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Abstract: This article addresses the problem of average consensus by a multi-agent system
when the desired consensus quantity is a time varying signal, in particular the average of
individual time varying signals localized at the agents. Although this problem has been addresses
in existing literature by linear schemes, only bounded steady-state errors has been achieved. In
this work, we propose a new exact dynamic consensus algorithm which leverages high order
sliding modes to achieve zero steady-state error of the average of time varying reference signals
in a group of agents. Moreover, our proposal is also able to achieve consensus to high order
derivatives of the average signal, if desired. Finally, the effectiveness and advantages of our
proposal are shown with concrete simulation scenarios.
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1. INTRODUCTION

In the context of cyber-physical systems, there are a lot
of scenarios where the coordination of many subsystems
is needed. There is no doubt that distributed solutions
are preferred over centralized ones when, big networks
of agents are involved in the scenario (Kia et al., 2019).
This is so, since distributed solutions scale better with
respect to the size and topology of the network, and are
more robust against failures (Kar and Moura, 2008). Static
consensus, where all subsystems (herein referred as agents)
manage to agree on a static value such as the average of
certain quantities of interest, is a widely studied topic, see
for example (Olfati-Saber et al., 2007; Gómez-Gutiérrez
et al., 2018). On the other hand, consensus towards a
time-varying quantity has recently attracted attention due
to its potential applications such as distributed formation
control, distributed unconstrained convex optimization,
distributed state estimation and distributed resource allo-
cation, just to give some examples (see Kia et al. (2019)).

The most popular approach for dynamical consensus is
to rely on a linear protocol similar to the one used in
static consensus, but with the slight modification in which
the error between the internal agent state and its local
reference signal is shared to other agents instead of the
state itself. This same approach can be reformulated as
communicating only the internal state, with the drawback
of using the derivative of the reference signal in the local
evolution of the state of each agent (see Kia et al. (2019)
for more details on this procedure). However, since this
approach relies on a linear system stabilization, were
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the derivative of the average of the reference signals is
not known globally, then, it can’t be feed-forwarded to
all agents in order to achieve zero steady-state error.
Indeed, only practical stability towards consensus can
be guaranteed, where the accuracy of the steady state
depends on the bounds of the derivative of the reference
signals, and its reduced as the connectivity is increased.

Zero steady state error has been achieved successfully by
taking advantage of sliding mode control theory, where
the steady state error is cancelled out by means of dis-
continuous protocols around consensus, see for example
(Rahili and Ren, 2017). However, this approaches have
the drawback that they induce chattering phenomenon
to the system. Moreover, they need the derivative of the
reference signals or even the reference signals themselves
to be bounded, which can be restrictive in many situations.

1.1 Contributions

In this work, we propose a new Exact Dynamic Consen-
sus (EDC) algorithm which leverages High Order Sliding
Modes (HOSM) (Levant, 2008) to achieve zero steady-
state error of the average of time varying reference signals
of a group of agents. In this case, it is only required that
a certain high order derivative of the reference signals is
known to be bounded by a known constant. Moreover,
this method successfully achieves consensus not only to
the average of the reference is signals, but its derivatives.
To the best of our knowledge HOSM hasn’t been used in
the context of dynamical consensus for this purpose.

This article is organized as follows. Section 2.1 draws some
notation used through the article, Section 2.2 presents
some concepts of algebraic graph theory needed to describe
our result, Section 2.3 shows an important result of HOSM
which is the basis of our proposal. Furthermore, Section
3 presents a formal statement for the problem being
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addressed in this work. The main result is presented
in Section 4 and its effectiveness and advantages are
supported by a simulation example in Section 5. Finally,
some conclusions are drawn in Section 6.

2. PRELIMINARIES

2.1 Notation

The function sign(x) is defined as 1 for x ≥ 0 and −1 for
x < 0. Moreover, the notation dxcα = |x|αsign(x) will be
used through this document. The symbols ẋ(t), ẍ(t) repre-
sent the first and second time derivatives of x(t) whereas
x(µ)(t) for µ ≥ 0 represent the µ-th time derivative of x(t).
Furthermore, 1 = [1, 1, . . . , 1]T ∈ Rn, where the dimension
n is defined depending on the context. Italic indices i, j will
be used when referring to agents in a multi-agent system.

2.2 Graph theory

The communication network between agents can be mod-
eled as an undirected graph. An undirected graph X con-
sists of a node set V of n nodes and an edge set E of `
edges. An edge from node i to node j is denoted as (i, j),
which means that node i can communicate to node j in
a bidirectional way. If there is a path between any two
vertices by means of edges of the graph X , then X is said
to be connected.

The adjacency matrix A ∈ Rn×n of a graph has the
property that its components aij = 1 when (i, j) is an
edge which is part of the graph and aij = 0 otherwise. An
incidence matrix D ∈ Rn×` for X has a column per edge,
where all elements of the column corresponding to edge
(i, j) are 0 except for the i-th element which is 1 and the
j-th which is −1. Moreover, any incidence matrix for X
satisfies that 1TD = 0. For more details, please refer to
(Godsil and Royle, 2001).

2.3 Robust Exact Differentiators

In the context of high order sliding modes (HOSM), an
M -th order exact differentiator is an online algorithm DM

which takes continuous samples of an input signal f(t) ∈ R
and has outputs Dµ

M (t), which approaches f (µ)(t) with
zero steady-state error after a finite amount of time for
any initial conditions, provided that |f (M+1)(t)| ≤ L.

This type of algorithms were first proposed in (Levant,
2003). Although there are many variations of this algo-
rithm, the structure in which our proposal relies, is given
by the following:

ż0 = z1 − k0L
1

M+1 dσc
M
M+1

. . .

żµ = zµ+1 − kµL
1+µ
M+1 dσc

M−µ
M+1

. . .

żM = −kMLsign(σ)

(1)

where σ(t) = z0(t) − f(t) and the outputs of the differ-
entiator are Dµ

M (t) = zµ(t). The values of kµ have to be
designed such that system (1) is stable with L = 1.

Design procedures for the gains kµ have been reported such
as the one proposed by Cruz-Zavala and Moreno (2019),
based on a Lyapunov function criterion.

3. PROBLEM STATEMENT

Consider a multi-agent system consisting of n agents.
Each agent is capable of communicating with other agents
according to a communication topology defined by a
connected graph X . Moreover, each agent is capable of
executing an algorithm of the form:

ẋi(t) = fi(xi(t), pi(t), ui(t)), xi(0) = x0i (2)

where x ∈ Rm is the internal state of the agent computa-
tions, where the dimensionm will be defined later, pi ∈ Rdi
is a vector of received messages from its di neighbors and
ui ∈ R is its internal time-varying (in general) reference
signal. Moreover, fi : Rm×Rdi ×R→ Rm is the evolution
rule for the agent. Each agent share a message with its
neighbors of the form

pi(t) = hi(xi(t), ui(t)) (3)

and has an output

yi(t) = gi(xi(t), ui(t)). (4)

Note that the evolution rule (2) evolves in a distributed
way, since for each agent, it only uses their internal data
and information shared only by its neighbors. The goal of
this multi-agent system is stated as follows.

Problem 1. Given the agent configuration in (2),(4) and
(3), and a set of local signals u(t) = [u1(t), . . . , un(t)]T ; the
dynamic average consensus problem consists in designing
the functions fi(•, •, •), hi(•, •) and gi(•, •) such that the
individual output signals for each agent are able to track

ū(t) =
1

n

n∑
i=1

ui(t)

with zero steady state error.

In the statement of Problem 1, fi(•, •, •), hi(•, •) and
gi(•, •) are not meant to correspond to inherent dynamics
of the physical agents. However, they represent the dy-
namics of the consensus algorithm which we are free to
design.

Remark 1. Note that since the proposal algorithm will be
based in the theory of HOSM, then (2) is more properly
described by a differential inclusion and hence its solutions
will be understood in the sense of Filippov (see Cortes
(2008) for more details).

3.1 Linear dynamic consensus

The typical solution to this problem, as described in (Kia
et al., 2019), is to take advantage of linear control theory.
In this context the agent configuration takes the following
form:

ẋi =

n∑
j=1

aij(yi − yj), xi(0) = x0i

yi =ui − xi

(5)

where aij are the components of the adjacency matrix
of the communication graph X , each agent share their
outputs pi = yi only, and the agent internal states are
scalar, i.e. m = 1. Provided that

∑n
i=1 xi(0) = 0, it can be

shown that this approach reaches dynamical consensus of
their outputs, tracking the signal ū but only with a steady
state error bounded by a constant κ which depends on the
bound for the derivatives of the input signals ui and the
algebraic connectivity of the network. Henceforth, doesn’t
fully solve Problem 1.
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4. EXACT DYNAMIC CONSENSUS

In order to solve Problem 1, the proposed algorithm takes
advantage of the structure of HOSM in the form of robust
exact differentiators, and applies them to the dynamic
consensus with the following design. Each agent has an
internal state xi = [xi,0, . . . , xi,M ]T where m = M + 1.
The proposed algorithm takes the following form:

ẋi,0 = xi,1 − k0L
1

M+1

n∑
j=1

aijdyi − yjc
M
M+1

. . .

ẋi,µ = xi,µ+1 − kµL
1+µ
M+1

n∑
j=1

aijdyi − yjc
M−µ
M+1

. . .

ẋi,M = −kML
n∑
j=1

aijsign(yi − yj)

yi(t) = ui(t)− xi,0(t)

(6)

where L ≥ max
{∣∣∣u(M+1)

1 (t)
∣∣∣ , . . . , ∣∣∣u(M+1)

n (t)
∣∣∣}. More-

over, the output space can be trivially augmented as

yi,µ(t) = u
(µ)
i (t)− xi,µ(t). (7)

This means that the outputs yi,µ(t) are available internally
at the agent, but the shared information is still only
pi(t) = yi(t) or equivalently pi(t) = yi,0(t).

As well as other existing methods such as the ones de-
scribed in (Kia et al., 2019), our approach relies in the
following assumption.

Assumption 1. The initial conditions for (6) are set to be
such that for 0 ≤ µ ≤M ,

n∑
i=1

xi,µ(0) = 0 (8)

Remark 2. Note that Assumption 1 is trivially satisfied
provided that all agents initialise as xi,µ(0) = 0.

In this work we will show that if there exists gains kµ such
that (6) reaches a steady state, such state corresponds to
consensus towards the average of the reference signals. In
order to do that the following lemma is provided, which
states that the average of the µ - th element of the states
of all agents remains constant.

Lemma 3. Under Assumption 1, the following identity is
satisfied for (6), with 0 ≤ µ ≤M :

n∑
i=1

xi,µ(t) = 0, ∀t ≥ 0 (9)

Proof. First, let Xµ = [x1,µ, . . . , xn,µ]T be a vector
containing the µ-th state of all agents. Moreover define
fµ : R→ R as

fµ(z) = kµL
1+µ
M+1 dzc

M−µ
M+1 (10)

and Fµ : R` → R` by

Fµ(z) = [fµ(z1), . . . , fµ(z`)]
T .

where ` is the number of edges in X . Using this notation,
it can be verified that (6) can be rewritten as

Ẋµ = Xµ+1 −DFµ(DT y) , 0 ≤ µ < M

ẊM = −DFM (DT y)
(11)

where y = [y1, . . . , yn]T and D is any incidence matrix of
the communication graph X . Moreover, note that sµ =∑n
i=1 xi,µ(t) = 1TXµ. Furthermore,

ṡM = 1T ẊM = −1TDFM (DT y) = 0 (12)

Hence, the value of sM (t) = sM (0) = 0 remains constant
∀t ≥ 0. By induction, for 0 ≤ µ < M ,

ṡµ =1T Ẋµ

=1T (Xµ+1(t)−DFµ(DT y))

=1TXµ+1(0)− 1TDFµ(DT y) = 0

(13)

where Assumption 1 was used. Hence 1T sµ = 0, 0 ≤ µ ≤
M, ∀t ≥ 0 which concludes the proof.

The following theorem states that the steady state points
for the algorithm (6) are indeed consensus on the average
signal ū(t) and its derivatives.

Theorem 4. Under Assumption 1, given that (6) reaches
steady state, the steady state consensus values for (6) are
characterized by:

y1,µ = y2,µ = · · · = yn,µ =
1

n

n∑
i=1

u
(µ)
i (t) (14)

for 0 ≤ µ < M .

Proof. Denote with Yµ = [y1,µ, . . . , yn,µ]T as a vec-
tor containing the outputs of all agents, hence, y =
[y1, . . . , yn]T = Y0. From (11), steady state points y∗ of
(6) are characterized by DT y∗ = 0. Henceforth, since X
is connected, y∗ = α(t)1 which is consensus. However, by
definition y∗ = Y ∗

0 = u − X∗
0 . Thus, α(t) = 1

n1
Tu(t) −

1
n1

TX∗
0 = ū(t) since 1

n1
TX∗

0 = 0 by Lemma 3.

Moreover, when DT y∗ = 0 is achieved, (6) results in the
chain of integrators ẋ∗i,µ = x∗i,µ+1, 0 ≤ µ < M . In this way

Ẋµ = Xµ+1. Henceforth,

Y ∗
1 = u̇−X∗

1 = u̇− Ẋ∗
0

= u̇− d

dt
(u− Y ∗

0 ) = Ẏ ∗
0 = ˙̄u1

(15)

and by induction

Y ∗
µ = u(µ) −X∗

µ = u(µ) − Ẋ∗
µ−1

= u(µ) − d

dt

(
u(µ−1) − Y ∗

µ−1

)
= Ẏ ∗

µ−1 = ū(µ)1
(16)

which concludes the proof.

Remark 1. It is important to note that Theorem 4 assumes
that (6) reaches steady state. Conditions on the gains
kµ which guarantee that this is indeed the case will be
presented in a later work.

In order to summarize the implications of the protocol (6)
and Theorem 4, the following remarks are provided.

Remark 2. Note that according to Theorem 4, with an
appropriate selection of gains, protocol (6) manages to
solve Problem 1 since, through a distributed solution,
achieves zero steady-state error, provided that the (M+1)-
th derivative is bounded.

Remark 3. The values of u
(µ)
i (t) can be calculated inter-

nally at each agent by means of a differentiator as the one
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described in Section 2.3, hence the signals yi,µ in (7) are
easily obtained locally.

Remark 4. The proposed algorithm manages to track not
only ū(t) but also ū(µ)(t) up to a predefined maximum
derivative M by only sharing yi,0. Henceforth, in practice
the value of M may be different for each agent, according
to their needs and capabilities. However, sufficient condi-
tions for such scheme requires further research.

Remark 5. Although our result is inspired on the differen-
tiator shown in (1), the protocol (6) is not equivalent to it
in any way. Protocol (6) inherits some structure from (1)
but the main contribution of this new system is that by
construction, the steady state behaviour allows its usage
as a distributed average consensus algorithm.

Remark 6. If each agent is a robot with motion dynamics
of relative degree r, then in order apply a control law
to track a signal such as ū(t), its derivatives up to r
are needed. This can be achieved by using a classical
dynamic consensus algorithm and then applying an r-th
order differentiator to the estimate of ū and its derivatives.
However, this has two main drawbacks. First, a classical
dynamical consensus algorithm will obtain an estimate
of ū with a bounded error. Second, this error which
is time-varying in general will add additional error to
the differentiator estimate of the derivatives. Using our
approach, both problems are eliminated.

5. SIMULATIONS

Example 1. For the purpose of demonstrating the advan-
tages of the proposal, a simulation scenario is described
here with the following configuration. There are n = 5
agents with topology described by the following adjacency
matrix, or equivalently the incidence matrix

A =


0 0 1 0 0
0 0 0 1 0
1 0 0 1 1
0 1 1 0 0
0 0 1 0 0

 , D =


1 0 0 0
0 0 0 1
−1 −1 −1 0

0 0 1 −1
0 1 0 0


and shown in Figure 1. Each agent has internal reference
signals

u1(t) = 1.98 sin(0.18t)

u2(t) = 0.93 sin(1.86t)

u3(t) = 2.75 sin(0.40t)

u4(t) = 1.72 sin(1.25t)

u5(t) = 1.58 sin(1.12t)

(17)

and initial conditions xi,µ(0) = 0, ∀µ > 0 and xi,0(0) given
by 0.8, 0.15, 0.02, 0.07,−1.07 respectively. Note that this
initial conditions comply with Assumption 1. The gains kµ
are chosen as 1.87, 1.73, 0.90, 0.22 for all agents. Moreover,
M = 3 and L = 3.

The individual trajectories for this experiment are shown
in Figure 2, as well as the target ū(t) in red. Note that
all agent are able to track not only ū(t) but also ˙̄u(t), ¨̄u(t)
and ū(3)(t).

Example 2. Consider the same situation as in Example 1.
This scenario was simulated for the linear dynamic consen-
sus algorithm described in Section 3.1 and was compared
to the results of Example 1. The error between the outputs
of the algorithms for each agent and the value of ū is shown

1

5

3

2

4

Fig. 1. Graph X used for simulation Example 1
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Fig. 2. Resulting trajectories for the agents in the simu-
lation Example 1. The outputs yi = yi,0,yi,1 and yi,2
are shown as well as the target signals ū, ˙̄u, ¨̄u and ū(3)

in solid red for reference.

in Figure 3. The individual errors ei(t) = |yi(t)− ū(t)| are
shown as a figure of merit. As noted before, our proposal
manages to obtain zero-steady state error while the lineal
approach only guarantees the error to be bounded by some
constant.

Example 3. Consider the same scenario as in Example 1.
However, in this case, each agent doesn’t have access to the
reference signals ui(t) by themselves, but a noisy version
of them ûi(t) = ui(t) + ηi(t) where |ηi(t)| < ε = 0.1.
The corresponding trajectories of such scenario for both
our proposal and the linear scheme are shown in Figure 4.
Tracking does indeed have non-zero steady state error due
to the disturbances, achieving only a bounded error for
both schemes. Even with this disturbance, the individual
tracking from the agents, manage to maintain around
ū(t) within an accuracy band. Nonetheless, this band
depends only on the noise for our proposal, and not on
the input signals ui(t), as happens with the linear protocol.
Henceforth, it can be observed that the steady state error
is much bigger, of up to one order of magnitude, in the
linear scheme, when compared to ours.
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Fig. 3. Comparison of our proposal (top) with a typical
implementation of linear dynamical consensus (bot-
tom) for the same simulation scenario as described
in Example 2. Individual trajectories of the error
ei(t) = |yi(t) − ū(t)| for each agent, are shown as a
figure of merit.
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Fig. 4. Simulation results for for the scenario of Example
3. Individual trajectories for each agent, for protocols
(6) and (5), as well as ū(t) in solid red as a reference
(top). Individual tracking errors ei(t) for protocols (6)
and (5) (bottom).
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Fig. 5. Comparison of our proposal (top) with a typical
implementation of linear dynamical consensus (bot-
tom) for the same simulation scenario as described in
Example 4. The error ei(t) = |yi(t) − ū(t)| is shown
as a figure of merit.

Example 4. This same situation as in Example 1 was
simulated for both our approach and the linear dynamic
consensus algorithm described in Section 3.1 with the
difference that the input signals are now replaced by:

u1(t) = 1.98t2

u2(t) = 0.93t2

u3(t) = 2.75t2

u4(t) = 1.72t2

u5(t) = 1.58t2

(18)

In this case, the signals u̇i(t) are unbounded. However,
u(µ)(t), µ > 1 are bounded and the target ū(t) can be
tracked correctly by our proposal. The error between the
outputs of the algorithms for each agent and the value of ū
are shown in Figure 5. The individual errors ei(t) = |yi(t)−
ū(t)| are shown as a figure of merit. Note that the error
for the linear protocol increases linearly since u̇i(t) increase
linearly, without bound. On the other hand, our proposal
achieves zero steady-state error.

Remark 7. Comparison of high order derivatives in Ex-
amples 2,3 and 4 is not possible since the linear approach
described in Section 3.1 isn’t able to obtain them. How-
ever, high gain observers are a linear analogous to the
exact linear differentials and can be used similarly as in
the approach presented here, in order to achieve practical
consensus towards ū(t) and its derivatives. Nonetheless,
this method has the inherited drawback that the steady
state error of all the derivative estimates would be bounded
by a constant, being zero only if the gain is chosen to
be infinite, which is impractical (Vasiljevic and Khalil,
2008). Henceforth, the non-linear approach presented here,
is a more scalable and practical solution to the dynamical
consensus problem.
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6. CONCLUSIONS

In this article, an Exact Dynamic Consensus algorithm has
been presented, where the agents are able to maintain zero
steady-state consensus error, when tracking the average of
time-varying signals. The method works under reasonable
assumptions about the initial conditions and bounds of
certain high order derivatives of the reference signals. The
simulation scenario presented here, exposes the effective-
ness of our approach in addition to be compared to a
classical approach, where the advantage of our proposal
is clearly shown. As future work we consider to study
concrete stability properties of the proposed algorithm
such as finite time convergence. Moreover, analysis of the
algorithm under directed communication graphs, switch-
ing topologies and discrete communication schemes may
be studied.
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