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Abstract: Machine vision has revealed great potential in recent years for Sense and Avoid (SAA)
ability of Unmanned Aerial Vehicle (UAV). However, the target perception capability of machine vision
largely depends on illumination, which restricts UAV to move safely in dark environment. Since images
acquired by infrared and visible sensors are complementary in most cases, enhancing image qualities
in dark environments by fusion of infrared and visible images is a promising solution. By considering
the difficulties of image fusion for airborne targets, a Convolutional Sparse Representation (CSR) based
infrared and visible airborne targets image fusion algorithm is proposed in this paper for enhancing
SAA capability of UAV in dark environments, which contains three parts: image decomposition,
image transformation and image reconstruction. A series of registered infrared and visible images
containing airborne targets are selected to evaluate the algorithm proposed in this paper. Simulation
results demonstrate the algorithm proposed in this paper effectively increases image qualities in dark
environments. In the aspects of fusion metrics, the algorithm proposed in this paper can achieve favorable
performance against other image fusion algorithms.

Keywords: Sense and Avoid (SAA), machine vision, target perception, image fusion, Convolutional
Sparse Representation (CSR).

1. INTRODUCTION

The Sense and Avoid (SAA) ability of Unmanned Aerial Ve-
hicle (UAV) has been recognized as the most essential factor
for the integration of UAV into National Aerospace System
(NAS) (Yu and Zhang, 2015). Generally, SAA is composed
of two crucial parts: 1) Sensing part, which aims to detect
all the airborne targets threatening UAV flight safety with the
help of on-board sensing devices; 2) Avoiding part, which aims
to eliminate the potential hazard based on the sensing result
by trajectory re-planning and corresponding flight control (Fu
et al., 2016).

Obviously, sensing part is the foundation of SAA. According
to the working pattern of on-board sensing devices, SAA can
be divided into two main categories: non-cooperative SAA
and cooperative SAA. The non-cooperative SAA is operated
with on-board sensing devices free from information exchange.
The sensing devices for non-cooperative SAA contain machine
vision, Light Detection and Ranging (LiDAR) and acoustic
system. In contrast with non-cooperative SAA, the on-board
sensing devices for cooperative SAA largely depends on infor-
mation exchange with airborne targets. The sensing devices for
cooperative SAA contain Automatic Dependent Surveillance-
Broadcast (ADS-B) and Traffic Alert and Collision Avoidance
System (TCAS), which have been widely installed on manned
aircraft.

In recent years, the advantages of machine vision for the ap-
plication of SAA has been widely recognized, and a series of
algorithms and systems have been developed for vision based
SAA. However, there still exist a few challenges for the sensing
part of vision based SAA, and the most crucial one is the high
demand for image quality. The factors that may deteriorate air-
borne image quality can be concluded as follows. 1) Insufficient
illumination in dark environments (Wang et al., 2018); 2) Image
blur caused by aircraft motion and pose variation (Kupyn et al.,
2018); 3) Target occlusion caused by haze and smog (Liu et al.,
2019). It is worth noting that previous research work of vision
based SAA including airborne target detection, tracking and
pose estimation are all carried out with the prerequisite that
image quality is good enough. However, low airborne image
quality will greatly influence the performance of these algo-
rithms in real application. Among the above mentioned factors,
insufficient illumination is the most typical one, and it will
directly influence the target perception capability of UAV in
dark environment.

As illustrated in Fig. 1, the visible image of the helicopter is
not clear in dark environment, especially for the rotors. The
infrared image of the helicopter can effectively capture the
helicopter structure, however the helicopter texture information
of infrared image is insufficient compared with visible image.
Since the images obtained by infrared and visible sensors are
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(a) Infrared image (b) Visible image (c) Fused image

Fig. 1. Infrared, visible and fused image of an airborne target

complementary, it is desirable to fuse these two kinds of images
to enhance image quality, and the fused image as illustrated
in Fig. 1(c) is capable of combining the advantages of both
infrared and visible images.

Generally, algorithm designed for infrared and visible image
fusion can be concluded as three steps: image transformation,
image fusion, and image reconstruction. Among the three steps,
the method for image transformation is the foundation of the
whole algorithm (Liu et al., 2018b). For this reason, the re-
search of image fusion algorithm during the past decade mainly
focuses on developing a more concise and effective transfor-
mation method. The most widely used transformation methods
for image fusion are Sparse Representation (SR), Convolutional
Sparse Representation (CSR) and Convolutional Neural Net-
work (CNN).

The application of SR to image fusion has achieved great suc-
cess in past few years. However, due to the local representation
nature of SR, the drawbacks of SR based fusion algorithm are
also obvious, which can be concluded as two manifolds (Liu
et al., 2016). 1) The context information loss; 2) The high
sensitivity to registration errors. To overcome this issue, the
fusion framework designed on the basis of global representation
algorithms are proposed in recent years, and the most represen-
tative algorithms are CNN and CSR (Liu et al., 2018b).

CNN has revealed powerful potential for various computer
vision tasks recently. As a supervised learning approach, the
framework of CNN can be classified into two main categories,
namely the regression CNN and classification CNN. Both the
regression CNN and classification CNN have been successfully
applied to image fusion (Liu et al., 2018a). However, the
restriction of CNN based image fusion may come from the high
demand for labeled training samples. CSR is originated from
the de-convolutional networks designed for unsupervised image
feature analysis (Zeiler et al., 2018). With applications to image
fusion, CSR can be treated as an global image transformation
approach. The advantages of CSR based image fusion over
SR and CNN can be concluded as follows (Liu et al., 2016).
1) The global representation capability; 2) The unsupervised
learning nature of CSR makes it free from large amount of
labeled ground truth images. Therefore, CSR has revealed great
potential for image fusion.

In this paper, a CSR based infrared and visible airborne tar-
gets image fusion algorithm is proposed for enhancing SAA
capability of UAV in dark environments. Firstly, since infrared
and visible images are good at capturing structure and texture
information respectively, the source images are decomposed
into structure layers and texture layers. Secondly, both the two
image layers are transformed into the convolutional sparse do-
main by CSR. Finally, the transformed Convolutional Sparse
Coefficient maps are fused via activity level assessment, and
the fused image is obtained by synthesizing the reconstruction
results of fused structure and detailed layers.

The structure of this paper is organized as follows. In Section
1, the motivation of this paper is explained. In Section 2, the
algorithm for infrared and visible airborne targets image fusion
is introduced. In Section 3, a series of experiments are carried
out to verify the effectiveness of the algorithm. The conclusion
of the paper is given in Section 4.

2. INFRARED AND VISIBLE AIRBORNE TARGETS
IMAGE FUSION ALGORITHM

As illustrated in Fig. 2, the general framework of image fusion
algorithm in this paper contains three parts: image decompo-
sition, image transformation and image reconstruction. In this
section, the algorithms for all the three parts will be introduced
in detail.

2.1 Image Decomposition

Typically, as presented in Eq. (1), image I is composed of
two layers: the structure layer IS and the texture layer IT . The
structure layer usually represents the semantic information and
captures salient objects inside the image, while the texture layer
emphasizes on preserving details of the image. As illustrated in
Fig. 2, the semantically meaningful structure layers are usually
covered by texture layers. As mentioned above, since infrared
image and visible image are good at preserving structure infor-
mation and texture information respectively, decomposition of
the two layers for image fusion is desirable.

I = IS + IT (1)

In this paper, the relative total variation based image decom-
position algorithm is adopted for image decomposition (Xu
et al., 2012). The objective function for image decomposition
is presented as Eq. (2), where IS(i) and I(i) are pixel values
of structure layer and original image at location i, respectively,
p is the total pixel number of input image, µ is the parameter
controlling smooth degree, and ε is small positive number to
avoid denominator being zero. Vx(i) and Vy(i) as presented in
Eq. (3) and Eq. (4) are total variations in x and y direction for
pixel i, where R(i) is the rectangular region centered at i, gi, j
is weighting function designed to avoid spatial affinity, ∂x and
∂y are partial derivatives in x and y direction, respectively. The
mathematical formulation of gi, j is presented as (5), where σ is
the parameter controlling window size. The influence of image
decomposition parameter on image fusion will be analyzed in
detail in Section 4.

argmin
IS

p

∑
i=1

(IS(i)− I(i))2 +µ ·
(

Vx(i)
Vx(i)+ ε

+
Vy(i)

Vy(i)+ ε

)
(2)

Vx(i) =

∣∣∣∣∣ ∑
j∈R(i)

gi, j · (∂xIS) j

∣∣∣∣∣ (3)

Vy(i) =

∣∣∣∣∣ ∑
j∈R(i)

gi, j · (∂yIS) j

∣∣∣∣∣ (4)

gi, j ∝ exp

(
−
(xi− x j)

2 +(yi− y j)
2

2σ2

)
(5)
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Fig. 2. General framework of infrared and visible airborne targets image fusion

2.2 CSR Based Image Transformation

As mentioned above, effective image transformation is essential
for the fusion effect. In this paper, the structure layers IIN

S , IV I
S

and texture layers IIN
T , IV I

T of infrared and visible images are
transformed into the convolutional sparse domain by elastic net
based CSR.

As presented in Eq. (6), the basic idea of CSR is that an
input image I can be represented by the sum of the convolu-
tional product of equally sized convolutional dictionary filters
D = {d1,d2, ...,dm} and convolutional sparse coefficient maps
X = {x1,x2, ...,xm}, where m is the number of convolutional
dictionary filters.

I =
m

∑
i=1

di ∗ xi (6)

For each input image, the convolutional dictionary is pre-
learned. Therefore, the computation of convolutional sparse
coefficient maps X is essential for image transformation. Con-
ventionally, the computation of X can be operated by l1 norm
regularization, and the objective function can be expressed as
Eq. (7), where λ is the regularization parameter. Since l1 norm

regularization could not guarantee group selection when ap-
plied to image transformation, the elastic net based regular-
ization is proposed in this paper to combine the advantages of
l1 norm and l2 norm regularization. The objective function for
elastic net based regularization can be expressed as Eq. (8). The
solution of Eq. (8) can be acquired by Alternating Direction
Method of Multipliers (ADMM).

argmin
xi

1
2

∥∥∥∥∥ m

∑
i=1

di ∗ xi− I

∥∥∥∥∥
2

2

+λ

m

∑
i=1
‖xi‖1 (7)

argmin
xi

1
2

∥∥∥∥∥ m

∑
i=1

di ∗ xi− I

∥∥∥∥∥
2

2

+λ

m

∑
i=1
‖xi‖1+(1−λ )

m

∑
i=1
‖xi‖2

2 (8)

Therefore, as presented in Eq. (9), given the structure layers
of IIN

S , IV I
S and texture layers IIN

T , IV I
S of infrared and visible

images, the convolutional sparse coefficient maps X IN
S , XV I

S ,
X IN

T and XV I
S can be estimated via elastic net regularization

based CSR.
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arg min
xIN,V I

S,T i

1
2

∥∥∥∥∥ m

∑
i=1

di ∗ xIN,V I
S,T i

− IIN,V I
S,T

∥∥∥∥∥
2

2

+λ

m

∑
i=1

∥∥∥xIN,V I
S,T i

∥∥∥
1

+(1−λ )
m

∑
i=1

∥∥∥xIN,V I
S,T i

∥∥∥2

2

(9)

2.3 Fused Image Reconstruction

After the computation of X IN
S , XV I

S , X IN
T and XV I

S , as presented
in Eq. (10), the l1 norm max strategy is adopted to fuse the
convolutional sparse coefficient maps of structure layers and
texture layers, where XS(i, j) and XT (i, j) denotes the content
of XS and XT at location (i, j), respectively.

XF
S,T (i, j) =

{
X IN

S,T (i, j)
∥∥X IN

S,T (i, j)
∥∥

1 >
∥∥XV I

S,T (i, j)
∥∥

1
XV I

S,T (i, j)
∥∥X IN

S,T (i, j)
∥∥

1 <
∥∥XV I

S,T (i, j)
∥∥

1
(10)

Since the fusion of structure layer is operated in the transfor-
mation domain, the fusion results of structure and texture layers
XF

S,T = {xF
S,T 1

,xF
S,T 2

, ...,xF
S,T m
} need to be transformed back to

image domain. As presented in Eq. (11), the reconstruction of
the fusion result of structure layer XF

S,T can be acquired by
utilizing the convolutional dictionary filter.

IF
S,T =

m1

∑
i=1

di ∗ xF
S,T i (11)

Finally, as presented in Eq. (12), the fusion image IF can be
obtained by adding the fusion result of structure layers and
texture layers.

IF = IF
S + IF

T (12)

3. EXPERIMENT RESULTS AND ANALYSIS

3.1 Experiment Setup

As presented in Fig. 3, three pairs of infrared and visible
images containing airborne targets are selected for image fusion
experiment in this paper, where the selected images obtained by
different sensors are all complementary.

In order to effectively evaluate the algorithm performance, both
subjective and objective metrics are adopted to measure the
quality of fusion result. Subjective metrics are operated by
human eyes observation, while objective metrics are operated
by image quality calculation. The name and functionality for
each objective metric is presented as follows (Liu et al., 2011).

1) QMI . Objective metric QMI is designed on the basis of
information theory, and a high value of QMI represents good
fusion result.

2) QM . Objective metric QM is designed on the basis of multi-
scale scheme, and a high value of QM represents good fusion
result.

3) QS. Objective metric QS is designed on the basis of image
structural similarity, and a high value of QS indicates good
fusion result.

(a) Infrared image 1 (b) Visible image 1

(c) Infrared image 2 (d) Visible image 2

(e) Infrared image 3 (f) Visible image 3

Fig. 3. Source images for image fusion experiment

Table 1. Parameters for algorithm evaluation

Symbol Influence Value range

µ Controlling texture smooth degree (0,0.05]
λ Controlling weight of l1 norm [0.0099,0.99]

4) QCB. Objective metric QCB is designed on the basis of human
perception system, and a high value of QCB indicates good
fusion result.

3.2 Parameter Analysis

Two parameters are recognized to have great influence on fu-
sion result. The names, influences and ranges for these param-
eters are concluded in Table 1.

Evaluation for parameter µ The range of parameter µ is
presented in Table 1, and the value of λ when evaluating µ is
0.001. The fusion results with the variation of µ are presented
in Fig. 4. The QMI , QM , QS, QCB for images 1, 2 and 3 are
presented in Fig. 5, 6, 7 and 8, respectively. Obviously, the
fusion effect decreases with the increase of µ , and the reason is
that the higher smooth degree may lose more detail information
of the fused image.

Evaluation for parameter λ The range of parameter λ is
presented in Table 1, and the value of µ when evaluating λ

is 3. The fusion results with the variation of λ are presented
in Fig. 9. The QMI , QM , QS, QCB for images 1, 2 and 3 are
presented in Fig. 10, 11, 12 and 13, respectively. Generally, the
quality of fusion result decreases with the increase of λ . It is
worth noting that the increase of λ will cause the coefficient
map more sparse, which will finally indicate the decrease of
fusion result.
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Fig. 4. Fusion results with the variation of µ for images 1, 2 and
3

(a) Image 1 (b) Image 2 (c) Image 3

Fig. 5. QMI with the variation of µ for images 1, 2 and 3

(a) Image 1 (b) Image 2 (c) Image 3

Fig. 6. QM with the variation of µ for images 1, 2 and 3

(a) Image 1 (b) Image 2 (c) Image 3

Fig. 7. QS with the variation of µ for images 1, 2 and 3

(a) Image 1 (b) Image 2 (c) Image 3

Fig. 8. QCB with the variation of µ for images 1, 2 and 3

3.3 Comparison Experiments
In order to measure the effect of the algorithm proposed in this
paper more effectively, three image fusion algorithms including
SR (Yang and Li, 2009), lasso based CSR (Liu et al., 2016),
and CNN (Liu et al., 2018a) are selected to compare with the
algorithm proposed in this paper. The comparison of fusion
results are presented in Fig. 14. From the aspect of subjective

Fig. 9. Fusion results with the variation of λ for images 1, 2 and
3

(a) Image 1 (b) Image 2 (c) Image 3

Fig. 10. QMI with the variation of λ for images 1, 2 and 3

(a) Image 1 (b) Image 2 (c) Image 3

Fig. 11. QM with the variation of λ for images 1, 2 and 3

(a) Image 1 (b) Image 2 (c) Image 3

Fig. 12. QS with the variation of λ for images 1, 2 and 3

(a) Image 1 (b) Image 2 (c) Image 3

Fig. 13. QCB with the variation of λ for images 1, 2 and 3

measurement, the algorithm proposed in this paper is capable
of preserving image details while strengthening the object. The
comparison of objective measurements containing QMI , QM ,
QS, QCB are presented in Table 2, 3, 4 and 5, respectively. It
is obvious that the objective measurements of the algorithm
proposed in this paper outperforms other algorithms in most
cases.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14947



Fig. 14. Comparison of fusion results

Table 2. Comparison of QMI

Algorithm Images 1 Images 2 Images 3

SR 7.412 6.037 6.493
CSR (lasso) 7.212 5.897 6.254

CNN 7.015 5.697 6.134
This paper 6.915 5.496 6.013

Table 3. Comparison of QM

Algorithm Images 1 Images 2 Images 3

SR 0.493 0.587 0.629
CSR (lasso) 0.672 0.657 0.728

CNN 0.686 0.682 0.731
This paper 0.691 0.684 0.747

Table 4. Comparison of QS

Algorithm Images 1 Images 2 Images 3

SR 2.233 2.276 2.348
CSR (lasso) 2.637 1.754 2.521

CNN 2.614 1.989 2.409
This paper 2.713 2.012 2.706

Table 5. Comparison of QCB

Algorithm Images 1 Images 2 Images 3

SR 0.349 0.367 0.384
CSR (lasso) 0.417 0.208 0.408

CNN 0.429 0.473 0.415
This paper 0.413 0.502 0.428

4. CONCLUSION

In this paper, a CSR based infrared and visible airborne tar-
gets image fusion is presented for enhancing SAA ability of
UAV. The algorithm contains three parts: image decomposition,
image transformation and image reconstruction. Both subjec-
tive and objective measurements are selected to evaluate the
effectiveness of the fusion algorithm proposed in this paper.
Simulation results reveal that the algorithm proposed in this pa-

per is capable of preserving image details while strengthening
objects, and outperforms other fusion algorithms in most cases.

5. ACKNOWLEDGEMENT

This study is supported in part by the National Natural Science
Foundation of China (No. 61673211, U1633105, 61573282,
and 61833013), the Fundamental Research Funds for the Cen-
tral Universities of China (No. NP2019105), Postgraduate Re-
search & Practice Innovation Program of Jiangsu Province
(KYCX18 0301) and Funding for Outstanding Doctoral Dis-
sertation in NUAA (BCXJ18-11).

REFERENCES

Fu, Y., Zhang, Y.M., and Yu, X. (2016). An advanced sense and
collision avoidance strategy for unmanned aerial vehicles
in landing phase. IEEE Aerospace and Electronic Systems
Magazine, 31(9), 40–52.

Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., and
Matas, J. (2018). Deblurgan: Blind motion deblurring using
conditional adversarial networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
8183–8192.

Liu, R., Fan, X., Hou, M., Jiang, Z., Luo, Z., and Zhang,
L. (2019). Learning aggregated transmission propagation
networks for haze removal and beyond. IEEE Transactions
on Neural Networks and Learning Systems, 30(10), 2973–
2986.

Liu, Y., Chen, X., Cheng, J., Peng, H., and Wang, Z. (2018a).
Infrared and visible image fusion with convolutional neural
networks. International Journal of Wavelets, Multiresolution
and Information Processing, 16(03), 1850018.

Liu, Y., Chen, X., Wang, Z., Wang, Z.J., Ward, R.K., and Wang,
X. (2018b). Deep learning for pixel-level image fusion:
Recent advances and future prospects. Information Fusion,
42, 158–173.

Liu, Y., Chen, X., Ward, R.K., and Wang, Z.J. (2016). Image
fusion with convolutional sparse representation. IEEE Signal
Processing Letters, 23(12), 1882–1886.

Liu, Z., Blasch, E., Xue, Z., Zhao, J., Laganiere, R., and Wu,
W. (2011). Objective assessment of multiresolution image
fusion algorithms for context enhancement in night vision: a
comparative study. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 34(1), 94–109.

Wang, X., Zhou, Q., Liu, Q., and Qi, S. (2018). A method of
airborne infrared and visible image matching based on hog
feature. In MIPPR 2017: Pattern Recognition and Computer
Vision, volume 10609, 106090Y. International Society for
Optics and Photonics.

Xu, L., Yan, Q., Xia, Y., and Jia, J. (2012). Structure extraction
from texture via relative total variation. ACM Transactions
on Graphics (TOG), 31(6), 139.

Yang, B. and Li, S. (2009). Multifocus image fusion and
restoration with sparse representation. IEEE Transactions
on Instrumentation and Measurement, 59(4), 884–892.

Yu, X. and Zhang, Y.M. (2015). Sense and avoid technologies
with applications to unmanned aircraft systems: Review and
prospects. Progress in Aerospace Sciences, 74, 152–166.

Zeiler, M.D., Taylor, G.W., and Fergus, R. (2018). Adaptive de-
convolutional networks for mid and high level feature learn-
ing in: Computer vision. In IEEE International Conference
On, volume 2025.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14948


