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Abstract: The Guaranteed Error Machine (GEM) is a classification algorithm that allows
the user to set a-priori (i.e., before data are observed) an upper bound on the probability of
error. Due to its strong statistical guarantees, GEM is of particular interest for safety critical
applications in control engineering. Empirical studies have suggested that a pool of GEM
classifiers can be combined in a majority voting scheme to boost the individual performances.
In this paper, we investigate the possibility of keeping the probability of error under control
in the absence of extra validation or test sets. In particular, we consider situations where the
classifiers in the pool may have different guarantees on the probability of error, for which we
propose a data-dependent weighted majority voting scheme. The preliminary results presented
in this paper are very general and apply in principle to any weighted majority voting scheme
involving individual classifiers that come with statistical guarantees, in the spirit of Probably
Approximately Correct (PAC) learning.
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1. INTRODUCTION

A binary classifier is a function ŷ : Rk → {0, 1}; in
supervised classification the classifier is trained (i.e., it is
suitably chosen by an algorithm) from a set of previously
recorded pairs (xi, yi), where xi ∈ Rk are vectors of
features (e.g., health indicators extracted from a blood
analysis; measures of a signal that enters a complex
system; etc.) and yi ∈ {0, 1} are labels denoting the
corresponding class (e.g., healthy/ill in the case of a
blood analysis; bounded/unbounded in the case of a system
response). When fed with a new vector of features x the
classifier ŷ(·) provides an automated prediction ŷ(x) for
the corresponding y. An important quantity to assess the
quality of the classifier is the probability of error PE(ŷ),
that is, the probability of the event {ŷ(x) 6= y}.
The Guaranteed Error Machine (GEM) is an algorithm
to construct classifiers ŷ(·) that was proposed in Campi
[2010] and has a built-in mechanism to keep PE(ŷ) strictly
under control, which makes it particularly attractive for
safety critical applications (see e.g. Baronio et al. [2017])
and for control systems engineering when a quantitative
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assessment of sample-based control schemes is required
(see e.g. Manganini et al. [2015]).

The bound on the error is achieved by adopting a ternary
output {0, 1, unknown}, so that the classifier can refrain
from classification: in the case of an abstention, the classi-
fier makes no error irrespective of the value of y. The key
idea of GEM is that the complexity of a classifier can be
tuned by the user by selecting the value of a parameter
k. A large value of k leads to classifiers that more often
return a 0 or 1 value, but these classifiers misclassify
more frequently, whereas smaller values of k correspond
to more risk-averse classifiers that return unknown with
higher probability. An alternative use of GEM, that has
been exploited and studied in Carè et al. [2018], is that of
constructing a set of GEM classifiers for increasing values
of k, and then selecting the one with the smallest value

of k, say k̂, for which no unknowns are returned. The
probability of error of the resulting classifier cannot be

bounded a-priori, but the connection between k̂ and PE(ŷ)

is so strong that the observed value of k̂ comes with an
informative confidence interval for PE(ŷ). Such confidence
interval is easily computed without resorting to any extra
validation or test set, so that GEM classifiers are said to
be “self-testing classifiers”.

The construction of GEM comes with some degrees of
freedom. For example, the construction starts from a data
point (x0, y0) that is either known a-priori or randomly
chosen from the available data set. A reasonable approach
to reduce the arbitrariness of the choice is to consider all
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the possible constructions simultaneously and then build
a classifier based on majority voting among the available
classifiers (which are called the base classifiers).

Although experimental studies in Manganini et al. [2015]
suggest that majority voting classification schemes can
actually boost the performance of GEM-like classifiers,
it remains an open problem how to translate theoretical
guarantees on the base classifiers to guarantees on the
majority-voting classifier in such a way that they remain
valid and practically meaningful: this is the problem that
motivates our paper. Remarkably, GEM motivated our
studies because of the tightness and practical usefulness
of the resulting bounds, but, as we shall see, the results of
this paper can be applied directly to any other type of base
classifiers coming with confidence intervals on their prob-
ability of error in the spirit of Probably Approximately
Correct (PAC) learning, see e.g. Graepel et al. [2005].

1.1 Contribution and structure of the paper

In Section 2 we introduce the mathematical framework
of this paper and we observe that, at least in principle,
majority voting schemes can worsen the performance with
respect to the base classifiers. The conclusion is that one
should aim at error estimation procedures that are able
to detect whether or not the specific situation at hand is
favourable to majority voting. We move some preliminary
steps in this direction by connecting the error of the
majority voting classifier to an agreement parameter.
Section 3 is the main section of this paper, where we
consider majority voting, and weighted majority voting,
among base classifiers that are individually guaranteed to
satisfy certain error thresholds at a given confidence level.
We show the interesting fact that the proliferation of base
classifiers does not necessarily lead to a loss of control on
the probability of error. This is true even if the weights
assigned to the base classifiers depend on the training set,
under the condition that the voting scheme is adequately
constrained. Conclusions are drawn in Section 4.

1.2 Existing literature and related research

The combination of classifiers into a voting-based classifi-
cation scheme has a long tradition, and the literature on
the topic is vast, in the wake of the celebrated gradient
boosting machines and random forests, see Zhu [2015] for
a review. On the theoretical side, we mention here the
the notable studies of Schapire et al. [1998], Schapire and
Freund [2012], where the generalization properties of ma-
jority voting schemes are related to the concept of margin
in a statistical learning framework, and refer to Ruta and
Gabrys [2002], Kuncheva et al. [2003], Kuncheva [2014]
for studies on the best and worst cases. It is also worth
observing that together with celebrated successes there
came misconceptions: as it was noted in Vardeman and
Morris [2013], the appeal to the Condorcet’s Jury Theorem
is a common but very weak and often misplaced argument
to support voting decision schemes.

Our approach in this paper, similarly to Schapire et al.
[1998] and differently from Ruta and Gabrys [2002], as-
sumes that no validation set is available. On the other
hand, differently from Schapire et al. [1998] and any other

work that we are aware of, our focus is on transforming the
existing guarantees for the base classifiers into guarantees
for the voting classification scheme. At a conceptual level,
the approach in our Section 3 has points in common with
the so-called PAC-Bayes approaches, where a Kullback-
Leibler divergence is used to penalise the departure from a
reference distribution (which is called “prior” in the PAC-
Bayes terminology). However, to apply the PAC-Bayes
bounds of Lacasse et al. [2007] and Germain et al. [2015]
the user needs either a validation set or the knowledge of
the mechanism that generates the classifiers (“reconstruc-
tion function”). With our approach, instead, the user needs
just to know the error thresholds for the base classifiers
and their confidence level.

2. PRELIMINARY DEFINITIONS AND RESULTS

Let ∆ = X × Y denote the set of all possible data points
(x, y), where x is the feature vector and y is a binary
label, i.e. y ∈ {0, 1} (a data point (x, y) will be denoted in
compact form as δ). We assume that ∆ is equipped with
a probability measure P∆ unknown to the user.

A training set T ∈ ∆N is a random sample of data points
δ(1), ..., δ(N), that we assume to be drawn according to the
product measure PN∆ (i.i.d. assumption).

A classifier ŷ is a map from X to {0, 1, unknown}, and a
classification algorithm A is a map from training sets T to
classifiers. In the following we will consider an ensemble
of classification algorithms {Ac}, indexed by c ∈ C. Most
often, C will be a finite set, C = {1, 2, ...,M}, but it can
also be an infinite set. The classifier obtained by applying
the classification scheme Ac to T will be denoted by ŷc,
and the dependence of ŷc from T will be left implicit.
We define the error function E(δ, c) as follows:

E(δ, c) =

{
0, if ŷc(x) = y or ŷc(x) = unknown;

1, if ŷc(x) ∈ {0, 1} and ŷc(x) 6= y.

The probability of error of a classifier ŷc is formally defined
as

PE(ŷc) = E∆ [E(δ, c)] =

∫
∆

E(δ, c) dP∆(δ).

In practice, it is seldom the case that the classifiers ŷc,
c ∈ C, agree unanimously on the label to assign to a
feature vector x. Hence, to let a qualified majority emerge
from the labels ŷc(x), c ∈ C, and produce an unambiguous
answer in {0, 1}, for any given x let us introduce the
partition C = S0(x) ∪ S1(x) ∪ Su(x), where S0(x) = {c ∈
C : ŷc(x) = 0}, S1(x) = {c ∈ C : ŷc(x) = 1}, and Su(x) =
{c ∈ C : ŷc(x) = unknown}. Furthermore, let us introduce
a probability measure PC on C. PC is always the same
irrespective of x and it is used to establish the majority
in a more general sense than the usual, “democratic” one
(the latter is recovered when PC is uniform). We define
the voting majority to be

S∗(x) =

{
S0(x), if PC(S0(x)) ≥ PC(S1(x)),

S1(x), if PC(S0(x)) < PC(S1(x)),
(1)

and the voting minority as S−(x) = C − (S∗(x) ∪ Su(x)).
The majority classifier is now defined as follows.

Definition 1. (Majority classifier). For all x,

ŷ∗(x) =

{
0, if PC(S0(x)) ≥ PC(S1(x)),

1, if PC(S0(x)) < PC(S1(x)). ?
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The definition yields a well-posed binary classifier irrespec-
tive of PC(Su(x)), and takes into account, so to say, only
the “actual voters”. The fact that, in the case of a tie, we
have assigned ŷ∗(x) = 0 to be the voting majority’s label
(see equation (1)) is just for simplicity, and variations on
the theme are clearly possible.

So far, the measure PC should have been thought of as a
weighing tool to compute the majority. Now PC will be
used to construct a peculiar, non-deterministic classifier
that when asked to classify a point x first samples an index
c from C according to PC and then outputs the label ŷc(x).
Such a classifier is known in the literature under the name
of “Gibbs classifier”.

Definition 2. (Gibbs classifier) We denote by ỹC the ran-
dom map x 7→ ŷc(x), where c is a random variable dis-
tributed according to PC . ?

The role of the Gibbs classifier ŷC in this paper will be
only instrumental to bounding PE(ŷ∗). Observing that the
Gibbs classifier misclassifies a given point δ with prob-
ability EC [E(δ, c)], and given that δ and c are indepen-
dent since c is always extracted from the same PC for
every x, its probability of error is naturally defined as
PE(ỹC) = E∆ [EC [E(δ, c)]]. By an application of Fubini’s
theorem 1 , we obtain the following useful equivalence:

PE(ỹC) = EC [E∆ [E(δ, c)]] = EC [PE(ŷc)] . (2)

The following theorem relates PE(ŷ∗) and PE(ỹC).

Theorem 1. Define A = infx∈X PC(S∗(x)). It holds that

PE(ŷ∗) ≤
1

A
· PE(ỹC).

Proof. Letting 1{E} be the indicator function of the
event E, we have

PE(ỹC) ≥ E∆ [EC [E(δ, c) 1{c ∈ S∗(x)}]] . (3)

Note that, whenever S∗(x) is non-empty, ŷ∗(x) = ŷc(x) for
all c ∈ S∗(x); let c∗x be any element of S∗(x). Then, (3) is
equal to

E∆ [EC [E(δ, c∗x) 1{c ∈ S∗(x)}]]
= E∆ [E(δ, c∗x) EC [1{c ∈ S∗(x)}]]

≥ E∆

[
E(δ, c∗x) inf

x∈X
EC [1{c ∈ S∗(x)}]

]
= PE(ŷ∗) inf

x∈X
PC(S∗(x)) = PE(ŷ∗) A.

�

The term A is an “agreement index” that quantifies
the size of the voting majority in the worst case. The
crucial fact for the theory here developed is that, since
the distribution PC is chosen by the user, such index is
(at least in principle) an observable quantity. In the rest
of the paper, the observable quantity A will allow us to
express our results on the error of the majority classifier in
a concise way. However, its global nature (A is computed as
an infimum over the whole X) can be limiting in practice:
the next two theorems, which can be proven similarly as
Theorem 1, stand as alternative building blocks for a more
practical approach where guarantees on the probability of
error are based on the agreement of the base classifiers at
a given point x.
1 Throughout the paper we assume that the error function is
measurable over ∆×C with respect to the product measure P∆×PC .

Theorem 2. Define Ax = PC(S∗(x)) and let a ∈ (0, 1]. It
holds that

P∆{ŷ∗(x) 6= y ∧Ax ≥ a} ≤
1

a
· PE(ỹC).

?

Theorem 3. Consider the case where the base classifiers
deliver no unknowns. Assume that P∆{Ax ∈ [a, ā]} ≥ ν,
with 0.5 < a ≤ ā ≤ 1. Then,

P∆{ŷ∗(x) 6= y ∧Ax ∈ [a, ā]} ≤ PE(ỹC)− (1− ā)ν

2a− 1
.

?

Going back to Theorem 1, we remark that, without re-
strictions on the probability with which ŷc(x) = unknown,
the misclassification probability can worsen to an arbitrary
extent with respect to the performance of the individual
classifiers. This is not surprising as we are forcing the
majority classifier to be a binary classifier, so that for
values of x such that almost all the classifiers are uncertain,
a decision is made based on the voice of a small subset of
them that could always be wrong. We remark also that, if
there are no unknowns in the set {ŷc(x): c ∈ C, x ∈ X},
then we necessarily have A ≥ 1

2 , from which the well-
known bound PE(ŷ∗) ≤ 2PE(ỹC) is obtained. It can be
shown that this bound is tight and there are situations
where the performance of the majority worsens with re-
spect to the performance of any individual classifier. Such
possibility calls for mathematical results that enable the
user to detect whether or not the situation at hand is
favourable to majority voting.

3. A POOL OF GUARANTEED CLASSIFIERS

We start by considering the situation where the probability
of error of each classifier ŷc is bounded by a given εc. From
equation (2) and Theorem 1 it follows immediately that

PE(ŷ∗) ≤
1

A
EC [εc] . (4)

This simple relation suggests that, when some classifiers
come with small εc while others come with a large εc,
it might be advisable to concentrate the distribution PC ,
according to which the majority is computed, on the best
guaranteed classifiers. 2 For example, we might want to
define PC so that it concentrates on the classifier with
minimum εc, say ε̄; then, assuming there is a unique such
classifier and there are no unknowns, the threshold given
by the right-hand side of (4) becomes equal to ε̄, being
A = 1 by construction.

The possibility of choosing PC according to the thresholds
εc is complicated by the fact that, in real-life machine
learning, the values of εc are typically stochastic estimates
that are not valid with absolute certainty but only with
some confidence. In particular, we study here the situation
where the εc are functions of the training set T, as it is
expressed by the following condition.

Condition 1. For all c ∈ C, there exists a function εc :
∆N → [0, 1] such that

PN∆{PE(ŷc) > εc(T)} ≤ β. (5)
2 This reminds us of a famous quote from Cicero’s: Et vero in
dissensione civili, cum boni plus quam multi valent, expendendos
cives, non numerandos puto. (De re publica VI.1, ed. J.G.F. Powell.)
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Remark 1. Clearly, Condition 1 can be trivially met by
any classification scheme that divides the training set
into two parts and uses only the first part to train the
classifier, while the second part is used to estimate the
probability of error at a sufficient confidence level. More
interestingly, Condition 1 is met, with values of εc and
β that are often satisfactory, by a modified version of
the GEM algorithm of Campi [2010], where the a-priori
selected complexity parameter k is increased by 1 until
there are no more unknowns 3 , see Carè et al. [2018] for
an application of this idea. Moreover, it is satisfied by
classification schemes to which the more general theory
of the Wait-and-Judge scenario approach (Campi and
Garatti [2018], Carè et al. [2019]) can be applied to relate
probability of error and complexity of the classifier. 4 Also
compression schemes, see Graepel et al. [2005], Margellos
et al. [2015], Campi et al. [2018], satisfy such a condition,
although the resulting bounds are often more conservative
and less applicable than with GEM. In all of these cases,
the dependence of the error threshold εc on T is typically

reduced to the dependence on a complexity parameter k̂
that can be easily computed from T. ?

For short, we will denote by ε̂c the value εc(T). We now
assume that PC is a T-dependent probability measure
that the user can choose at will, for example, but not
necessarily, by using the information carried by the values
of ε̂c.

When C is finite, the following proposition can be often
used to ensure that (4) holds true with high confidence

Proposition 1. Under Condition 1, if C is finite, C =
{1, ...,M}, then

PN∆
{

PE(ŷ∗) ≤
1

A
EC [ε̂c]

}
≥ 1−Mβ. (6)

Proof. Clearly, PN∆{PE(ŷc) ≤ EC [ε̂c]} ≥ PN∆{PE(ŷc) ≤
ε̂c ∀c ∈ C} = 1 − PN∆{∃c ∈ C s.t. PE(ŷc) > ε̂c}. By a
simple union bound argument, PN∆{∃c ∈ C s.t. PE(ŷc) >

ε̂c} ≤
∑M
c=1 PN∆{PE(ŷc) > ε̂c} and the claim follows by

Condition 1. �

However, for a large number M of classifiers, the confi-
dence value 1 − Mβ ensured by (6) becomes easily too
low, and indeed uninformative.

The next result shows that, by enforcing a constraint on
the way in which PC can vary as a function of T, it is still
3 We emphasise the case where there are no unknowns because,
in this case, the fact that A ≥ 1/2 impedes the deterioration of
our bounds. However, the results of this section are valid also in
the presence of unknowns. Interestingly, by allowing unknowns it
is possible to satisfy Condition 1 with a function εc(T) that is
constant with respect to T, by resorting to GEM in its original form,
Campi [2010], or by stopping the construction of the algorithm Carè
et al. [2018] after a predetermined number of steps. Clearly, with
unknowns, the values of εc provide no immediate indication about
how to unbalance PC .
4 We notice the subtle fact that, with GEM, iteratively increasing

k by one until a k̂ is reached such that there are no unknowns is
not equivalent to setting k = ∞ and then counting the number of
actual support points. While in the first case guarantees for the final
classifier can be obtained by a simple union bound for all the possible

values of k̂, in the latter case one should resort to the Wait-and-Judge
theory, see Appendix 1 in Campi and Garatti [2018].

possible to keep under control the probability of error of
the majority even when C is too large for (6) to be useful.
In particular, the following theorem shows that if PC is
prevented from concentrating too much (as compared to
a reference distribution P̄C), then meaningful confidence
levels can be achieved also when C is infinite.

Theorem 4. Assume that there exists a probability mea-
sure P̄C that does not depend on T and a κ̄ > 0 such that
PC(E) ≤ κ̄P̄C(E) for all the measurable sets E ⊆ X and
every T. Then, under Condition 1, for % > 0 it holds that

PN∆
{

PE(ŷ∗) ≤
1

A
(EC [ε̂c] + %)

}
≥ 1− κ̄

%
· β. (7)

Proof. By Markov’s inequality it holds that
PN∆{PE(ỹC)−EC [ε̂c] > %} ≤ 1

%E∆N [(PE(ỹC)− EC [ε̂c])
+],

where (x)+ = max{x, 0}. By (2) and by Jensen’s inequal-
ity ((·)+ is convex), we get 1

%E∆N [(PE(ỹC)− EC [ε̂c])
+] ≤

1
%E∆N [EC [(PE(ŷc)− ε̂c)+]]. Bounding the T-dependent

PC with the T-independent κ̄P̄C and denoting ĒC [·] the
expectation with respect to P̄C , we get

1

%
E∆N

[
EC
[
(PE(ŷc)− ε̂c)+

]]
≤ 1

%
E∆N

[
κ̄ĒC

[
(PE(ŷc)− ε̂c)+)

]]
=
κ̄

%
ĒC
[
E∆N

[
(PE(ŷc)− ε̂c)+)

]]
[by using PE(ŷc)− ε̂c ≤ 1]

≤ κ̄

%
ĒC
[
PN∆{PE(ŷc) > ε̂c}

]
≤ κ̄

%
β,

where the last inequality is by Condition 1. Then, Theorem
1 can be invoked to claim that PE(ŷ∗) ≤ 1

A (EC [ε̂c]+%) for

all T ∈ ∆N except for a subset with probability at most
κ̄
%β, which was the claim to be proven. �

When P̄C is uniform, κ̄ can be interpreted as a parameter
that balances between strict democracy and oligarchy:
when C = {1, ...,M}, κ̄ = 1 enforces PC to be uniform

(democracy): the confidence value is maximum (1 − β
% )

but EC [ε̂c] averages over both high and low values of
ε̂c; on the other hand, κ̄ = M does not constrain PC
at all, so that one is free to choose the measure PC
that concentrates all the probability on a single classifier
with the smallest ε̂c: in this case, EC [ε̂c] is minimized
but the confidence becomes 1 − M

% β. Choosing κ̄ = j,

j ∈ {2, ...,M − 1} leads to intermediate situations where
the probability is distributed over a subset of j classifiers
(e.g., the j classifiers with smallest ε̂c). A similar reasoning
applies also to the case where PC has density.

Example 1. (Numerical Example). Suppose that M =
10000 classifiers are given, each coming with a guarantee
like the one in Condition 1 where β = 10−4, and let
% = 0.02. If PC can concentrate on a single classifier,
our results do not provide any meaningful confidence as
Mβ = 1. However, by setting P̄C(c) = 1

10000 for all c
(uniform distribution) and κ̄ = 2, we are allowed to build
a majority classifier based on the 5000 (= M/κ̄) classifiers
with the smallest ε̂c and discharge the vote of the remain-
ing 5000. Indeed, a probability measure PC having uniform
mass over the 5000 classifiers with the smallest ε̂c and 0
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Fig. 1. Empirical classification error p̂e(n), n = 1, ..., 250.
(Solid lines: average over 1000 Monte Carlo runs;
dashed lines: average ± 3 standard deviations esti-
mated from the same sample.) In red: avg. ± 3σ for
a single classifier. In black: avg.± 3σ of the majority
classifier taking into account all the classifiers (PC =
uniform). In blue: avg.± 3σ of the majority classifier
taking into account the “best” n classifiers (PC =
uniform over the n classifiers with smallest ε̂c).

mass over all the other classifiers satisfies PC{c} ≤ 2·P̄C(c)
for all c; hence Theorem 4 ensures a confidence of 99%.

Example 2. (Simulations). We ran a preliminary cam-
paign of simulations with the following setup: a pool of
M = 250 classifiers built according to the scheme of Carè
et al. [2018] was trained over the same dataset of 250 in-
dependent data points (xi, yi), where each xi = (x1i, x2i),
i = 1, ..., 250, was chosen according to the uniform distri-
bution over [0, 1]2, and yi was distributed according to the
following function:

yi = y(xi) =

1, if x2i ≥
(
x1i −

1

2

)
cos (25x1i) +

1

2
0, otherwise

(the same function as in the experimental section of
Cobbenhagen et al. [2019]); each classifier was trained
having the i-th point of the dataset as the starting point
and the N = M − 1 = 249 remaining ones as the training
set. Since these classifiers come with different values of
ε̂c that are individually valid with confidence 1 − β, the
results of this section apply: we sorted the classifiers in
order of increasing ε̂c, we chose a PC uniform over the
“voting set” of the “best” n classifiers (i.e. those with the
smallest ε̂c), and we tested the resulting majority classifier
ŷ∗ on T = 10000 random points extracted according to
the same distribution of the training set, recording the
average error p̂e(n) = #errors/T . We repeated the entire
procedure for all the possible sizes n = 1, 2, ..., 250 of the
voting set, and 1000 times for each size n in a Monte
Carlo simulation. The results are summarized in Fig. 1.
As the reader can see from this simulation, and as we have
ascertained from other ones, restricting the classifiers to a
very small voting set is not convenient; on the other hand,
there seems to be a tendency to improvement as the size
increases, that settles around half the number of classifiers.
This fact is coherent with the trade-off between error and
confidence expressed by Theorem 4: Fig. 2 shows the values
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Fig. 2. Error-confidence trade-off as given by an appli-
cation of Theorem 4 to typical values of {ε̂c}, for
different n, when β = 4 · 10−3, % = 0.05.

Fig. 3. Histogram of empirical classification errors for
a 500-majority classifier (PC = uniform over the
classifiers with the n = 500 smallest ε̂c) in a pool
of M = 1000 classifiers trained with 1000 samples.

of E[ε̂c] + % (left ordinate) and of the confidence 1 − κ
%β

(right ordinate) when Theorem 4 is applied to a random
outcome of the experiments at hand: the “best” classifiers
in terms of EC [ε̂c] are weaker in terms of confidence, i.e.,
their promising threshold can be exceeded with higher
probability.

Repeated simulations in the same setup as above but with
a larger dataset of size 1000 and M = 1000 classifiers were
also performed. To apply Theorem 4 we fixed β = 10−4

and % = 0.01. The experimental results for the voting size
n = 500 are shown in Figs. 3 and 4. The voting size
n = 500 corresponds to choosing κ̄ = 2; from the results
of the Monte Carlo simulation we obtain that EC [ε̂c] is,
on average, 14.22%. Then, the “typical” upper-bound that
is issued by using the formula 1

A (EC [ε̂c] + %) in (7) is
PE(ŷ∗) ≤ 2(14.22%+1%) = 30.44% (where, for simplicity,
we have substituted A with its lower bound A ≥ 1

2 ),

to which a confidence of 1 − 2β
% = 98% is attached. By

comparing Figs. 3 and 4, one can note that, in 1000 runs,
the upper-bounds 1

A (EC [ε̂c] + %) are always higher than
the empirical errors. On the one hand this confirms the
soundness of the approach; on the other hand it suggests
that the bounds hold with a probability higher than the
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Fig. 4. Histogram of the values of EC [ε̂c] for the 500-
majority classifier of Fig. 3. The ε̂c of each classifier c
in the 500-set is computed according to the theory in
Carè et al. [2018] corresponding to β = 10−4.

98% probability guaranteed by Theorem 4: this reveals
some conservatism that calls for further investigation.
In particular, an important source of conservatism is
expected to be removed by exploiting local values Ax in the
vein of Theorems 2 and 3 (in this respect, it is remarkable
that E∆[A(x)] was always above 90% in our Monte Carlo
runs).

4. CONCLUSIONS AND FUTURE STUDIES

In this paper, we have investigated the problem of trans-
forming individual PAC guarantees for base classifiers into
guarantees for majority voting decision schemes. We have
discussed weighted majority decision schemes where the
weights can depend on the training set, and we have shown
that, by suitably restricting the variability of the weights,
guarantees can be provided even when the base classifiers
are infinitely many. While the bounds in this paper are
expressed in terms of a worst-case agreement index, it is
possible to provide bounds that are differentiated based on
the agreement level for the observed feature vector, in the
line of Theorems 2 and 3. In future works, we will aim at
exploiting the specific construction of the base classifiers to
improve the guarantees; for example, estimators based on
the number of support points, like those in Cobbenhagen
et al. [2019], could be used to detect situations that are
more favourable to majority voting.

While in this paper we focused on bounding the proba-
bility of error computed with respect to all the possible
pairs (x, y), we plan to study the probability of error
conditional to the level of agreement among the base clas-
sifiers. Preliminary studies in this direction can be found
in Cobbenhagen et al. [2019].

The extension of the framework of this paper to the
regression problem, in the line of Garatti and Carè [2019],
is also the subject of current research.
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