
Motion Planning with Cartesian Workspace
Information ?

Bangshang Liu ∗ Christian Scheurer ∗∗ Klaus Janschek ∗

∗ Institut of Automation, Faculty of Electrical and Computer
Engineering, Technische Universität Dresden, 01062 Dresden,

Germany
∗∗Department Corporate Research, KUKA Deutschland GmbH,

Zugspitzstraße 140, 86165 Augsburg, Germany

Abstract: We propose three extensions to the known sampling-based Exploring/Exploiting
Tree (EET) Robot Motion Planner with following considerations: a) robot joint motion
bounds, b) additional constraints on robot end-effector pose and c) parallelization of planning
procedures to get alternative solutions. We also tackle the gap between global and local
motion planning by combining sampling-based motion planning and reactive control approaches.
These modifications complement the EET algorithm, which enables our planners to be more
beneficial for practical applications. The experimental results demonstrate that our extended
EET planners outperform other state-of-the-art sampling-based motion planners for some
planning problems according to criteria such as planning time and path length.

Keywords: Sampling-based robot motion planning, Exploring/Exploiting Tree (EET),
combination of global and local planners

1. INTRODUCTION

Motion planners can generally be divided into two cat-
egories: global and local motion planner LaValle (2006);
Brock (2000). A global motion planner generates a se-
quence of robot motions from a start pose to a goal
pose with full knowledge of the environment. This kind of
planned motion shows planner’s macroscopic understand-
ing of the planning problem. In contrast, a local motion
planner gathers local sensory informations to adjust the
robot motion to dynamical and unpredictable changes in
the vicinity of the robot Maŕın et al. (2018). Combining
global and local motion planner into one framework offers
beneficial combination of their individual strengths Brock
(2000).
One main contribution of this paper is our SNS-integrated
EET planner that combines the Exploring/Exploiting Tree
(EET) planner Rickert et al. (2008, 2014) and the Satura-
tion in the Null Space (SNS) algorithm Flacco et al. (2012,
2015). The Exploring/Exploiting Tree (EET) planner is
a sampling-based motion planner. It trades deliberately
probabilistic completeness for computational efficiency by
using Cartesian workspace information and balancing ex-
ploration and exploitation while sampling Cartesian end-
effector frames. The Saturation in the Null Space (SNS)
algorithm aims to avoid exceeding robot joint motion
bounds when tasks in workspace are to be accomplished.
To achieve this, robot redundancy is used. According to
our experimental results, this combination achieves better
performance compared to other motion planners in some
certain aspects.

? This work was partly supported by the German Federal Ministry
of Education and Research (BMBF) through the Hybr-iT project
(grant no. 01IS16026A).

We also propose the Cartesian Constrained EET planner
for additional restrictions on the robot end-effector pose.
There are industrial applications where the end-effector is
not allowed to operate in an arbitrary position and orien-
tation. For example, the end-effector must be kept hori-
zontally in pick-and-place applications, handling tasks or
when palletizing packages in logistics industry. It is desired
that a motion planner can take care of such constraints.
Our third improvement of the EET planner tackles the
incompleteness of the planner and covers more workspace
information by running Parallelized EET planner which is
explained in detail later on.
To the best of our knowledge, no such combined motion
planner and variants of the EET planner have been pro-
posed before. This paper is organized as follows. After
providing a discussion of related work in the next section,
our three variants of the EET planners are presented in
Sect. 3. In Sect. 4 the performance of our planners is
compared with those of other planners. The experimental
results are analysed and evaluated. Finally, summary and
conclusion are given in Sect. 5.

2. RELATED WORK AND CONTRIBUTIONS

2.1 Sampling-based Motion Planning

Sampling-based motion planning builds a road map (de-
scribed as a graph) for solution paths which have to
be in the free space of the configuration space LaValle
(1998). Several motion planners have been developed and
proposed in the past two decades.
The Constrained Bidirectional Rapidly-exploring Random
Tree (CBiRRT) Berenson et al. (2009) handles a variety
of constraints such as constraints on the pose of an object

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 9961



held by a robot as well as torque limits. Projection tech-
nique is applied to explore the configuration space that
corresponds to the predefined constraints in workspace.
However, such projection results in large computational
burden and low efficiency.
The Informed Rapidly-exploring Random Tree* (Informed
RRT*) Gammell et al. (2014) extends the RRT* algorithm
Karaman and Frazzoli (2010) by sampling informed in a
configuration sub-space to improve convergence rate and
quality of the final solution. However, the operation is
only in configuration space instead of workspace. A further
drawback is the difficulty of computing the configuration
sub-space, especially in a high-dimensional one.
The Workspace Goal Regions (WGRs) presented in Beren-
son et al. (2009) describes a set of goal end-effector poses.
However, solving the inverse kinematic is computationally
costly and the WGRs focuses only bounds at the goal pose
and not along the whole path.
Based on the decomposition-based motion planning frame-
work Brock and Kavraki (2000) and sampling-based
motion planning algorithms, the Exploring/Exploiting
Tree (EET) Planner Rickert et al. (2008, 2014) presents
free space represented by a sphere tunnel in the low-
dimensional workspace and generates a path in the high-
dimensional configuration space. The sampling scheme
balances exploration and exploitation while sampling end-
effector frames in the free space. This decomposed motion
planning and unique sampling scheme improves signifi-
cantly planning efficiency and solution quality. It achieves
better planning performance than other sampling-based
motion planners in most test cases Rickert et al. (2014).
However, incompleteness and construction of one single
sphere tunnel may leads to planning failure in some critical
situations and limits its general application. Furthermore,
no kinematical constraints, e.g. limits of joint velocity,
joint acceleration, and constraints on the end-effector pose
are taken into account.

2.2 Saturation in the Null Space (SNS)

The Saturation in the Null Space (SNS) technique Flacco
et al. (2012, 2015) at the velocity level is a widely used
redundancy resolution algorithm and is particularly inves-
tigated in our work. A kinematically redundant manipu-
lator Siciliano (1990) can execute a task at the workspace
level and meanwhile avoid singularities, joint limits and
workspace obstacles Siciliano and Khatib (2016). As a
local motion planner, the SNS algorithm strives to hold
hard constraints of joint motion on position, velocity and
acceleration while generating joint motion commands with
a minimum norm property for a given velocity task. This
method is meaningful and practical in robot applications.
It makes full use of robot redundancy and uses task scaling
to find iteratively and adaptively a feasible end-effector
motion in workspace.

2.3 Combination of global and local motion planner

The motivation of combining global and local motion plan-
ner into one framework is explained in Brock (2000). The
author proposed the elastic strip framework Brock and
Khatib (2002), which is extended from the elastic-band
framework Quinlan (1994) with several additional require-
ments, to accomplish such combination. The combined

planner can not only react to local dynamical changes but
also have a global view of the environment to generate an
optimal path that is immune to local minima.
Our approach that combines global and local planners
differs from the elastic strip framework by concerning joint
motion limits and task preservation. Besides, no dynamic
equation but inverse kinematics problem is taken into
account in our proposed solution.

2.4 Parallelization of Motion Planning

The idea of applying multi-processing technologies to
parallelize RRT motion planning is proposed in Devaurs
et al. (2011); Jacobs et al. (2013). The authors in Devaurs
et al. (2011) introduced an exploratory decomposition of
building a single RRT. Each process performs parallelly
its own sampling in the search space. Similarly, a Radial
Subdivision Distributed RRT Jacobs et al. (2013) divides
the configuration space into a few conical regions. In each
sub-region the RRT algorithm searches the free space.
Finally, these sub-trees are connected to form one single
tree and a path solution is found.

2.5 Homotopy Classes of Paths

In some obstacle environments, there may be several
feasible paths with different topological properties that are
able to lead the robot from a start pose to a goal pose.
Fig. 1a illustrates some alternative paths in a planning
scene. These paths build a set of homotopy classes of paths
Bhattacharya et al. (2010); Bhattacharya (2011). Among
these path solutions one optimal path that has the least
cost with respect to some criterion can be selected. It is
desired that a robot motion planner is able to find out
all the possible homotopy classes of paths and execute the
best one.

(a) Paths with different ho-
motopy

(b) Sphere tunnels with dif-
ferent homotopy

Fig. 1. Scene with possibility of parallelized planning

The contributions of our paper are modifications and
optimization of the original EET planner to improve
its performance in more general and practical planning
scenarios, inspired by concepts and techniques mentioned
above. We present three variants of the original EET
planner that concentrates respectively on one requirement
elucidated as follows.

• Joint motion bounds: The robot joint motion
bounds should not be exceeded throughout the whole
motion along the planned path. For a redundant ma-
nipulator, these constraints can be guaranteed easily
with the Saturation of Null Space (SNS) algorithm. It

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9962



is of benefit to integrate the SNS algorithm into the
EET planner for strict joint motion limits especially
for joint velocity and acceleration.
• Constraints on the end-effector pose : In some

practical planning problems, Cartesian constraints
on the end-effector orientation should be taken into
account. Taking advantage of the unique sampling
scheme in the EET planner, such Cartesian con-
straints can be easily implemented.
• Multiple free space tunnels: The original EET

planner represents free space in one sphere tunnel,
where subsequent planning is operated. Due to the in-
completeness introduced by the decomposition-based
motion planning, it is not guaranteed that this sphere
tunnel can definitely lead to a successful planning
procedure and a feasible Cartesian end-effector path.
A feasible Cartesian end-effector path is understood
as a path along which all robot joint motion is within
its kinematic limitations and no collision between the
robot body and obstacles occurs. In the worst case,
the planner fails to find a path solution in this single
tunnel and reports planning failure, even though one
does exist in another tunnel which is not found by
the original EET planner. Based on the concept of
homotopy classes of paths, building several free space
tunnels that possibly contain a feasible path and se-
lecting the optimal one according to some criteria will
increase the success rate of motion planning. More-
over, multiple sphere tunnels make parallelization of
motion planning considerable.

Recently, a hierarchical path planner based on the RRT
planer has been proposed in Mesesan et al. (2018). This
hierarchical path planner shares many similar characteris-
tics with the basic EET planner and our motion planners.
First, it decomposes the motion planning problem in a
global and a local sub-problem. In the global sub-problem
the entire free workspace is partitioned to build a graph
of disjoint polytopes that provides connection information.
In the local sub-problem a task-space tree is constructed in
a RRT-like way to explore each polytope, connect adjacent
polytopes and ultimately reach the goal point. Second,
while growing the task-space tree, end-effector frame is
sampled instead of joint configurations. Balancing between
exploitation in the current polytope region and exploration
to the target region is implemented as well. Third, robot
redundancy is used with help of the pseudo-inverse and
nullspace of the jacobian matrix for obstacle avoidance.
Forth, it parallelizes its local planning part. Beyond these
peculiarities, our approach manages to deal with confined
joint motion capabilities and constrained the end-effector
pose. Our adaptive balancing between exploration and ex-
ploitation results in more efficient planning. Furthermore,
the integrated SNS-algorithm promises further extensions
to planning with stack of tasks.

3. EXTENDED EXPLORING/EXPLOITING TREE
PLANNERS

Our three variants of the exploring/exploiting tree plan-
ners are intended to overcome shortcomings of the original
EET planner. The SNS-integrated EET planner takes care
of using robot redundancy and satisfying joint motion
limits, especially velocity and acceleration limits. This

integration demonstrates the benefits gained from combi-
nation of a global and a local planner. The Cartesian Con-
strained EET planner incorporates Cartesian constraints
on the end-effector pose while planning. The Parallelized
EET planner applies parallelization to generate multiple
sphere tunnels and search trees to mitigate the incomplete-
ness and increase the success rate of planning.

3.1 SNS-integrated EET Planner

The Saturation in the Null Space (SNS) algorithm solves
the differential inverse kinematic problems, where hard
joint limits of a redundant manipulator and a desired
scalar task velocity vdes are given. During the joint velocity
planning, the SNS algorithm exploits robot redundant
degrees of freedom to avoid exceeding its joint motion
bounds. When no redundancy is available any more, the
desired task velocity is scaled down in order to still hold the
joint restrictions. The EXTEND algorithm in Rickert et al.
(2014) has the same functionality as the SNS algorithm.
It computes a new joint configuration qnew that leads
the end-effector pose towards a sampled end-effector frame
Tsample. The modified EXTEND algorithm applying the
SNS method is shown in Algorithm 1.

Algorithm 1 EXTEND algorithm applying SNS

Input: qnear,Tsameple, vdes, δt
Output: qnew

1: Tnear ← ForwardKinematic(qnear)
2: J ← ComputeJacobianMatrix(qnear)
3: ∆x← (Tsameple − Tnear)

4: ẋtask ← vdes
∆x
‖∆x‖

5: q̇SNS ← SNSAlgorithm(ẋtask,J)
6: qnew ← qnear + q̇SNS · δt
7: return qnew

The end-effector frame Tnear and the Jacobian matrix J
in configuration qnear are computed at first (line 1, 2).
∆x denotes a 6× 1 displacement vector from the nearest
frame Tnear in search tree to the Tsameple (line 3). A
desired task velocity vector ẋtask is calculated according
to ∆x (line 4). Then, function SNSAlgorithm(�) given in
Flacco et al. (2012) is called to compute a joint velocity
q̇SNS and a new joint configuration qnew is returned (line
5, 6). δt denotes step size of computing time.
The integration of the SNS algorithm in the EET planner
exhibits following advantages:

(1) Joint motion limits for position, velocity and acceler-
ation are considered during motion planning,

(2) Robot redundant degrees of freedom is sufficiently
used to accomplish workspace task,

(3) Cartesian velocity task will be scaled down in critical
situations where the desired velocity value vdes is too
large regarding the robot motion limits and avail-
able redundancy. This down-scaling can be recovered
adaptively to one afterwards, and,

(4) Given a task velocity, motion execution time for the
robot can be estimated in advance after the path is
generated.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9963



3.2 Cartesian Constrained EET Planner

One of the most distinct features of the EET planner is
sampling of Cartesian end-effector pose in the free sphere
tunnel to extend its search tree. Modifying such sampling
scheme permits additional restrictions on the end-effector
pose. Consequently, the planned end-effector trajectory
can not only avoid obstacles but also be amenable for
certain constraints on its pose.
In the Cartesian Constrained EET Planner the SAMPLE
algorithm in Rickert et al. (2008) is modified (Algorithm
2). Constraints on the end-effector pose are defined in
a 6 × 2 matrix Cee that bounds allowable translation
and rotation with respect to a predefined reference frame
Tref . The rotational constraints are given in Euler angles
(φ, θ, ψ).

Cee =


xmin xmax

ymin ymax

zmin zmax

φmin φmax

θmin θmax

ψmin ψmax


Transformation matrix Tdev denotes deviation of the sam-
pled pose Tsample from Tref . Position vector pdev and
rotation matrix Rdev of Tdev is sampled according to a
normal distribution N (ps, σrs) and a uniform distribution
Rand(Cee), respectively. ps and rs is centre point and ra-
dius of the current sphere scurrent. σ is a variable balancing
exploration and exploitation in the EET planner.

Algorithm 2 SAMPLE algorithm in Cartesian Con-
strained EET Planner
Input: S, scurrent ≡ (ps, rs), σ,Tgoal,Tref ,Cee

Output: Tsameple

1: if scurrent = send .AND. RAND() < ρ then
2: Tsameple ← Tgoal

3: else
4: pdev ← N (ps, σrs)
5: Rdev ← Rand(Cee)
6: Tdev ← {pdev, Rdev}
7: Tsample ← Tref � Tdev

8: end if
9: return Tsample

If a frame is to be sampled in the last sphere send in
the tunnel S, the goal frame Tgoal may be taken as a
sampled frame with a certain probability described by a
scalar number ρ (line 1, 2). Otherwise, a frame Tsample is
computed with Tref and Cee (line 4 - 7).

3.3 Parallelized EET Planner

As it is mentioned in section 2, several free space sphere
tunnels and path solutions, if they exist in the planning
scenario, can be found to compensate the incomplete-
ness and increase the success rate of the planning. Sub-
sequently, an optimal path solution according to some
criterion can be selected to enhance the quality of a motion
planning solution. The main focus in our parallelized EET
Planner is not searching for all homotopy classes of paths
in the free workspace, but, given these paths already found,
the possibility of parallelizing the EET planning process.
Under this assumption, two kinds of parallelization can be
implemented in the EET planning:

(1) parallelizing the construction of sphere tunnels and,
(2) parallelizing the generation of exploring/exploiting

tree in each sphere tunnel.

Fig. 1(a) shows a scenario with four homotopy classes of
paths τ̄i, i = 1, 2, 3, 4. Three sphere tunnels generated by
the EET planner are depicted in Fig. 1(b). The generation
of these tunnels along different paths are independent
of each other and can thus be parallelized. It should be
emphasized here that the presence of these three different
sphere tunnels, i.e., Cartesian sub-workspaces, leads to the
important fact that three configuration sub-spaces related
respectively to these three tunnels arise implicitly. Finding
a feasible end-effector path for a robot in one sphere tunnel
is equivalent to finding a path in the related configuration
sub-space. In our parallelized EET planner, each process
can run the EET algorithm independently and parallelly
in its own Cartesian sub-workspace and build a tree in its
own configuration sub-space. As a result, several paths in
configuration space can be found in these search tree and
the best one can be selected regarding certain criteria, e.g.
path length in joint space, path length in Cartesian space,
no task scaling happening, etc.
Parallel construction of sphere tunnels is described in
Algorithm 3.

Algorithm 3 Parallel Construction of Sphere Tunnels

Input: pstart,pgoal, τ̄ = {τ̄i, i = 1, ..., h}
Output: S = {Si, i = 1, ..., h}

1: for each process i ∈ [1 : h] do parallely
2: Si ←WAVEFRONT(pstart,pgoal, τ̄i)
3: end for
4: return S

The difference between the extended function
WAVEFRONT(�) and the original one in Rickert et al.
(2008) is that there is not just one but several sphere
tunnels Si, i = 1, ..., h that expand respectively along a
given path τ̄i. h is the number of paths τ̄i.
The parallelized EET algorithm (Algorithm 4) is intended
to plan one path solution in each sphere tunnel computed
by Algorithm 3.

Algorithm 4 Parallelized EET Algorithm

Input: qstart, qgoal, τ̄
Output: τ = {τi, i = 1, ..., h}

1: pstart ←ForwardKinematic(qstart)
2: pgoal ←ForwardKinematic(qgoal)
3: S ←Algorithm3(pstart,pgoal, τ̄ )
4: for each process i ∈ [1 : h] do parallely
5: Gi ←EETAlgorithm(qstart, qgoal, Si)
6: τi ←GetPath(Gi)
7: end for
8: return τ = {τi, i = 1, ..., h}

Before the EET planning, different homotopy classes of
paths τ̄ are given and different sphere tunnels Si are
assigned to processors. Apart from Si, all processors share
the same planning parameters. During the expansion of
its own tree structure Gi, each thread calls function
EETAlgorithm(�) proposed in Rickert et al. (2008) (line
5). After all processors accomplish the tree construction,
a set of paths τ is returned (line 6, 8).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9964



(a) Complex envi-
ronment

(b) Path around a
wall

(c) Labyrinth

Fig. 2. Three planning scenes for experimental results

4. EXPERIMENTS AND RESULTS

4.1 Scenarios

For performance evaluation, our motion planners shall
accomplish motion planning tasks in the following three
planning scenes (Fig. 2).
In scene (a), a KUKA-LBR 3 Albu-Schäeffer et al. (2007)
robot shall carry a blue object from start to goal position in
a complex environment where obstacles are shown in red.
Collision between obstacles and robot body including the
object is detected during the motion planning. In scene (b),
the robot end-effector is expected to go around the wall to
reach the goal pose in a confined workspace. Both planning
problems above are three-dimensional. Test environment
(c) is a two-dimensional labyrinth with relatively small
range in height. There are several homotopy classes of
paths in this labyrinth.

4.2 Experimental Setup

As a programming environment, the Microsoft Visual
Studio Express 2015 for Desktop in Windows 7 operating
system is used. The laptop is Dell Latitude E6520 with
Intel R© Core i5 2540M, 2 CPU cores with 4 threads, 2.60
GHz, max. 3.3 GHz.

4.3 Evaluation

Criteria for evaluating planners’ performance are defined
and explained here.

• Planning time represents the time duration one plan-
ner needs to find a feasible path solution for a plan-
ning problem. It is one of the most significant value
that describes how fast and how well a motion planner
performs.
• Number of samples indicates how many samples a

motion planner made to solve the problem. It exhibits
planning efficiency.
• Satisfy rate of collision detection shows capability of

a planner to explore the collision-free space. High
satisfy rate implies that the planner searches mostly
in collision-free workspace and has high possibility
to find a collision-free path. Fewer times of collision
detection also induce shorter planning time because
collision checking is the most time-consuming opera-
tion during planning.
• Success rate of extend operation shows the extend

efficiency. Higher success rate indicates that a planner
is more capable to generate a feasible joint motion to
extend the search tree.

• Number of tree nodes describes the demand on com-
puter memory. More nodes in the configuration space
tree means more memory consumption.

• Path length in euclidean space exhibits length of the
planned path in workspace, according to Euclidean
distance.

• Path length in configuration space is the path length
in the robot joint space, according to Euclidean
distance.

SNS-integrated EET Planner Performance of the SNS-
integrated EET planner and the basic EET planner is
evaluated in the planning scenes (b). Both planners have
configurations defined in the Appendix. Each planning
runs successively 50 times and the average values of the
planning results in Table 1 are evaluated.

The experimental results demonstrate that the SNS-
integrated EET planner outperforms the basic EET plan-
ner due to following reasons:

(1) The SNS-integrated EET planner has higher sam-
pling and extending efficiency. Because, when robot
joint motion bounds are exceeded, the SNS algorithm
tries to use robot redundancy and even to scale
down the desired velocity task to still accomplish the
extending operation, while the basic EET planner
returns failed extending operation and samples a new
frame, which results in low sampling and extending
efficiency.

(2) The SNS-integrated EET planner achieves over 20%
reduction of planning time and fewer number of tree
nodes than the original EET planner.

(3) With fewer samples, the EET planner with SNS
algorithm reduces collision checking times and has a
higher satisfy rate of collision detection.

(4) The path length in both workspace and configuration
space become shorter with the use of the SNS algo-
rithm.

However, integrating the SNS algorithm in the EET plan-
ner enhances the code complexity and requires additional
computation. Besides, kinematical redundancy of a robot
is required.

Cartesian Constrained EET Planner Our Cartesian
Constrained EET planner is investigated in comparison
with the Constrained Bi-directional RRT (CBiRRT) plan-
ner. Both planners focus on additional restrictions on the
end-effector pose along the whole path but the methods
are different. They run ten times in the test environment
(a) and the average planning results are depicted in Table
2.
Planner configurations are given in the Appendix as well.
The Cartesian Constrained EET planner outperforms the
CBiRRT planner significantly in the planning scene (a).
Reasons are:

(1) The Cartesian Constained EET planner considers
the constraints already when it samples the end-
effector poses, while the CBiRRT planner needs to
project iteratively the sampled joint configurations
on the constraint manifold with large computational
burden. This complicated method results in much
lower sampling efficiency and longer planning time.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9965



Table 1. Planning result of the SNS-integrated EET Planner and the basic one in
the test environment (b)

Result (Average value) Value
SNS-integrated EET planner Original EET planner

Planning time (ms) 790.2 1083.4

Number of samples 48.2 59.8

Satisfy rate of collision detection (%) 91.8 (2613.8/2847.8) 89.8 (3135.0/3493.0)

Success rate of extend operation (%) 92.0 (508.6/553.1) 88.8 (504.1/567.9)

Number of tree nodes 471.0 527.0

Path length in euclidean space (mm) 1032.9 1052.4

Path length in configuration space (rad) 9.8 10.1

Failure rate (%) 2.0 6.0

Table 2. Planning results of the Cartesian Constrained EET Planner and the CBiRRT
planner in the test environment (a)

Result (Average value) Value
Cartesian Constrained EET planner CBiRRT planner

Planning time (ms) 897.9 5847.8

Number of samples 38.2 10370.2

Satisfy rate of collision detection (%) 97.1 (539.0/556.0) 83.2 (2828.4/3400.0)

Number of tree nodes 520.2 1459.0

Path length in euclidean space (mm) 820.6 5944.6

Path length in configuration space (rad) 8.6 21.9

Failure rate (%) 10.0 0.0

(2) The CBiRRT planner does not sample the joint
configurations towards the goal configuration. Some
samples have no contribution to finding an optimal
shorter path solution but require large memory con-
sumption, which leads to much longer paths and more
tree nodes. In contrast, the EET planning is guided
by the sphere tunnel directly towards the goal.

(3) Whether the constraints are rigorous or not has
no influence on the performance of the Cartesian
Constrained EET planner due to its sampling scheme,
while the CBiRRT planner will have even worse
performance with critical restrictions.

Parallelized EET Planner Unlike other extended EET
planners presented above, the parallelized EET planner
does not improve its capability of finding one better solu-
tion in a more efficient way, but shortens the duration for
generating several paths. Therefore, comparing the quality
of paths generated by the EET planner with and without
parallelization does not make much sense because the
quality of each path should be the same. But evaluation
among the homotopically different paths is necessary to
select an optimal one regarding some criteria. To figure out
if the parallelization brings some benefits, only planning
time is assessed.
Planner configuration in this experiment in the test scene
(c) is given in the Appendix. Three alternative possible
routes for the end-effector to go from the start to the goal
position are depicted in Fig. 3.
Each planner solves the planning problem 50 times repeat-
edly and the average values are analysed. As a result, it
takes the EET planner without parallelization 2739.5 mil-
liseconds to execute all three alternative paths sequentially
(one after another) in the labyrinth, while the parallelized
EET planner needs 1240.5 milliseconds, which exhibits
over 50% reduction of the planning time.
Furthermore, properties of the three different paths are
given in Table 3. The planning time of the parallelized

Fig. 3. Three homotopically different paths in test envi-
ronment (c)

EET planner is almost equal to the longest planning time
of a single path. Planning time of the EET planner without
parallelization is almost equal to the sum of the planning
time used for every path. Apparently, path 2 in Fig. 3 is
the optimal path regarding the planning time and the path
length. The benefits of applying parallelization in the EET
planning are summarized here:

(1) Assuming that there are different homotopy classes of
paths in the planning environment, the parallelized
EET planner can generate several path solutions
simultaneously and shorten the total planning time.

(2) The shortcoming in section 2 due to the incomplete-
ness is compensated by looking for alternative solu-
tions by using the parallelized EET planner, which
enhances planning success rate.

(3) With several path solutions, some criteria such as
path length in workspace can be considered to select
the optimal path.

As a matter of fact, operations such as sharing parameters
and assigning data memory for each process must be
made additionally before the parallelization. Presence of
different homotopy classes of paths in the environment is
prerequisite for parallelization as well.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9966



Table 3. Properties of the three alternative paths in the test environment (c)

Result (Average value) Value
Path 1 Path 2 Path 3

Planning time (ms) 635.0 458.8 1186.9

Number of samples 76.4 44.1 147.8

Satisfy rate of collision detection (%) 88.7 (824.8/930.2) 89.1 (680.8/764.0) 79.0 (968.2/1225.6)

Number of tree nodes 261.4 203.6 303.6

Path length in euclidean space (mm) 950.1 748.7 977.4

Path length in configuration space (rad) 4.8 3.8 5.4

5. CONCLUSIONS

We present three variants of the Exploring/Exploiting
Tree (EET) Motion Planner with three advanced features:
a) consideration of the hard bounds of robot joint motion,
b) the Cartesian constraints on the robot end-effector
poses and, c) planning parallelization to find alternative
solutions.
Integrating the SNS algorithm into the EET planner leads
to combination of sampling-based motion planning and
reactive control, which provides benefit of satisfying the
hard joint motion limits. Taking advantage of the distinct
sampling scheme in the EET planning, preservation of
Cartesian constraints on the end-effector pose can be
guaranteed efficiently. For mitigation of the incompleteness
and for optimal planning the parallelization is introduced
in the EET planner. Presence of different homotopy classes
of paths is prerequisite.
According to the experimental results, our three variants
of the EET planner outperform other motion planners
with respect to several criteria in our test scenarios. In
our future work, we will consider the performance of our
planners in dynamically moving obstacles and the further
extension to hierarchical stack of tasks Flacco et al. (2015).

ACKNOWLEDGMENT

This work was partly supported by the German Federal
Ministry of Education and Research (BMBF) through the
Hybr-iT project (grant no. 01IS16026A).

REFERENCES

Albu-Schäeffer, A., Haddadin, S., Ott, C., Stemmer,
A., Wimböck, T., and Hirzinger, G. (2007). The
dlr lightweight robot – design and control concepts
for robots in human environments. INDUSTRIAL
ROBOT-AN INTERNATIONAL JOURNAL, 34, 376–
385.

Berenson, D., Srinivasa, S.S., Ferguson, D., Collet, A.,
and Kuffner, J.J. (2009). Manipulation planning with
workspace goal regions. In 2009 IEEE International
Conference on Robotics and Automation, 618–624.

Berenson, D., Srinivasa, S.S., Ferguson, D., and Kuffner,
J.J. (2009). Manipulation planning on constraint man-
ifolds. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, 625–632. IEEE.

Bhattacharya, S. (2011). Identification and representation
of homotopy classes of trajectories for search-based path
planning in 3d.

Bhattacharya, S., Kumar, V., and Likhachev, M. (2010).
Search-based path planning with homotopy class con-
straints. In Third Annual Symposium on Combinatorial
Search.

Brock, O. (2000). Generating Robot Motion: The Integra-
tion of Planning and Execution. Ph.D. thesis, Stanford,
CA, USA. AAI9961867.

Brock, O. and Kavraki, L.E. (2000). Decomposition-based
motion planning: Towards real-time planning for robots
with many degrees of freedom. Technical report.

Brock, O. and Khatib, O. (2002). Elastic strips: A frame-
work for motion generation in human environments.
The International Journal of Robotics Research, 21(12),
1031–1052.

Devaurs, D., Siméon, T., and Cortés, J. (2011). Paralleliz-
ing rrt on distributed-memory architectures. In Robotics
and automation (ICRA), 2011 IEEE International Con-
ference on, 2261–2266. IEEE.

Flacco, F., De Luca, A., and Khatib, O. (2012). Motion
control of redundant robots under joint constraints: Sat-
uration in the null space. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, 285–
292. IEEE.

Flacco, F., De Luca, A., and Khatib, O. (2015). Control of
redundant robots under hard joint constraints: Satura-
tion in the null space. IEEE Transactions on Robotics,
31(3), 637–654.

Gammell, J.D., Srinivasa, S.S., and Barfoot, T.D. (2014).
Informed rrt*: Optimal sampling-based path planning
focused via direct sampling of an admissible ellipsoidal
heuristic. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2997–3004.

Jacobs, S.A., Stradford, N., Rodriguez, C., Thomas, S.,
and Amato, N.M. (2013). A scalable distributed rrt for
motion planning. In Robotics and Automation (ICRA),
2013 IEEE International Conference on, 5088–5095.
IEEE.

Karaman, S. and Frazzoli, E. (2010). Incremental
sampling-based algorithms for optimal motion planning.
Robotics Science and Systems VI, 104, 2.

LaValle, S.M. (2006). Planning Algorithms. Cam-
bridge University Press, Cambridge, U.K. Available at
http://planning.cs.uiuc.edu/.

LaValle, S.M. (1998). Rapidly-exploring random trees: A
new tool for path planning.

Maŕın, P., Hussein, A., Mart́ın Gómez, D., and de la
Escalera, A. (2018). Global and local path planning
study in a ros-based research platform for autonomous
vehicles. Journal of Advanced Transportation, 2018, 1–
10.

Mesesan, G., Roa, M.A., Icer, E., and Althoff, M. (2018).
Hierarchical path planner using workspace decomposi-
tion and parallel task-space rrts. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), 1–9.

Quinlan, S. (1994). Real-Time Modification of Collision-
Free Paths. Ph.D. thesis, Stanford, CA, USA.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9967



Rickert, M., Brock, O., and Knoll, A. (2008). Balancing
exploration and exploitation in motion planning. In
Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on, 2812–2817. IEEE.

Rickert, M., Sieverling, A., and Brock, O. (2014). Bal-
ancing exploration and exploitation in sampling-based
motion planning. IEEE Transactions on Robotics, 30(6),
1305–1317.

Siciliano, B. (1990). Kinematic control of redundant robot
manipulators: A tutorial. Journal of intelligent and
robotic systems, 3(3), 201–212.

Siciliano, B. and Khatib, O. (2016). Springer handbook of
robotics. Springer.

Appendix A. CONFIGURATION OF THE MOTION
PLANNERS

Table A.1. Configuration of the SNS-integrated EET Plan-
ner, the Cartesian Constrained EET Planner and the orig-

inal EET Planner

Parameters Value
Time step size (s) 0.05
Desired task velocity vdes (mm/s) 50.0
α 0.02
β 0.30
γ 0.33
Tolerance to pose (mm) 5.0
Clearance to obstacle (mm) 10.0

Maximum planning time (s) 120.0

Table A.2. Configurations of the CBiRRT planner

CBiRRT Planner

Parameters Value
ε 0.1
Configuration step size 0.5
Clearance to obstacle (mm) 10.0

Maximum planning time (s) 120.0

Table A.3. Configuration of the parallelized EET planner

Parallelized EET Planner

Parameters Value
Configuration step size (rad) 0.02
Cartesian Product Distance 0.1,0.9
α 0.01
β 0.10
γ 0.33
Tolerance to pose (mm) 1.0
Clearance to obstacle (mm) 10.0
Parallelization
Thread number 3

Maximum planning time (s) 120.0

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9968


