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Abstract: This paper proposes model reference adaptive control (MRAC) to actively isolate
payloads from floor vibrations and direct disturbance forces. Adaptive feedforward control is
used to counteract measured disturbances, whereas an adaptive feedback controller suppresses
unmeasured disturbances using skyhook damping. In the considered rigid single degree of
freedom system, the ideal controller gains only depend on the stiffness and damping properties
of the suspension. The MRAC strategy is validated experimentally on a hard mounted vibration
isolation system. Attenuation of acceleration levels beyond −40 dB are obtained in a wide
frequency band 5−100 Hz and the root-mean-square (RMS) acceleration in the frequency region
of interest (0.1− 100 Hz) is reduced 32 times with respect to passive isolation.

Keywords: Model reference adaptive control, MRAC, active vibration isolation, high-precision
mechatronics, disturbance feedforward control

1. INTRODUCTION

Many high-precision machines need isolation from floor vi-
brations and disturbance forces acting directly on the ma-
chine (Fuller et al. (1996); Heertjes et al. (2005); Preumont
et al. (2007)). Examples include wafer steppers and scan-
ners, atomic force microscopes, and laser communication
systems. Passive vibration isolation (Rivin (2003)) benefits
from a high payload mass, while the support stiffness
introduces a trade-off between rejection of floor vibrations
(soft mount) or rejection of direct disturbance forces (hard
mount). Active vibration isolation control (AVIC) can
circumvent this trade-off and requires less payload mass
for effective vibration isolation.

A common AVIC strategy is skyhook damping (Karnopp,
1995), which uses absolute velocity feedback to add arti-
ficial damping. More advanced feedback control methods
specify the dynamic behaviour by a reference model or
manifold and match the actual dynamics to the reference
model using adaptive algorithms. Examples include adap-
tive sliding-mode control (ASMC) (Alleyne and Hedrick,
1995; Wang and Sinha, 1997) and model-reaching adaptive
control (Zuo et al., 2005). Alternative AVIC strategies
use feedforward of a measured disturbance source for
AVIC, mostly in combination with adaptive self-tuning
filters (van der Poel et al., 2007; Beijen et al., 2018a).
This strategy leads to better signal-to-noise (SNR) ratios
and preserved stability properties compared to feedback
control. In some cases feedback is added to improve per-
formance, but the controller parameters are not updated
in the adaptation law. Moreover, existing adaptation laws
require prior knowledge of the so-called feedforward trans-
mission path (Wesselink and Berkhoff, 2008), which is

the transfer function between the control signal and the
payload acceleration.

Adaptive feedforward and feedback AVIC have thus been
proposed, but a systematic method to simultaneously de-
sign and adapt feedforward and feedback control is lacking.
Therefore, the first and main contribution of this paper
is the formulation of the vibration isolation problem in
the model reference adaptive control (MRAC) context. In
this context, the desired plant behaviour is described by
a stable reference model, which is driven by a reference
input (Landau, 1974; Åström and Wittenmark, 2013). The
proposed reference model has zero response to measured
disturbances (feedforward), while it has high damping
to counteract unmeasured disturbances (feedback). This
provides a systematic method to simultaneously design
feedforward and feedback for wide-band disturbance re-
jection. The feedforward and feedback control are si-
multaneously adapted with state stability and parameter
boundedness guaranteed by Lyapunov’s stability theory
(Khalil and Grizzle, 2002). Moreover, it is shown that the
MRAC formulation does not require prior knowledge of the
feedforward transmission path. The second contribution
is a method to circumvent the experimentally observed
non persistent excitation of the feedback gains, based on
physics considerations. The third contribution is the ex-
perimental validation of the wide-band vibration isolation
on an experimental hard-mounted system.

The structure of this paper is as follows. A description
of the vibration isolation control objective, the MRAC
setting and the proposed reference model are presented
in Sec. 2. Sec. 3 considers the MRAC design. The design
is validated with experimental results as presented in Sec.
4. The conclusions are given in Sec. 5.
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2. PROBLEM DEFINITION

A simplified model of a vibration isolation system is shown
in Fig. 1. The payload mass m is suspended to the floor
by means of a spring with stiffness k and viscous damper
d. Fs(t) and Fd(t) are respectively the measured and
unmeasured direct disturbance forces, which are induced
by, e.g, acoustics, vibrating cables or accelerating stages.
Fa(t) is the control action for active vibration isolation
of the payload. The absolute positions of the floor and
payload are represented by x0(t) and x1(t) respectively.
Acceleration sensors measure the related accelerations of
the floor and payload, denoted by a0(t) and a1(t). The
state-space representation of the plant dynamics is

ẋp(t) = Apxp(t) + Bpu(t) + Epr(t) + Gpw(t) , (1)

with

xp(t) = [x1(t) ẋ1(t)]
T
, u(t) = Fa(t) ,

r(t) = [x0(t) ẋ0(t) Fs(t)]
T
, w(t) = Fd(t) ,

Ap =

[
0 1

−k/m −d/m

]
,

Bp = Gp =

[
0

1/m

]
, Ep =

[
0 0 0

k/m d/m 1/m

]
,

(2)

with plant state vector xp(t), control action u(t), unknown
disturbances w(t) and the reference vector r(t), which
contains the measured disturbances.

The objective of vibration isolation is to reduce the pay-
load accelerations a1(t) by controlling the actuator force
Fa(t). This is realised through feedforward control from
direct measurement of the floor acceleration a0(t) and the
measured disturbance force Fs(t) and feedback control us-
ing the measured payload acceleration a1(t) to compensate
for the unmeasured disturbance force Fd(t). The vibration
isolation performance is specified by the transmissibility
T and compliances Cs and Cd, which are defined as the
controlled transfer functions from respectively the floor
acceleration, measured disturbance and unmeasured dis-
turbance forces to the payload acceleration.

2.1 MRAC structure

In this paper a direct MRAC system with state feedback
is proposed for vibration isolation (Landau, 1974; Åström
and Wittenmark, 2013). The structure is shown in Fig.
2. In MRAC, the control action u(t) ∈ R is such that all

m x1

k dFa

x0

a1

a0

Con-
troller

Fs Fd

Fig. 1. Model of active vibration isolation system.
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Fig. 2. Direct MRAC structure with state feedback for the
considered vibration isolation setting.

signals in the closed-loop plant are bounded, and states
xp(t) ∈ R2 track states xm(t) ∈ R2 of a specified reference
model driven by the measured disturbances r(t). The
reference model is discussed in Sec. 2.2. MRAC requires
the reference model to be of the same system order as
the plant model, and all signals in xp(t) and r(t) to be
measured or estimated. Since w(t) contains unmeasured
disturbance force by definition, it cannot be taken into
account in the reference model. Kx ∈ R1×2 and Kr ∈
R1×3 are matrices containing the feedback and feedforward
controller gains. NSF denotes a residual noise shaping
filter, which is discussed in Sec. 3.2.

2.2 Reference model

The reference model specifies the desired behaviour of the
controlled system and thereby the desired transmissibility
T and the compliances Cs and Cd. The reference model
should be of the same order as the actual dynamics to allow
state tracking. A general second-order reference model is
shown in Fig. 3. Payload mm with position xm,1(t) is
connected to the vibrating floor x0(t) through spring km
and viscous damper dm. Measured direct disturbance force
Fs(t) acts on mm with multiplier fm. The unmeasured
disturbance w(t) = Fd is not included, since the response
of this disturbances cannot be determined. Furthermore, a
hypothetical (fixed) ’sky’ is added to which mm is attached
by means of skyhook spring ks and skyhook damper ds.
The state space reference of the plant dynamics is

ẋm(t) = Amxm(t) + Emr(t) , (3)

with

mm
xm,1

km dm

x0

ks ds

’sky’

Fs

fm

Fig. 3. Proposed ’skyhook’ reference model.
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xm(t) = [xm,1(t) ẋm,1(t)]
T
,

Am =

[
0 1

−(km + ks)/mm −(dm + ds)/mm

]
,

Em =

[
0 0 0

km/mm dm/mm fm/mm

]
.

(4)

The desired (closed-loop) transmissibility and compliance
are defined by the following parameter selection for the
reference model.

Proposition 1. Taking dm = 0, km = 0 and fm = 0 makes
all elements of Em zero and thereby the transmissibility
T and compliance Cs are zero. This isolates payload m
from all measured disturbances. The absence of any force
acting on the payload results in xm(t) = 0, which means
the payload is in rest. As a result, the differential equation
(3) does not have to be solved online, which reduces com-
putational cost. Furthermore, xm(t) = 0 holds, regardless
of the remaining parameters ks, ds and mm. Thereby, any
finite parameter value can be assigned to these parameters,
even the (unknown) plant parameters.

The parameters from proposition 1 eliminate the effect
of the measured disturbances, i.e., T and Cs are zero,
which effectively introduces disturbance feedforward con-
trol in MRAC. The remaining parameters ks, ds and mm

define the compliance Cd, effectively introducing skyhook
damping and stiffness. This compliance is low by the high
passive stiffness of the hard mounts in combination with a
high skyhook damping provided by the feedback controller.
In view of Proposition 1, this can be realised by the
selection of unknown parameters mm = m and ks = k,
while adding a defined skyhook damping ds.

3. DESIGN OF MRAC

This section considers the model matching controller and
the adaptation law for the proposed MRAC. After this,
some implementation issues and related performance lim-
itations are discussed.

3.1 Model matching

The controller with feedforward of the measured distur-
bances and state-feedback reads

u(t) = K∗
xxp(t) + K∗

rr(t) , (5)

where K∗
x ∈ R1×2, K∗

r ∈ R1×3 are the ideal control
gain matrices of the feedback and feedforward path, re-
spectively. These should ensure matching of the plant
and reference model. Upon substitution of (5) in (1), the
following closed-loop plant is obtained:

ẋp(t) = (Ap + BpK
∗
x)xp(t) + (Ep + BpK

∗
r ) r(t) . (6)

It can be derived straightforwardly, that the closed-loop
plant (6) matches the reference model (3) with the follow-
ing ideal controller gains

K∗
x = [0 ,−ds + d , 0 , 0] , (7a)

K∗
r = [−k , −d , −1] . (7b)

The feedback control gains only includes a negative feed-
back term equal to the reference model’s damping minus
the real damping to obtain the reference skyhook damping.
No stiffness term is obtained, because the stiffness of the
reference model is taken equal to the real stiffness. It can
be shown that the dynamics in (4) with the feedback in
(7) is positive real (sensor and actuator are collocated),
providing high stability margins to cope with parasitic
dynamics (see Sec. 3.3). The feedforward control gains
for model matching only requires knowledge of the funda-
mental stiffness and damping properties of the vibration
isolator. Furthermore, the disturbance force Fs(t) in r(t)
is directly compensated by third element of K∗

r being
−1, which requires no knowledge of plant parameters.
The first two terms of the feedforward control gains in
(7b) are identical to the Wiener solution for disturbance
feedforward control obtained in Beijen et al. (2018a).

3.2 Adaptation law

The controller in (5) requires the unknown parameters k
and d to calculate the gains in (7) for perfect cancellation
of the measured disturbances. Therefore, these gains are
obtained though online adaptation. MRAC provides a
method to achieve concurrent parameter adaptation and
state-tracking. The state tracking error between reference
model and plant is defined by es(t) = xm(t)− xp(t) ∈ R2

and the parameter errors are defined as K̂x(t) = Kx(t)−
K∗

x ∈ R1×2, K̂r(t) = Kr(t)−K∗
r ∈ R1×3.

The adaptation law and convergence analysis are in line
with Åström and Wittenmark (2013) and presented with-
out details. The adaptation rule is defined as

˙̂K
T

x = K̇T
x = Γxxpe

T
s P̄ sgn(bp) ,

˙̂K
T

r = K̇T
r = Γrre

T
s P̄ sgn(bp) ,

(8)

where Γx = ΓT
x > 0 ∈ R2×2 and Γr = ΓT

r > 0 ∈ R3×3 are
adaptation gain matrices. P̄ is the bottom row of P with
P = P T > 0 ∈ R2×2 satisfying the Lyapunov equation
PAm + AT

mP = −Q for some Q = QT > 0 ∈ R2×2. The
variable bp ∈ R is the only non-zero element of Bp, which
has a positive sign considering (2).

Consider the following Lyapunov function

V
(
es, K̂x, K̂r

)
= eTs Pes

+ |bp|
(
K̂xΓ−1

x K̂T
x

)
+ |bp|

(
K̂rΓ

−1
r K̂T

r

)
> 0 , (9)

where the argument (t) is left out for the sake of notational

simplicity. It can be shown that V̇ = −eTs Qes ≤ 0 for the
adaptation law (8), which implies that the adaptive control

system is globally stable and thus es(t), K̂x(t) and K̂r(t)
are uniformly bounded. Furthermore, invoking Barbalat’s
lemma, it can be shown that the state tracking error es(t)

is asymptotically stable, because V̇ is negative semi-definite
and uniformly continuous over time. The latter is the result
of a bounded V̈ due to boundedness of es(t) and xm(t)
and because the measured signals r(t) are assumed to be
bounded. Although es(t) is asymptotically stable, it is not
guaranteed that Kx(t)→K∗

x and Kr(t)→K∗
r . This issue

has a consequence for the feedback adaptation as will be
discussed in Sec. 3.4.
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The adaptive algorithm does not impose conditions on the
initial values of the gain matrices and it requires no prior
knowledge on the dynamic parameters of the feedforward
transmission path. This is in contrast to the adaptive
algorithms of (Beijen et al., 2018a; Beijen and Hakvoort,
2019).

The adaptation laws in (8) require signals xp(t), r(t) and
es(t), which are contaminated with measurement noise.
Furthermore, stability and convergence might be affected
by parasitic dynamics. These effects are reduced by a
residual noise shaping filter (NSF in Fig. 2) that adds
frequency weighting to the signals by filtering out the
unwanted low and high frequency signal content. The
NSF is adopted from Beijen et al. (2018a). The NSF is
implemented as a 3rd-order Butterworth band-pass filter.
The pass-band is related to the performance limitations as
discussed in (see Sec. 3.3).

3.3 Performance limits in practice

In theory, the developed MRAC system results in perfect
cancellation of floor vibrations (T is zero) and measured
direct disturbances (Cs is zero), and a highly damped
Cd(s) by a high ds. However, this performance cannot
realised in practice due to several limitations introduced
by implementation on the experimental setup, which is
detailed in Sec. 4.

Weak integrators Inputs r(t) and xp(t) of the controller
in (5) contain position and velocity of the vibrating floor
and payload, see (2). These are reconstructed from the
measured accelerations a0(t) and a1(t) by integration.
Actuator saturation is prevented using weak integrators
as proposed by Beijen et al. (2018a). Fifth order weak-
integrators with a cut-off at α = 2× 2π rad/s are used.

Discretisation of the control system The control system
is implemented on a discrete control system. The weak
integrators of the controller are discretised using the
zero-order-hold (ZOH) method. The effect is analysed
by assuming a perfect ZOH-filter transfer function with
sampling time ts = 1/6400 s.

Sensor filtering The experimental setup is equipped
with sensor signal conditioners that contain 2nd order
Butterworth band-pass filters to suppress sensor noise,
parasitic sensor dynamics and aliasing effects. The pass
band is 0.1 − 3000 Hz. A similar filter is assumed for the
sensor of the actuator force Fs(t).

Actuator dynamics The actuator’s induction induces a
pole at 331 Hz (Tjepkema, 2012). This dynamics is not
included in the plant model, because the pole is well
beyond the frequency range of interest.

These effects add parasitic dynamics to the closed loop
and thereby limit performance, which unavoidable by the
waterbed effect (Beijen et al., 2018b). Fig. 4 shows the
effect on T (s) for a model of the expected dynamics of
the experimental setup and the model matching control
gains from (7). The weak integrators severely limit the
performance of T (s) below α. The performance beyond
α up to the actuator pole is limited by sensor filtering
and discretisation to a reduction of −40 dB. The actuator

10 -1 10 0 10 1 10 2 10 3
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Fig. 4. T (s) of the modelled vibration isolation system
with m = 3.5 kg, k = 80 kN/m and d = 80 Ns/m
and skyhook damping ds = 3580 Ns/m and model
matching control gains. The graphs show the passive
and active T (s) after subsequent addition of weak
integrators (MRC1), sensor filtering and discretisation
(MRC2) and the actuator pole (MRC3).

dynamics severely limits the performance beyond to the
actuator pole. Similarly it can be shown that the weak
integrators have no effect on Cs(s), while the other effects
limit performance at high frequencies. The additional
dynamics have little effect on Cd(s). In simulation it is
observed that the control gains do not adapt to the model
matching values due to the parasitic dynamics. To reduce
this effect, the pass-band of the NSF is set to 10− 100 Hz,
being well above the weak-integrator cut-off frequency and
below the actuator pole.

3.4 Feedback updating modification

In initial simulation results it was found that the state-
tracking error and the feedforward gains Kr(t) converge,
but the feedback gains Kx(t) did not converge and high
feedback gains are obtained. Note that convergence of the
feedback gains was not proven in Sec. 3.2. This result can
be explained from the fact that in the reference model
all measured disturbances r(t) are perfectly cancelled. In
absence of any unmeasured disturbance w(t), the states
of the model and real plant match with the correct
feedforward gains for any value of ks and ds because
all states are zero. In other words, these parameters are
insufficiently excited. In the presence of any unmeasured
disturbance, the states still cannot be matched, because
the reference plant is not excited by the unmeasured
disturbance and high feedback gains are obtained to reduce
the motion of the actual system. In experiments the high
feedback gains even result in instabilities due to parasitic
high-frequency dynamics.

To circumvent this problem, it is proposed to exploit
the physics-based knowledge in the relation between the
model-matching feedback and the feedforward gains from
(7). The feedback gain is kept zero, except for the second
element, which is updated each time step using the de-
sired skyhook damping minus the second element of the
feedforward gain.
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Fig. 5. (a) Experimental setup (Tjepkema (2012)), with; (1) payload; (2) voice coil motors (VCMs); (3) payload platform;
(4) floor platform; (5) payload accelerometers; and (6) piezo stacks. The floor accelerometers, located underneath
(4), are not visible. (b) Schematic picture with the payload platform in read. Also the floor sensors are visible.

4. RESULTS

The proposed MRAC scheme is validated on the experi-
mental setup shown in Fig. 5a. The payload is connected
by wire flexures to six voice coil motors (VCMs) in a Stew-
art platform configuration. Elastic element provide linear
guidance of the VCMs. This elastic suspension introduces
eigenfrequencies between 15 and 45 Hz as measured an
modelled by Tjepkema (2012). The Stewart platform is
mounted on a floor platform that can be excited by three
piezo stacks. Six accelerometers placed on the payload and
six accelerometers placed on the floor platform. The con-
trol system is implemented on a dSPACE system running
at a sampling frequency of fs = 6400 Hz. No disturbance
forces Fs(t) are measured. Unmeasured disturbance forces
Fd(t) due to acoustics and cabling are considered negli-
gible. The acceleration signals are fed through the earlier
mentioned signal conditioners before entering the control
system. Only motion in the vertical direction is considered
in this paper.

The reference model parameters are selected as proposed
in Sec. 2.2 with skyhook damping set to ds = 3580 Ns/m.

Q = diag(4.75 × 104, 2.2 × 103) such that P̄ ≈ [1, 1]
T

for the expected plant parameters. The adaptation gain
matrix of the feedforward path is defined by Γr =
diag

(
1× 1015, 6× 1010, 0

)
. The third entry is not adapted

because no disturbance forces are measured. These values
are chosen to get an acceptable convergence rate of Kr(t)
according to (8) for the expected size of the parameters
and signals and some tuning. The feedback gain Kx(t)
is updated indirectly as proposed in Sec. 3.4. The first
two entries of Kr(t) are initially set to zero. Three filtered
pseudo-binary-random-sequence (PRBS) signals are fed to
the piezo stacks to approximately provide the ASML floor
vibration specification of an industrial environment with
10−7 (m/s2)2/Hz at low frequencies and 10−8 (m/s2)2/Hz
at high frequencies (Schmidt et al., 2014).

Fig. 6 shows the adaptation of the first two components of
the feedforward gain Kr(t). Note the third component is
not updated and the feedback gain is updated indirectly.
The parameters converge in approximately 20 s.

Fig. 7 shows the transmissibility plot obtained from exper-
iments with control gains fixed after convergence. A broad
banded reduction of T up to −40 dB is visible between 5
and 100 Hz, which is in line with the expectation in Fig. 4.
This corresponds to a reduction of the acceleration levels
of 100 times with respect to the passive system. Below 5 Hz
and above 200 Hz the MRAC controlled system is outper-
formed by the passive system by the weak integrators and
actuator poles respectively.

0 20 40 60 80 100

Time (s)

-6
-4
-2
0
2

K
r1

10
4

K
r1K

0 20 40 60 80 100

Time (s)

-100

-50

0

K
r2

K
r2K

Fig. 6. Adaptation of Kr,1(t) and Kr,2(t).
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Fig. 7. Measured transmissibility in vertical direction of
the experimental setup. The blue dashed line shows
the passive transmissibility, and the black solid line
the active transmissibility.
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Fig. 8. Measured cumulative PSD of the payload accelera-
tion for the passive (grey) and active (black) system.

Fig. 8 shows the measured cumulative PSD from 0.1 Hz
of the payload acceleration for the passive and MRAC
controlled system. Compared to the passive system, a
significant performance improvement is visible beyond
2 Hz when MRAC is applied. The increased power up
to 2 Hz is due to the weak integrators of the controller.
The cumulative root-mean-square (RMS) acceleration up
to 100 Hz is found to be RMSp = 8.32 × 10−3 m/s2, for
the passive system and RMSa = 2.62× 10−4 m/s2 for the
MRAC controlled system. The RMS acceleration level in
the frequency band of interest is thus reduced 32 times.

5. CONCLUSIONS

This paper presents a model reference adaptive control
(MRAC) strategy to achieve broad banded vibration isola-
tion. A reference model is proposed with skyhook damping
and no effect of the measured disturbances. The model
matching controller is a disturbance feedforward controller
with skyhook feedback damping. The control gains only
depend on the stiffness and damping of the support. A Lya-
punov based adaptive algorithm simultaneously updates
the feedforward and feedback controller and ensures state
matching and bounded parameters. No prior knowledge on
the stiffness and damping of the support is needed. The
feedback parameters does not converge due to insufficient
excitation. Based on physical insight, the feedback gains
are updated using the adapting feedforward gains, which
are excited by the floor vibrations. The MRAC system is
validated experimentally on a hard mount isolation sys-
tem. A reduction up to −40 dB is observed for frequencies
between 5 and 100 Hz. Furthermore, the root-mean-square
(RMS) acceleration of the MRAC controlled system is
32 times lower than the passive RMS acceleration in the
0.1− 100 Hz band.

Future work will investigate the observation that internal
modes of the payload do not affect convergence and
performance. Furthermore the extension to more degrees
of freedom will be considered. Further investigation will
also consider how to combine the well-defined convergence
rate of RLS (Beijen and Hakvoort, 2019) without the need
to know the secondary path as with MRAC.
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