
Set-based Scheduling for Highway Entry of
Autonomous Vehicles ?

Jan Eilbrecht ∗ Olaf Stursberg ∗

∗ Institute of Control and System Theory, Department of Electrical
Engineering and Computer Science, University of Kassel, Germany,

(e-mail: {jan.eilbrecht,stursberg}@uni-kassel.de).

Abstract:
This paper proposes a framework for generation of collision-free reference trajectories in a
cooperative multi-agent setting. The approach is hierarchical: a high-level controller schedules
groups of cooperating agents, for which trajectories are then determined by a lower-level
trajectory planner. Admissible behaviors of a cooperative group are encoded by so-called
maneuvers, which are modeled by hybrid automata. This allows to plan trajectories by solving
hybrid optimal control problems. Controllable sets characterize the solution sets of these
problems and are used for quick assessment of feasibility prior to planning. This enables the high-
level controller to quickly assess the feasibility of different maneuver options and cooperative
groups. Special emphasis is put on safety and feasibility of the framework. The efficacy of the
approach is demonstrated by simulation of a highway entry scenario for autonomous vehicles.

Keywords: Coordinating Control, Autonomous Systems, Autonomous Driving, Scheduling,
Hybrid Systems, Integrated Traffic Management

1. INTRODUCTION

When controlling autonomous agents such as rovers,
UAVs, or autonomous vehicles, a major challenge is to
plan reference trajectories for the future states of an agent.
This problem is, among others, complicated by collision
avoidance constraints, which make the problem inherently
non-convex. Considering a multi-agent context, another
challenge is to coordinate the intents of several agents. The
motivation for this paper is to propose a framework which
enables computationally efficient control, provided that a
certain problem structure is given. This is, for example,
the case in on-road traffic of autonomous vehicles, which
will be the primary considered application domain, even
though an extension to different domains is conceivable.

Over the last decades, trajectory planning problems have
been the subject of considerable research effort. Early ap-
proaches were often graph-based and neglected the agents’
dynamics (LaValle, 2006), while more recent approaches
such as sampling-based algorithms or numerical optimal
control explicitly account for it (González et al., 2016). In a
multi-agent context, planning typically focuses on different
aspects: while consensus problems aim to establish inter-
agent agreement on and convergence towards the value of
certain variables, others primarily aim at ensuring collision
avoidance. Often, a decentralized/distributed approach is
chosen, in which agents make local plans, which are then
iteratively adapted to those of others, e.g. (Kuwata and
How, 2010). Due to the non-convex nature of the problem,
it is challenging to prove convergence and feasibility for all
involved agents. Often, approaches consider specific sce-

? Financial support by the German Research Foundation (DFG)
within priority program (SPP) 1835 is gratefully acknowledged.

narios such as control at intersections, e.g. (de La Fortelle,
2010; Zhang and Cassandras, 2019), while the framework
to be proposed is applicable to general traffic situations.
Our own earlier work (outlined in Sec. 2.2) approached
the problem relying on a maneuver-based approach, in
which maneuvers are modeled as hybrid optimal control
problems (Eilbrecht and Stursberg, 2018), for which it is
possible to compute controllable sets, allowing for feasibil-
ity assessment prior to planning. The process can be sped
up by relying on approximate solutions, cf. (Eilbrecht and
Stursberg, 2019).

Contrasting prior work, this note not focuses on compu-
tations pertaining to single maneuvers, but on the use of
a set of maneuvers (“maneuver library”) in a computa-
tionally efficient framework for control of multiple agents.
It is described how to determine cooperative groups that
are to execute a certain maneuver, focusing on feasibility

Trajectory
Planner

xref

xref

x
(1)
0 x

(2)
0

x
(3)
0

Coalition 1

Trajectory
Planner

xref

xref

xref

x
(4)
0 x

(5)
0

Coalition 2

Scheduler

Maneuver
Library

High-level Control

Maneuver 1 Maneuver 2

Fig. 1. Envisioned Framework.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 15605



of plans. Specifically, it is investigated how to: 1) define
rules for interaction between cooperative groups and non-
cooperating vehicles, 2) guarantee safety of all vehicles
and recursive feasibility of the controller. Note that the
proposed framework is rather general, such that it can
serve as platform for different cooperation mechanisms.

2. GENERAL SETTING

This section provides an overview of the considered prob-
lem as well as the proposed solution approach, setting the
stage for detailed descriptions of derived subproblems and
the corresponding solution approaches in later sections.

2.1 Problem setting

Consider settings where a group of autonomous vehicles
is driving on a road. Let V ⊂ N contain identifiers of
these vehicles and assume that each vehicle i ∈ V is given
knowledge of the sequence of roads that lead it from its
starting point to its destination. Then, consider control of
the vehicles within these road segments. Let the dynamics
of a vehicle i be given by:

χ̇(t) = f (i) (χ(t), µ(t)) ,

depending on its state χ at the current time t and input
values µ. Assume that the inputs are determined by a given
controller function k(i), based on the current state and a

time-varying reference value x
(i)
ref(t):

µ(t) = k(i)
(
χ(t), x

(i)
ref(t)

)
.

The task considered in this paper is to obtain a reference

trajectory x
(i)
ref(t) which must ensure that the closed-

loop dynamics of the vehicle does not violate constraints
on the states and inputs of the vehicle. While some of
these, such as constraints on velocity or acceleration, stem
from the dynamics of the vehicle, others result from the
road topology or the need to avoid collisions with other

vehicles. The latter implies that x
(i)
ref must depend on x

(j)
ref ,

j ∈ V, j 6= i. This problem is considered in a setting
where vehicles are generally willing and able to locally
communicate information and adapt their behavior to that
of others.

2.2 Solution Approach

Fig. 1 shows the elements of the solution approach, which
are outlined in the following (cf. Eilbrecht and Stursberg
(2018) for an earlier version). At the core of the approach
is the notion of a maneuver, cf. Sec. 3, which serves to
formally encode behaviors such as merging, overtaking, or
lane keeping, i.e., sets of qualitatively similar trajectories.
A maneuver can specify behaviors of one or more vehicles,
where it is assumed that a finite number of maneuvers is
sufficient to operate vehicles on the road. A collection of
maneuvers will be referred to as maneuver library. The
proposed approach is hierarchical: based on the maneuver
library, a high-level control algorithm determines a group
(termed coalition) of vehicles which are to perform a
certain maneuver. The vehicles are assigned roles, some
of which require a vehicle’s cooperation (e.g. if a vehicle
must be ready to open a gap), while other roles only serve
to model the interaction with the surrounding outside of

the maneuver group, cf. Sec. 5.2. While a vehicle can
only assume one cooperative role, it can be included
as non-cooperating in several maneuvers simultaneously,
such that coalitions may overlap. For each coalition, a
trajectory planner determines reference trajectories for all
cooperative vehicles.

The outlined procedure requires to: 1) determine which
maneuvers are feasible for which vehicles, 2) make a choice
among the feasible ones, and 3) determine a reference
trajectory. In the following, the focus is on task 1),
cf. Sec. 3.2, and task 3), see Sec. 3.1.

3. MANEUVER CONCEPT

Prior to introducing the maneuver concept, define in slight
modification of (Stursberg and Krogh, 2003):

Definition 1. (Hybrid Automaton). A hybrid automaton
HA is a tuple (Q, q0,X, inv,U,W,X0,XT,Θ, g, f), defining:

• a finite set of phases Q with initial phase q0 ∈ Q,
• a state space X ⊆ Rnx and state vector x ∈ X,
• a function inv : Q → 2X called invariant, assigning to

each phase q ∈ Q a set inv(q) ⊆ X in which x may evolve
over time without changing the phase q,

• input vectors u ∈ U(q) taken from bounded, phase-
dependent sets U : Q → 2R

nu
,

• disturbance vectors w ∈ W(q) taken from bounded,
phase-dependent sets W : Q → 2R

nw
,

• the sets X0 ⊆ inv(q0) and XT ⊆ X of initial and target
states, respectively,

• a set of admissible discrete transitions Θ ⊆ Q×Q,
• a guard function g : Θ → 2X which assigns a guard

set g(θ) ⊆ X to each transition θ = (qi, qj) ∈ Θ with
inv(qi) ∩ inv(qj) 6= ∅,

• and a flow function f : Q → (X× U×W→ Rnx).

The semantics of the automaton is as follows: Starting
in X0, the continuous state x evolves according to the
flow function f(q0), depending on the state, input, and
disturbance. The input is chosen without knowledge of
the disturbance. Upon entry of x into a guard set g(θ),
an immediate transition from q0 to phase qj is enforced,
where the evolution of x continues with x ∈ inv(qj) until
another guard set is entered, and so forth. Once x enters
the terminal set XT, its evolution stops.

An exemplary hybrid automaton is shown in Fig. 2.
Throughout this paper, the flow function is assumed to
define affine dynamics in each phase q:

x(tk+1) = Aqx(tk) +Bqu(tk) +B1,qw(tk) + aq (1)

on a discrete time domain T = {tk = k · Ts|k ∈ N}
with sampling time Ts. In general, vehicle dynamics are
nonlinear, such that reference trajectories based on (1)
could be inadmissible for a real vehicle. Encouraged by first
results investigating into this (Schürmann et al., 2017), we
assume that this is not a problem and postpone a more
detailed treatment to future work. Also assume that the
target set XT is reachable from the initial set X0 and that
all sets in the automaton are polyhedral. Based on this
definition of HA, define:

Definition 2. (Maneuver). A maneuver is a tuple M =
(C, Hplan, HA), consisting of a set C ⊆ V of involved
vehicles, a time horizon Hplan, and a hybrid automaton HA.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15606



q0: Phase 1
xk+1 = f(q0, xk)
x ∈ inv(q0)

q1: Phase 2
xk+1 = f(q1, xk)
x ∈ inv(q1)

q2: Phase 3
xk+1 = f(q2, xk)
x ∈ inv(q2)

g(θ0,1) g(θ1,2)

start complete

Fig. 2. Example of a hybrid automaton.

In this, the vehicles carry information about their current
state and their preferences (e.g. regarding driving style
or energy expenditure) in form of a cost function, while
Hplan defines the duration of a maneuver over which
a reference is needed. The hybrid automaton encodes
admissible vehicle behaviors, which is exemplified in Sec. 6.
The general idea is to combine the dynamics of all involved
vehicles in the flow function of HA, such that the invariants
constrain their behavior, while different phases account for
non-convex constraints, e.g. for collision avoidance, and
impose a certain temporal structure of a maneuver.

3.1 Hybrid Optimal Control for Trajectory Planning

Denote by uj(·) := (u(t0) u(t1) . . . u(tj−2) u(tj−1)) a
sequence of j input vectors (use a corresponding notation
for sequences of other quantities). Using the so-called big-
M method, cf. Williams (2013), and (vectors of) binary
variables δ, sequences which are admissible with respect
to Def. 1 can be collected in a set:

Aj(HA) :=
{
uj(·)|∀ w(tk) ∈W(q), ∀ 0 ≤ k ≤ j, j ∈ N,

∃xj+1(·), δj+1(·) : x(t0) ∈ X0, u(tk) ∈ U(q),

x(tk+1) = Aqx(tk) +Bqu(tk) +B1,qw(tk) + aq,

E1x(tk) + E2δ(tk) + E3q(tk) + E4q(tk+1) ≤ E0, (2)

x(tk) ∈ inv(q(tk)), x(tj+1) ∈ XT

}
,

where the semantics of the automaton have been trans-
lated into (2). A cost function assigns cost values to ad-
missible input sequences:

J(x0, uHplan
(·)) =

Hplan∑
k=1

‖z(tk)− zref‖Q + ‖u(tk−1)‖R .

It penalizes both the magnitude of the control inputs u
and the deviation of an output signal:

z(tk) = Cx(tk) (3)

from a reference value zref, weighted by matrices Q ≥ 0
and R ≥ 0 of appropriate dimensions, respectively. The
matrices Q and R could, for example, model preferences
of controlled vehicles. For the hybrid automaton HA of a
given maneuver, solve:

Problem 3. (Trajectory Planning). Given an initial state
x0 and a planning horizon Hplan, determine an optimal
sequence of input signals u∗Hplan

(·) as follows:

u∗Hplan
(·) := arg min

Hplan∑
k=1

‖z(tk)− zref‖Q + ‖u(tk−1)‖R

subject to (3), u∗Hplan
(·) ∈ AHplan

(HA), and x(t0) = x0.

Problem 3 is a mixed-integer quadratic program, which
can be solved using, e.g., CPLEX or GUROBI.

Assumption 4. (Initial State). Assume that the initial po-
sitions and velocities of all cooperative and non-cooperative
vehicles are known at the current time t0.

During execution of a maneuver, Problem 3 is solved anew
at the current time instance to include new information
regarding non-cooperating vehicles, e.g. their position and
velocity, thus implementing closed-loop control (Bertsekas,
1995). Unlike in model-predictive control, Problem 3 is
solved with a shrinking horizon to ensure finite termination
of a maneuver (as opposed to asymptotic convergence).
The general procedure to be carried out online is:

Require: Vehicle states x(i), i ∈ V, at current time t0,
set O of ongoing maneuvers

1: V̄ ← Find vehicles in V not assigned a maneuver
2: {M1, M2, . . . } ← Schedule maneuvers for V̄
3: O ← O ∪ {M1, M2, . . . }
4: for each Ml ∈ O do
5: (C, Hplan, HA)← Ml
6: if Hplan = 0 then
7: Ml complete; disband C
8: else
9: x

(i)
ref(·)← Plan(Ml) ∀i ∈ C

10: Hplan ← Hplan − 1

3.2 Feasibility Assessment using Controllable Sets

Robustly controllable sets are used in order to quickly
assess feasibility of a maneuver for a given initial state:

Definition 5. (j-Step Robustly Controllable Set). Given a
maneuver M = (C, j, HA), define the j-step robustly control-
lable set Kj(M) of the maneuver as:

Kj(M) =
{
x|∃u∗j (·) as solution to Problem 3

}
. (4)

Note that the parameterization of the quadratic cost
function of Problem 3 does not have influence on the
existence of a solution. Also note that often a recursive
definition of controllable sets is employed, cf. (Kerrigan,
2001) for linear systems, which embraces the same concept,
but would be quite cumbersome to adapt for hybrid
optimal control problems.

Given an initial state x0 of a group of vehicles C, explicit
representations of controllable sets offer the possibility to
quickly assess feasibility of a maneuver M = (C, Hplan, HA)
over a certain horizon Hplan prior to planning – simply
by checking whether x0 ∈ KHplan

(M) holds. This allows
to quickly evaluate feasibility of different options (i.e.,
different maneuvers with different hybrid automata and/or
different maneuver durations). Here, the robustly control-
lable sets are described by linear inequalities, such that
checking of set inclusion reduces to a matrix-vector prod-
uct, making it computationally efficient.

4. CASE STUDY: HIGHWAY ENTRY

In order to fix ideas, the remainder of the paper demon-
strates the functionality of the framework by means of an
example, namely the scenario shown in Fig. 3, in which
autonomous vehicles are driving on a highway (left lane),
while other autonomous vehicles are trying to merge from
a merging lane (right lane). The following rules are im-
posed: a minimal velocity vx,min,left is enforced on the high-
way (as is common e.g. on German highways). The merge

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15607



Vehicle NF

×

Vehicle F

×

Vehicle L

×

Vehicle E

×

Vehicle NL

×

pmerge,min pmerge,max

py

px

?

Fig. 3. Highway Entry: Where and when to merge?

lane enables vehicles to accelerate such that, at the end
of the merging process, this constraint is fulfilled. Merging
must take place between pmerge,min and pmerge,max. If it
should be impossible because no gap opens, a vehicle
must stop on the merge lane in a position that allows to
sufficiently accelerate prior to merging later on.

The scenario is to be controlled by the proposed frame-
work. Regarding the infrastructure setup, similar assump-
tions are made as by (Zhang and Cassandras, 2019) for
intersection control: At first, to limit the scope of the
paper, assume that only autonomous vehicles are driving
on the road. Then, assume that the controller is part of the
infrastructure, i.e., a road side unit, and controls a certain
section (the control zone) of the road up- and downstream
(say 1.5 km in each direction). Events outside this zone
will not be considered for simplicity. This setting allows
to focus on the basic functionality of the approach with-
out considering questions of decentralized computations,
inter-vehicle communication, changing road topology, etc.,
which are deferred to future work.

Focusing on feasibility, the following simple maneuver
scheduling rule is employed: all vehicles on the merge lane
except for the first one are to keep the lane. For the first
vehicle, it is assessed whether a feasible merging maneuver
exists. If this is the case, the one with shortest duration
Hplan is executed (clearly, more elaborate strategies are
conceivable, but are beyond the scope of this paper).
Otherwise, the vehicle must keep the lane until merging
becomes possible. Note that both the gap into which and
the time at which merging occurs result from the algorithm
and are not fixed a priori.

In order to comply with (1), affine or linear vehicle models
are used for a vehicle i:

ẋ(i)(t) = Acx
(i)(t) +Bcu

(i)(t) + ac, (5)

with the state and input vectors of a vehicle i:

x(i) =
[
p
(i)
x p

(i)
y v

(i)
x v

(i)
y

]T
, u(i) =

[
u
(i)
x u

(i)
y

]T
.

Assume for simplicity:

Assumption 6. (Homogeneous Vehicle Dynamics). All ve-
hicles have the same dynamics.

While this assumption is clearly unrealistic, it is concep-
tually simple to extend our framework to heterogeneous
dynamics, e.g. by assuming the existence of classes of
similar vehicle dynamics and formulating maneuvers for
combinations of different classes. Nonetheless, this exten-
sion is cumbersome and beyond the scope of this paper.

Both states and inputs are constrained by polyhedral sets:

x(i) ∈ X , u(i) ∈ U . (6)

In the following, let U = [ux,min, ux,max] × [uy,min, uy,max]
and X = [px,min, px,max]×[py,min, py,max]×[vx,min, vx,max]×

Table 1. Parameter values used in the case study.

ux,min = −3m s−1 pmerge,min = 200m vx,min = 0ms−1

ux,max = 3ms−1 pmerge,max = 400m vx,max = 33.3m s−1

uy,min = −3m s−1 vx,min,left = 22.2m s−1 vy,min = 0ms−1

uy,max = 3ms−1 px,min = −∞ m vy,max = 5.56m s−1

lx,safe = 5m px,max =∞ m Ts = 0.5 s

[vy,min, vy,max]. Values for all parameters used in this case
study are given in Tab. 1. Zero-order hold discretiza-
tion using sampling time Ts and appropriate, maneuver-
dependent combination with the dynamics of other vehi-
cles then leads to (1). The matrices Ac, Bc, and ac can,
e.g., be obtained by location-dependent linearization of a
nonlinear vehicle model. For now, simply let:

Ac =

[
0 0 1 0
0 0 0 1

02×4

]
, Bc =

[
02×2
I2×2

]
, ac = 0. (7)

This model assumes double integrator dynamics for both
longitudinal and lateral dynamics. Despite its simplicity,
it has been successfully employed in planning problems,
e.g. by Schouwenaars et al. (2001); Qian et al. (2016);
Eilbrecht and Stursberg (2018). This has several reasons:
on the one hand, proper choice of the state and input
constraints sets X and U can capture many behaviours
of more complex models. For example, it is possible to
introduce coupling between longitudinal and lateral dy-
namics (Qian et al., 2016) or to approximate the so-called
friction circle (Manzinger et al., 2017). Furthermore, plans
are to be obtained for comfortable on-road driving, which
occurs in state space regions where more complex vehicle
models are only mildly nonlinear, qualitatively speaking.
Finally, obtained plans are not directly applied as control
inputs to the vehicle, but serve as references for lower-layer
controllers. By incorporating safety distances into the ma-
neuver formulations, minor deviations are unproblematic.

5. FORMAL GUARANTEES

This section aims to endow the proposed framework with
formal guarantees concerning 1) the capability of the
scheduler to eventually enable merging of a vehicle on
the ramp, 2) safety, and 3) completion of a maneuver
despite acting disturbances (which were not considered in
prior work (Eilbrecht and Stursberg, 2018), making this a
substantial contribution of the paper at hand).

In the following, extending standard definitions as, e.g.,
(Kerrigan, 2001), define:

Definition 7. (Maneuver Robustly Control Invariant Set).
Given a maneuver M = (C, Hplan, HA), a robustly control
invariant set of the maneuver M is:

L(M) := {x|∀w∞(·) ∈W(q∞(·)) ∃u∞(·) ∈ A∞(HA) :

f(x, u∞(tk), w∞(tk)) ∈ L(M) ∀k ∈ N}.

5.1 Recursive Scheduling Feasibility

At first, the following property is considered:

Definition 8. (Recursive Scheduling Feasibility). Recursive
scheduling feasibility holds if the scheduling algorithm is
always eventually able to schedule a merging maneuver for
every vehicle on the merge lane.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15608



The ability to merge not only depends on the state of
the vehicle on the ramp, but also on the vehicles on the
highway. Even if these are willing to cooperate, worst-case
scenarios (extreme traffic density, “bumper to bumper”)
exist in which a gap simply cannot be opened. Assume that
this will not always be the case, or more optimistically:

Assumption 9. (Traffic Density). Given a vehicle i on the
ramp at time t0, there exists tk, k ≥ 0, such that no other
vehicle is in the control zone.

Clearly, it is possible to make this assumption less re-
strictive by identifying distances between vehicles which
are large enough to assume that these do not interact.
This would allow other vehicles to exist within the control
zone, but would also unnecessarily complicate the expo-
sition. Assumption 9 allows to reduce the analysis to the
case of a single merging vehicle. This can be modeled by
a maneuver M1 = ({E},∞, HA1) with Q = {q0, q1, q2},
Θ = {θ1 = (q0, q1), θ2 = (q1, q2)}, flow as dynamics of
a vehicle (E) given by (5) and (7), invariants, and guards:

inv(q0) = X , inv(q1) =
{
x|p(E)

x ≥ pmerge,min

}
,

inv(q2) =
{
x ∈ inv(q1)|p(E)

y = py,max, v
(E)
y = 0

}
,

g(θ1) = {x|p(E)
y > 0}, g(θ2) = {x|p(E)

x ≥ pmerge,max}.
Denote by XT =

{
x|p(E)

y = py,max, v
(E)
y = 0

}
and by

X0 =
{
x|p(E)

y = 0, v
(E)
y = 0, p

(E)
x ≤ pmerge,min

}
the target

and initial set, respectively. Then, the following holds:

Proposition 10. (Capability to Merge). Given a vehicle (E)
on the merge lane, a robustly control invariant set
Xmerge := L(M1), a maneuver library M = {M3, M4, . . . },
and a set of vehicles V on the highway, then vehicle (E)
will eventually be able to merge if either x(E)(t0) ∈ Xmerge

or ∃M = (C, j, HA) ∈ M : x(t0) ∈ Kj(M), where x(t0)
denotes the current state of {E, C} and C ⊆ V is a suitably
chosen subset of the vehicles on the highway.

Proof. Clearly, x(t0) ∈ Kj(M) enables merging by defini-

tion of the controllable set. On the other hand, x(E)(t0) ∈
Xmerge allows that x(E)(tk) ∈ Xmerge ∀k > 0 by definition.
Based on Assumption 9, this eventually allows merging.
2

In an implementation, the computation of a set Xmerge

can be carried out using, e.g., the MPT toolbox (Kvasnica
et al., 2004), with adaptions to the hybrid systems setting.

5.2 Robust Maneuver Feasibility and Safety

Prior to analyzing their impact, assume the following:

Assumption 11. Disturbances as in Def. 1 solely model ac-
tions of non-cooperative vehicles, while other disturbances
(modeling errors, measurement noise, etc.) are counter-
acted by subordinate tracking controllers.

Assumption 12. Actions of non-cooperative vehicles only
affect the longitudinal dynamics of other vehicles.

The latter can be ensured by proper formulation of ma-
neuvers.

Safety The aim is to guarantee safety of the involved
vehicles in the following sense:

Vehicle F

×

Vehicle L

×v
(F)
x v

(L)
x

py

px
dLF

p
(F)
x p

(L)
x

Fig. 4. Longitudinal safety distance between two vehicles.

Definition 13. (Safety). Safety holds if every vehicle is
able to keep a longitudinal safety distance of at least lx,safe
to preceding vehicles at any time.

The basis for the following analysis is the constellation
shown in Fig. 4, where a vehicle (L) is driving ahead of a
vehicle (F). Interaction of these vehicles is modeled by a
maneuver M2 := ({L,F},∞, HA2), in which the acceleration
of the leading vehicle is perceived as disturbance, while
the one of the following vehicle is controlled. It is assumed
that the disturbance does not violate velocity constraints,
since these are imposed by traffic rules. HA2 consists of
three phases Q = {q0, q1, q2} with identical invariants and
input sets, but different disturbance sets:

inv =
{
x|x ∈ X × X , p(L)y = p(F)y = 0, v(L)y = v(F)y = 0,

p(L)x − p(F)x ≥ lx,safe
}
,W(q0) =

{
u ∈ U : u(L)y = 0

}
,

W(q1) =
{
u ∈W(q0) : u(L)x ≥ 0

}
,U =

{
u ∈ U : u(F)y = 0

}
W(q2) =

{
u ∈W(q0) : u(L)x ≤ 0

}
.

Based on (5), the flows in all locations are discrete-time
versions of:

ẋ =

[
Ac 0
0 Ac

]
x(t) +

[
Bc

0

]
u(F)x (t) +

[
0
Bc

]
u(L)x (t), (8)

Transitions are Θ = {(q0, q1), (q1, q0), (q0, q2), (q2, q0)}.
Starting in q0, a transition to q1 is enforced if v

(L)
x = vx,min,

from where a transition back to q0 occurs if v
(L)
x > vx,min.

A transition from q0 to q2 occurs if v
(L)
x = vx,max, and in

the reverse direction if v
(L)
x < vx,max.

Proposition 14. (Safety). Given a robustly control invari-
ant set L(M2), a polytope

Xsafe = {x|Asafex ≤ bsafe} ⊂ L(M2), (9)

and a current state x ∈ Xsafe, longitudinal collision
between L and F can be avoided at all future times.

Proof. Clearly, x(tk) ∈ Xsafe ⇒ x(tk) ∈ L(M2). By defi-
nition of L(M2), there exists u(F)(tk) such that x(tk+1) ∈
L(M2) ∀ u(L)x . 2

Property 14 obviously carries over to groups of vehicles
when guaranteeing the set memberships for according
pairs of vehicles. The sets L(M2) and Xsafe can be de-

termined as follows: Safety holds for all u
(L)
x if it holds

for u
(L)
x = ux,min until v

(L)
x = vx,min, i.e., max. braking.

This is intuitively clear and a formal treatment is omitted

due to lack of space. Then, in phase q1, u
(L)
x = 0, such

that (8) is undisturbed. For this dynamics, the maximal
control invariant set is computed, again by using a tool like
the MPT-toolbox. Next, sets of states which are robustly
controllable to this control invariant set are computed. The

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15609



union of these sets is a non-convex set L(M2), for which a
polytopic inner approximation is derived by visual inspec-
tion of the projection of L(M2) on its three-dimensional
affine hull. In these computations, set vx,min = 0 m s−1 in
order to allow braking to complete standstill in case of
emergency.

Robust Maneuver Feasibility As outlined in Sec. 3.2:

Proposition 15. (Robust Maneuver Feasibility) Given a
maneuver M = (C, Hplan, HA) and an initial state x0 of
the vehicles in C, a maneuver can be executed despite all
admissible disturbances if x0 ∈ KHplan

(M).

Proof. Follows directly from Definition 4. 2

Computation of these sets relies on the modeling of the dis-
turbances in the maneuver. Based on Assumption 12, the
only possible disturbance is from leading non-cooperative
vehicles on their immediate cooperative followers. In this
setting, the most adverse disturbance again is maximal
braking of all non-cooperative, leading vehicles – if a
maneuer is feasible for this setting, it is for all other
disturbances. Set computations can be further simplified
by assuming that vx = vx,min for all non-cooperative, lead-
ing vehicles from the beginning on. This clearly increases
conservatism, but not too drastically, because for regular
maneuvers (as opposed to emergency braking), setting
vx,min � 0 m s−1 in accordance to traffic rules on highways
limits conservatism. By fixing the disturbance, the dis-
turbed dynamics is transformed into affine, deterministic
dynamics, for which controllable sets can be computed as
discussed below.

In general, the controllable sets of Problem 3 are a non-
convex union of polytopes:

KHplan
(M) =

N⋃
n=1

KHplan

(
M, δ

(n)
Hplan

)
, (10)

in which a sequence of binary variables δ
(n)
Hplan

(·) :=(
δ(t0) δ(t1) . . . δ(tHplan−1) δ(tHplan

)
)

can be assigned to

each single polytope KHplan

(
M, δ

(n)
Hplan

)
and N is the num-

ber of different admissible binary sequences.

Even though it is –in principle– possible to compute each

KHplan

(
M, δ

(n)
Hplan

)
numerically exactly, using for example

methods as provided by the MPT-toolbox, this is im-

practical for two reasons: Firstly, for a fixed δ
(n)
Hplan

, these

computations are based on algorithms from computational
geometry (especially Minkowski addition of polytopes)
which are known to scale badly with increasing state space
dimension. Secondly, depending on Hplan and the number
of binary variables resulting from a specific maneuver
formulation, N may be large, and likewise the number of
polytopes to be computed.

The following remedy is proposed: In order to keep the
number of sets to be computed sufficiently low, these
are only computed for a subset I ⊂ {1, 2, . . . , N} of all
admissible δ-sequences. To facilitate computation for a
given sequence δ(n)(·), n ∈ I, approximate computations
are employed as in (Eilbrecht and Stursberg, 2019), now
extended by the well-established procedure from (Lotov
et al., 2013). The basic idea is to extend a given initial

approximationK(0) by incrementally adding new states x0,
in which a new set K(i+1) is defined as convex hull of the
old set K(i) and an added state: K(i+1) = CH

(
x0,K(i)

)
. If a

solution to Problem 3 exists for an added state x0 and the
given δ(n)(·), then K(i+1) is also a controllable set (Ker-
rigan, 2001). States to be added are chosen based on an
estimate of the Hausdorff-distance between approximation
and the (unknown) exact set K; the largest values tend to
increase the volume of the approximation the most. For
more details (e.g. regarding convergence), cf. (Lotov et al.,
2013). Clearly, the resulting approximated controllable set
is an inner approximation of the exact set:

K̃Hplan
(M) :=

⋃
n∈I
K̃Hplan

(M, δ
(n)
Hplan

) ⊆ KHplan
(M). (11)

6. MANEUVER FORMULATIONS

In this section, exemplary formulations of the maneuvers
in our maneuver library are detailed. Let proji(x) denote
the projection of vector x on the state space of vehicle i.

Lane Keeping: Single Vehicle The simplest maneuver
defines the behavior of a single vehicle which is driving
on a lane without any other vehicles in the closer sur-
rounding. The corresponding hybrid automaton contains
only one phase q0 and therefore no guards or transitions.
Inputs, states, dynamics, and input and state constraints
correspond to those defined in Sec. 4, while the invariant
(equivalent to the initial set X0) depends on the lane
the vehicle is driving on: on the left lane, inv(q0) ={
x ∈ X |v(E)

y = 0, p
(E)
y = py,max, v

(E)
x ≥ vx,min,left

}
, while

on the right (merge) lane, the vehicle’s state must also lie
in the control invariant set Xmerge from Sec. 5.1: inv(q0) ={
x ∈ X ∩ Xmerge, v

(E)
y = 0, p

(E)
y = py,min

}
.

Lane Keeping: Two Vehicles A slightly more complex
maneuver defines the behavior of a vehicle E driving
behind a non-cooperating vehicle (NL), while both keep
the lane (similar to Fig. 4). The hybrid automaton of
this maneuver also consists of only one phase q0 and
no transitions or guard sets. The dynamics now also
incorporate those of (NL), leading to the state vector

x =
[
x(E)T x(NL)T

]T
, while the input vector only consists

of u
(E)
x because the inputs of NL cannot be controlled

within the maneuver. Instead, conservative predictions
according to Sec. 5.2 are used, leading to affine dynamics,
thus U(q0) = U . Similar to the single vehicle’s lane keeping
maneuver, the invariant depends on the lane the vehicles
are driving on. Generally, X0 = inv(q0), with

inv(q0) =
{
x ∈ X × X , v(E)

y = 0, proj(NL,E)(x) ∈ Xsafe,

p(i)y =

{
py,max (left)
py,min (right)

, v(E)
x ≥

{
vx,min,left (left)
vx,min (right)

}
,

where “left” and “right” refer to the respective lanes.

Cooperative Merging The very core of our maneuver
library is a cooperative merging maneuver. It defines roles
for five vehicles, cf. Fig. 3: the non-cooperating leading
(NL) and following vehicles (NF), the ego vehicle which is
to merge (E), and the vehicles cooperating with it, (L) and

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15610



(F). Note that (E) is only allowed to merge between (F)
and (L), while (NF) and (NL) are incorporated into the
maneuver formulation in order to model the interaction
between the cooperating vehicles and their surrounding
according to Sec. 5.2. The associated hybrid automaton
consists of three phases Q = {q0, q1, q2} and has the
topology as shown in Fig. 2, i.e., the set of admissible
transitions is Θ = {θ0,1 = (q0, q1), θ1,2 = (q1, q2)}. The
phases correspond to: 1) (E) driving on the right lane
with zero lateral velocity, 2) (E) changing lanes, not having
reached the end of the acceleration lane pmerge,max yet, and
3) (E) having passed pmerge,max.

Based on (5), the continuous state space of the automaton
combines the states of the involved vehicles in:

x =
[
x(NF)T x(F)

T

x(L)
T

x(NL)T x(E)T
]T
∈ X. (12)

The corresponding input vector is:

u =
[
u(F)

T

u(L)
T

u(E)T
]T
. (13)

Note that the inputs of the non-cooperating vehicles (NF)
and (NL) are not contained because they are beyond our
control. Instead, conservative predictions are used accord-
ing to Sec. 5.2. The matrices A, B, and a in (1) result
from combining each vehicle’s dynamics (5) appropriately
according to the state vector (12), the input vector (13),
and the conservative predictions. All phases have the same
polytopic input constraints, which result from:

U(q) = U × U × U .
The state constraints in each mode combine: 1) general
constraint sets X on the dynamics of single vehicles with
2) safety constraint sets Xsafe in the state spaces of pairs
of vehicles, and 3) location-dependent constraints. Let:

Xlat =
{
x|v(i)y = 0, p(i)y = py,max

}
⊂ X, i ∈ {NF,F,L,NL},

and define X̃ := (X × X × X × X × X ) ∩ Xlat, then:

inv(q0) =
{
x|x ∈ X̃ , proj(NL,L)(x) ∈ Xsafe,

proj(L,F)(x) ∈ Xsafe, proj(F,NF)(x) ∈ Xsafe,

v(NF)
x = vx,max, v

(NL)
x = vx,min

}
,

inv(q1) =
{
x|x ∈ X̃ , proj(NL,L)(x) ∈ Xsafe,

proj(L,E)(x) ∈ Xsafe, proj(E,F)(x) ∈ Xsafe,

proj(F,NF)(x) ∈ Xsafe, p
(E)
x ≥ pmerge,min,

v(NF)
x = vx,max, v

(NL)
x = vx,min

}
,

inv(q2) =
{
x|x ∈ inv(q1), p(E)

y = py,max, v
(E)
y = 0

}
.

The initial set is X0 = {x ∈ inv(q0) : p
(E)
y = py,min, v

(E)
y =

0}, and XT =
{
x|p(E)

y = py,max, v
(E)
x ≥ vx,min,left, v

(E)
y = 0

}
,

which enforces that (E) is driving on the left lane with zero
lateral velocity and longitudinal velocity above vx,min,left.

The guard sets corresponding to the transitions are:

g(θ0,1) = {x|p(E)
y > py,min}, g(θ1,2) = {x|p(E)

x > pmerge,max}.
Note that these guard sets are unbounded, low-dimensional,
and overlapping, which, however, is not a problem accord-
ing to the semantics of the hybrid automaton.

From this cooperative merging maneuver, other merging
maneuvers can be derived by omitting vehicles and their

states from the hybrid automaton and adapting its for-
mulation accordingly. This allows to cover situations in
which fewer vehicles are present than depicted in Fig. 3,
thus making the maneuver library more flexible. For ex-
ample, a non-cooperative merging maneuver which only
considers (E) and a single non-cooperating vehicle (either
(NF) or (NL) is defined, depending on whether (E) should
merge before another vehicle or behind). This maneuver is
non-cooperative in the sense that (E) must plan without
other vehicles adapting their behavior, only relying on the
conservative treatment as described in Sec. 5.2.

7. SIMULATION RESULTS AND DISCUSSION

A Matlab-based simulation environment has been imple-
mented in order to analyze the effectiveness of the pro-
posed framework. The test setup was chosen as follows:
vehicles are generated every t seconds, where t is randomly
chosen from the intervals [3, 5] s (left lane) and [3, 4] s
(right lane). The initial longitudinal position is set to 0 and
the lateral position to the respective lane center with zero
lateral velocity. Longitudinal velocities are chosen in com-
pliance with velocity-dependent safety constraints Xsafe to
a preceding vehicle, but are completely random apart from
that (right lane) or as close to 100 km h−1 as possible (left
lane).

The simulation was run for 40 s, during which five vehicles
were generated on the left lane and three on the right
lane. Fig. 5 shows the final constellation of the vehicles,
where the numbering reflects the order of their generation
(2,4, and 7 started on the merge lane). The emerging
behavior is as follows: after 19 s, vehicle 2 executes a
cooperative merging maneuver with Hplan = 13, in a
coalition with vehicles 3, 5, 6, and 8 (in which 3 and 8
are non-cooperative). The resulting longitudinal velocities
of the cooperating vehicles 2, 5, and 6 are shown in Fig. 6.
The cooperative nature of the maneuver is illustrated by
the fact that the leading vehicle 5 accelerates slightly in
order to allow vehicle 2 to merge behind it. The following
vehicle 6, on the other hand, is so far behind that it does
not need to adapt its velocity to open a gap. Vehicles 4
and 7 are unable to find a gap into which they can merge
cooperatively, such that they wait until all vehicles have
passed and merge behind after 25.5 s and 34.5 s, with
Hplan = 18 and Hplan = 14, respectively. These maneuvers
take so long because they already include the process of
slowing down and waiting on the merge lane. The lateral
velocities of the merging vehicles 2, 4, and 7 are given
in Fig. 8, while Fig. 7 compares the actual longitudinal
distances (dotted) for a selected pair of vehicles to the
exact (thin black) and approximated (thick gray) safety
distances. The plot shows that the constraints are never
violated and demonstrates that the approximation is not
overly conservative.

8. CONCLUSION

The proposed approach is able to solve practically relevant
problems such as vehicle coordination, being both com-
putational efficient and theoretically sound with regard
to feasibility of the control algorithm. Practical applica-
bility holds despite the conservative, cautious treatment
of non-cooperating traffic participants, which is somewhat

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15611



0 200 400 600 800 1,000
−2

0
2
4

12 34 567 8

px in m

p
y

in
m

Fig. 5. Constellation after 40 s of simulation (bullets mark
vehicles; numbers indicate order of their generation).

19 20 21 22 23 24 25 26

10

20

Vehicle 5

Vehicle 6

Vehicle 2

tk in s

v x
in

m
s−

1

Fig. 6. Longitudinal velocities of cooperating vehicles
during merging of vehicle 2.

15 20 25 30 35 40
0

50

100

tk in s

d
L
F

in
m

Fig. 7. Longitudinal distance (dotted) and required safety
distance (gray: conservative; black: exact) for vehicle
pairing: L = 4, F = 7.

20 25 30 35 40
0

0.5
1

1.5
2

tk in s

v y
in

m
s−

1

Fig. 8. Lateral speed of vehicles 2, 4, and 7 (left to right).

surprising because conservative problem formulations of-
ten tend to prevent practical application in autonomous
driving. Computation of controllable sets inherently suffers
from the curse of dimensionality and remains a challenge
for larger sets of vehicles. This necessitates careful maneu-
ver formulation in order to keep the state space dimen-
sionality as low as possible.

While this paper has mainly focused on establishing fea-
sibility, future work will aim at the development of more
elaborate scheduling algorithms. In order to compare the
performance of different approaches, realization within
a large-scale traffic simulation environment (e.g., SUMO
(Krajzewicz et al., 2002)), which is more performant than
our Matlab-based implementation, is desirable.

REFERENCES

Bertsekas, D. (1995). Dynamic programming and optimal
control, volume 1. Athena scientific.

de La Fortelle, A. (2010). Analysis of reservation algo-
rithms for cooperative planning at intersections. In
Proc. Intelligent Transportation Systems Conf., 445–
449. IEEE.

Eilbrecht, J. and Stursberg, O. (2018). Optimization-based
maneuver automata for cooperative trajectory planning
of autonomous vehicles. In Proc. European Control
Conf., 82–88.

Eilbrecht, J. and Stursberg, O. (2019). Reducing com-
putation times for planning of reference trajectories in
cooperative autonomous driving. In Proc. Intelligent
Vehicle Symp., 114–120. IEEE.

González, D., Pérez, J., Milanés, V., and Nashashibi, F.
(2016). A review of motion planning techniques for auto-
mated vehicles. IEEE Trans. Intelligent Transportation
Systems, 17(4), 1135–1145.

Kerrigan, E.C. (2001). Robust constraint satisfaction:
Invariant sets and predictive control. Ph.D. thesis,
Citeseer.

Krajzewicz, D., Hertkorn, G., Rössel, C., and Wagner, P.
(2002). Sumo (simulation of urban mobility)-an open-
source traffic simulation. In Proc. Middle East Symp.
on Simulation and Modelling, 183–187.

Kuwata, Y. and How, J.P. (2010). Cooperative distributed
robust trajectory optimization using receding horizon
milp. IEEE Trans. Control Systems Technology, 19(2),
423–431.

Kvasnica, M., Grieder, P., Baotic, M., and Morari, M.
(2004). Multi-parametric toolbox (mpt). In Int. Work-
shop on Hybrid Systems: Computation and Control,
448–462. Springer.

LaValle, S.M. (2006). Planning Algorithms. Cambridge
University Press.

Lotov, A.V., Bushenkov, V.A., and Kamenev, G.K. (2013).
Interactive decision maps: Approximation and visualiza-
tion of Pareto frontier. Springer.

Manzinger, S., Leibold, M., and Althoff, M. (2017). Driv-
ing strategy selection for cooperative vehicles using ma-
neuver templates. In Proc. Intelligent Vehicles Symp.,
647–654. IEEE.

Qian, X., Altché, F., Bender, P., Stiller, C., and
de La Fortelle, A. (2016). Optimal trajectory planning
for autonomous driving integrating logical constraints:
An miqp perspective. In Proc. Intelligent Transportation
Systems Conf., 205–210. IEEE.

Schouwenaars, T., De Moor, B., Feron, E., and How, J.
(2001). Mixed integer programming for multi-vehicle
path planning. In Proc. European Control Conf., 2603–
2608. IEEE.

Schürmann, B., Heß, D., Eilbrecht, J., Stursberg, O.,
Köster, F., and Althoff, M. (2017). Ensuring drivability
of planned motions using formal methods. In Proc.
Intelligent Transportation Systems Conf., 1–8. IEEE.

Stursberg, O. and Krogh, B.H. (2003). Efficient repre-
sentation and computation of reachable sets for hybrid
systems. In Int. Workshop on Hybrid Systems: Compu-
tation and Control, 482–497. Springer.

Williams, H.P. (2013). Model Building in Mathematical
Programming. John Wiley & Sons.

Zhang, Y. and Cassandras, C.G. (2019). Decentralized
optimal control of connected automated vehicles at
signal-free intersections including comfort-constrained
turns and safety guarantees. Automatica, 109.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15612


