2 consecutive
control cycles, where n cycles are used for the iterative
computation of µ∗ (cf. Sec. 3.1) and two additional cycles
are required for the computation of δ∗. Every cycle starts
at y(t0) = w2 + h2, reaches y(t0 + t−) = w1 − h1 and ends
at y(t0+ t−+ t+) = y(t0) = w2+h2 as given in Fig. 2. The
controller parameters µ, δ and γ are kept constant during
any control cycle and the controller output is always given
by (3).

Cycle 0: Initialization. The initial control cycle is acti-
vated at power-up or reset of the controller. The state of
the plant is unknown at this moment, so y(t = 0) may
be located above, below or inside the hysteresis range.
The initial cycle may therefore be incomplete, e.g. when
y(t = 0) < y, only the rising part of the cycle is performed.

Initial parameters µ0 and δ0 are chosen so that u(t) = µ0±
δ0 spans the whole actuator range [u, u]. The parameter γ
is 1 during the whole self-learning phase and the initial
controller output is u(t = 0) = µ0 − δ0, which leads to a
descending initial trajectory y(t) until y(t) = w1 − h1 is
reached. The controller (3) then switches to u(t) = µ0+δ0,
thus y(t) rises until y(t) = w2+h2 is reached, which marks
the end of the initial cycle. The parameters µ0 and δ0 are
kept unchanged, since, due to the unknown starting point
y(t = 0), the possibly incomplete initial cycle is not suited
to perform the computations outlined in section 3.

Cycles 1 to n: Computation of µ∗. The following n
control cycles iteratively compute µ̃ by evaluating (4) at
the end of every cycle. Convergence of of µ̃ to µ∗ has been
reached when the time intervals t+ and t− are equal, which
is the stopping criterion for the iteration and marks cycle
n.

A valid output signal range, i.e. u(t) = µ̃ ± δ ∈ [u, u], is
guaranteed by applying

δ := δ +min (µ̃− δ − u, u− µ̃− δ, 0) (16)

after evaluating (4). The mean timespan tm = 0.5(t++t−)
is computed at the end of every cycle and will be used for
the disturbance rejection (cf. Sec. 4.3).

Cycles n + 1 and n + 2: Computation of δ∗. Cycle n +
1 is performed with the previously computed µ∗ and is
required to measure the timespan t+1 = t+ as required for
the computation of δ∗ by (12) and (13). All parameters
are kept constant in cycle n+ 1.

Cycle n + 2 is required to measure t+2 and is therefore
applied with a reduced δ2 as given by (15). At the end
of cycle n + 2, δ∗ is computed by (12) and (13) and the
predicted timespan tp is computed by (14). In addition,

µ∗ is computed one additional time by (4) to incorporate
a possible plant-model mismatch. With the end of cycle
n+2 the self-learning phase is completed and the controller
algorithm proceeds with the constant output phase.

4.2 Constant output phase

The last control cycle n+2 from the previous self-learning
phase ended when y(t) reached w2+h2. The controller now
applies u(t) = µ∗ − δ∗ for half the predicted timespan,
i.e. 0.5tp, to achieve y(t) = y∗. Since tp is the timespan
required for y(t) to travel from w2 + h2 to w1 − h1 with
u(t) = µ∗ − δ∗, y(t) will equal y∗ after 0.5tp. After the
timespan of 0.5tp has elapsed, the controller switches to
a constant output u(t) = µ∗ by setting γ = 0 in order
to keep y(t) = y∗. As long as disturbances remain small
enough, y(t) will remain inside of the hysteresis range [y, y]

and the controller output u(t) = µ∗ remains constant. The
disturbance rejection is triggered by y(t) leaving [y, y] and
will be outlined in the following.

4.3 Disturbance rejection during the self-learning phase

Disturbances arise due to varying parameters k(t) and
z(t) of the model (1). Since we assumed that the plant
is controllable by a conventional on-off controller (i.e. y
and y can always be reached by applying inputs within
[u, u]), the initial controller with µ0 and δ0 is able to
control the plant, regardless of the disturbances. Since µ
and δ are adjusted during the self-learning phase, u(t) is
now possibly constrained to a subset of [u, u]. Varying
parameters k(t) and z(t) may therefore lead to a failing
control as y(t) may not reach the sensor switching points
y or y any more and thus the self-learning algorithm
is unable to proceed. The controller therefore monitors
the timespans t+ and t− during cycles 1 to n + 2 and
compares the timespans to the mean timespan tm from
the previous cycle. A significantly increased timespan, e.g.
t+/− > 2tm, indicates that disturbances may have occured.
The controller resets itself in this case and restarts the self-
learning phase in cycle 0 with the initial parameters µ0 and
δ0, to reject the disturbance.

4.4 Disturbance rejection during the constant output phase

During the constant output phase, a change in k(t) or z(t)
may lead to y(t) leaving the hysteresis area [y, y], which is
detected by a switching of one of the binary sensors, i.e.
s1(t) = 0 or s2(t) = 1. Three causes for this disturbance
will be distinguished in the following as they lead to
different rejection methods. We note here that cause 3 is
the most common, however, we included the other causes
as they may be valuable for specific applications.

Cause 1: z(t) changed. If only z(t) changed and k(t)
remains constant, µ∗ is updated using the current µ by

µ∗ =

{

µ+ δ∗ , s1(t) = 0

µ− δ∗ , s2(t) = 1
. (17)

Since kδ∗ = 0.5H , adding δ∗ to µ∗ when s1(t) = 0 will
reject the disturbance as y(t) = y + 0.5H = y∗. The case
y(t) > y, i.e. s2(t) = 1, is treated analogously.
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Cause 2: k(t) changed. If only k(t) changed and z(t)
remains constant, both µ∗ and δ∗ have to be adjusted. Let
the steady state be y(t) = y∗ = kµ∗ for the original k and

y(t) = y∗ ± 0.5H = k̃µ∗ for the disturbed k = k̃, so that
y(t) has left the hysteresis range and s2 = 1 or s1 = 0,
respectively. Equating both cases leads to

kµ∗ = k̃µ∗ ∓ 0.5H . (18)

Dividing both sides of (18) by 0.5H and µ∗ yields

k

0.5H
=

k̃

0.5H
∓

1

µ∗
. (19)

As k̃
0.5H = δ̃∗ is the new optimal input amplitude for the

disturbed case as by (9), rearranging (19) yields

δ̃∗ =















(

1

δ∗
+

1

µ∗

)

−1

, s1(t) = 0
(

1

δ∗
−

1

µ∗

)

−1

, s2(t) = 1

. (20)

Finally, µ∗ is corrected by applying (17). The controller

then uses δ̃∗ as the new optimal amplitude δ∗.

Cause 3: Both k(t) and z(t) changed. If both k(t) and
z(t) have changed, a restart of the controller with the self-
learning phase is the only way to reject the disturbance.
However, instead of resetting the controller to the initial
parameters µ0 and δ0, the above considerations can be
exploited to achieve a less aggressive control. We choose
to reset the controller parameters to µ = µ∗ by (17) and

δ = δ̃∗ by (20), however, prevent a lower δ than the
one that was used before the disturbance occured. The
controller then restarts with the self-learning phase in cycle
0.

5. RESULTS

We evaluated the proposed controller in a laboratory test
setup reflecting the sample process from Fig. 1. A standard
centrifugal pump delivers fluid into a storage tank, the
rotational speed of the pump is the process input u(t) and
can be used to adjust the flow into the storage tank. u(t) is
an analog signal with u(t) ∈ [0V, 10V]. A variable outflow
from the storage tank was used to simulate disturbances.
The fluid level in the storage tank is the controlled process
variable y(t). The level is measured by a dedicated sensor
and is available as a continuous measurement. We use the
continuous measurement to simulate two binary sensors
by applying (2) on y(t) to generate s1(t) and s2(t) with
w1 = 217.5 mm, w2 = 247.5 mm and h1 = h2 = 2.5 mm,
respectively.

The adaptive binary controller was implemented in Matlab
/ Simulink on a standard PC. An I/O-card was used to
communicate with the hydraulic process. Figure 4 depicts
the results from a measurement run over 50 minutes. The
upper diagram shows the fluid level y(t) together with the
two binary sensor switching levels. The middle diagram
shows the corresponding binary sensor signals s1(t) and
s2(t). The lower diagram shows the controller output u(t)
and the parameters µ(t) and δ(t) evolving over time.

The control starts with the initialization in cycle 0 with the
initial paramaters µ0 = δ0 = 5V, thus applies u(t) = µ0 +
δ0 = 10V to the plant until y(t) = w2+h2 is reached. The

0 500 1000 1500 2000 2500 3000
0.2

0.22

0.24

0.26
Plant variables

0 500 1000 1500 2000 2500 3000

0

1

2

-1

0

1

Binary sensors

0 500 1000 1500 2000 2500 3000

0

5

10

Controller output

Fig. 4. Control performance of the proposed control in the
laboratory test setup. The gray areas highlight the
constant output phase.

subsequent iteration of µ∗ requires only n = 2 cycles until
symmetry is achieved and t− ≈ t+. The two cycles result
in only marginal changes to µ, as the initial value of µ = 5
is incidentally a good choice for the process in the current
configuration. At the end of cycle n+ 1 = 3 at about 400
seconds, δ is reduced for the first time by applying (15).
At the end of cycle n + 2 = 4 at about 500 seconds, the
optimal parameters δ∗, µ∗, and the predicted timespan
tp are computed. The controller then enters the constant
output phase and applies u(t) = µ∗ − δ∗ for 0.5tp ≈ 100
seconds, and then u(t) = µ∗ by setting γ = 0. The constant
output phase is highlighted by a gray area in Fig. 4. The
controlled variable y(t) settles at a constant value, though
with a slight offset to y∗, which is caused by the plant
model mismatch.

At about 800 seconds, the outflow from the storage tank
is increased to simulate a disturbance, resulting in a
decrease of y(t). The controller initiates the disturbance
rejection at about 900 seconds after detecting s1(t) = 0
and computes δ and µ as new initial parameters for the
restart of the self-learning phase. Evidently, the prediction
of the new parameters µ and δ as described in section 4.4
(cause 3) yields proper results, so that both parameters do
not change significantly during the following self-learning
phase. The self-learning is performed with significantly
reduced input amplitude, compared to the initial control.
At about 2600 seconds, the constant output phase is
initiated again and y(t) settles close to y∗. The control
then runs with constant u(t) and nearly constant y(t) until
the end of the measurement.

We analyzed the energy demand of the proposed adaptive
binary control and compared it to a conventional PID con-
trol and a simple on-off control. The results are depicted
in Figure 5 and originate from the same measurement run
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Fig. 5. Comparison of power demand and accumulated
energy consumption for the adaptive binary controller
and two established control implementations. The
gray areas highlight the constant output phase of the
adaptive controller.

already shown in Figure 4. The upper diagram in Fig. 5
shows the electrical power demand P (t), while the lower
diagram shows the accumulated energy consumption E(t)
over time for all three control variants.

The PID controller serves as a benchmark here, as the
energy consumption is the lowest of all three variants.
However, the PID controller requires a continuous mea-
surement of y(t) and thus a more complex and expensive
sensor, in contrast to the two other methods that only
require simple float switches. As anticipated, the simple
on-off control is the least energy-efficient variant, due to
the repeated acceleration of the pump to full speed. The
adaptive binary controller performs like the simple on-
off controller during its initial self-learning phase. How-
ever, after completing the self-learning, the adaptive con-
troller provides a constant pump speed, comparable to
the benchmark PID control. The repeated self-learning
after the disturbance at about 800 seconds also shows
an only marginally increased energy demand compared
to the PID control. During the constant output phases,
the energy demands of adaptive binary control and PID
control are nearly equal and significantly lower than for
the simple on-off control. At the end of the 50 minute
measurement, the on-off control required 0.134 kWh, the
adaptive control reduced the energy consumption to 70%,
and the PID control to 60%, relative to the on-off control.
Extended constant output phases will further reduce the
energy consumption of the adaptive controller.

6. CONCLUSION

We proposed a self-learning binary controller for plants
with two binary measurements. The controller combines
the benefits of a conventional on-off control in terms of sim-
plicity for the user with the benefits of a continuous control
in terms of energy consumption and control quality. We
showed that a significant reduction in the energy consump-
tion of the plant can be achieved by replacing a simple

on-off controller with the proposed adaptive controller,
while no further expenses regarding sensor hardware and
controller tuning arise.

In further works we will implement the controller on an
industrial hardware and perform more elaborate field tests
to further refine the algorithm. Also an extension of the
control concept to a wider system class is subject to
current research.
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