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Abstract: Cooperative Adaptive Cruise Control with a variable time headway is considered in
this paper. The two main objectives are the convergence of the spacing errors towards zero and the
attenuation of any disturbance propagating along the platoon. To ensure those objectives for any
variable time headway, the H∞ - Linear Parameter Varying approach is used. The efficiency of the
designed controller is illustrated through frequency domain analysis and time domain simulations.
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1. INTRODUCTION

Vehicle platooning in closely spaced groups has become
a solution to traffic congestion due to its benefits, e.g.
enhancing road safety, improving highway utility and
increasing fuel economy, see Hedrick et al. (1994). To
ensure the safe operation of such vehicle platoons, the
vehicle longitudinal dynamics have been equipped with
control systems in order to automatically accelerate and
decelerate and keep a desired inter-vehicle distance.

Adaptive Cruise Control (ACC) is a vehicle-following con-
trol system that automatically accelerates and decelerates
a vehicle to keep the desired distance, see Ioannou and
Chien (1993); Vahidi and Eskandarian (2003). In avail-
able commercial ACC systems, for comfort and safety
reasons, the desired inter-vehicle distances are usually
large which limits the traffic throughput. To increase the
traffic throughput and to form long vehicle platoons, small
inter-vehicle distances are required. Nevertheless, a risk
that may occur is the unstable string behaviour where
any disturbance is amplified when propagating along the
platoon.

Cooperative Adaptive Cruise Control (CACC) was intro-
duced as an extension of ACC by enabling wireless inter-
vehicle communications, see Rajamani and Zhu (2002);
Shladover (2005), allowing to achieve smaller inter-vehicle
distances while maintaining string stability.

Therefore, the two fundamental aspects of high interest in
ACC/CACC are: the spacing policy (static or dynamic)
and the string stability, see Swaroop and Hedrick (1996).
Since the most common spacing policy is constant spacing,
time headway based spacing policy have gained interest
due to the dependence on the vehicle velocity (allowing to

1 This work was supported by the ITEA3 European Project through
EMPHYSIS (Embedded Systems With Physical Models in the Pro-
duction Code Software) under Grant 15016.

reduce the inter-vehicle space), see Flores et al. (2017). On
the other hand, string stability is to be proved considering
velocity variations of the lead vehicle or initial condition
disturbances of the platoon vehicles, which can be done in
the H∞ framework through a frequency domain criterion
to guarantee the attenuation of disturbances along the
platoon as in Seiler et al. (2004); Ploeg et al. (2014);
Kayacan (2017).

Nevertheless, as those controllers were designed to operate
with a constant time headway they cannot be adapted
to variable time headway (Flores et al. (2017)) without
redesigning the controller. Some nonlinear CACC with
variable time headway could be found in the literature, see
e.g. Yanakiev and Kanellakopoulos (1998). However, string
stability cannot be guaranteed for small time headway
values. Furthermore, the nonlinear controllers are difficult
to analyse using linear system tools such as frequency
response and therefore Bode plots can no longer be used
in the analysis.

In this paper, CACC is considered with a variable time
headway which can cope with several policies (incl. Con-
stant Safety Factor) as the one proposed by Flores et al.
(2017) with a polynomial dependence on the velocity. The
interest of such a policy is to achieve safe high traffic
density in urban and highway scenarios. The CACC design
is tackled here for the first time in the Linear Parameter
Varying (LPV) framework allowing to handle variable time
headway and to ensure a priori string stability.

The paper is organized as follows. Section 2 presents
the problem formulation and section 3 provides the LPV
model and control design methodology. Section 4 presents
a frequency domain analysis of the control scheme and
time domain simulations. Section 5 concludes this study.
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Fig. 1. Schematic of N vehicle platoon

2. PROBLEM FORMULATION

Consider the vehicle platoon consisting of N vehicles as
illustrated in Fig. 1. Each vehicle is denoted Vi with i ∈ N
where N denotes the set {1, 2, . . . , N}. Each vehicle Vi in
the platoon receives the velocity of its predecessor vehicle
Vi−1, with i ∈ N \ {1}, via wireless communication.

In this section, a generic model of a homogeneous platoon
consisting of N vehicles with a variable time headway
based spacing policy is presented followed by the notion
of string stability in order to formulate the problem
considered in this paper.

2.1 Platoon dynamics

The main objective of each vehicle Vi, with i ∈ N , in the
platoon is to maintain a desired distance dr,i, with respect
to its predecessor vehicle Vi−1. The variable time headway
based spacing policy is given as follows

dr,i(t) = d0,i + h(vi(t))vi(t)

where d0,i is the standstill distance of vehicle Vi, h(vi(t))
is the time headway 2 and vi(t) is the velocity of vehicle
Vi. It is worth noting that this definition allows to consider
the variable nonlinear time gap policies presented in Flores
et al. (2017).

The actual relative distance between vehicle Vi and its
preceding vehicle Vi−1 is denoted di(t) and is given by

di(t) = pi−1(t)− pi(t)− Li−1,i i ∈ N \ {1}.
where pi−1(t) and pi(t) denote the position of vehicle Vi−1
and the position of vehicle Vi respectively. Li,i−i denotes
the summation of two lengths: the first is form the gravity
center of vehicle Vi−1 to its rear bumper and the second is
from the gravity center of vehicle Vi to its front bumper.

For each i ∈ N \ {1}, the spacing error ei(t) is defined
as the difference between the actual distance di(t) and the
desired distance dr,i(t), that is

ei(t)=(pi−1(t)− pi(t)−Li−1,i)−(d0,i + h(vi(t))vi(t)).

The first vehicle in the platoon V1 is considered to follow
a virtual reference vehicle (corresponding to index i = 0).
The error e1 could be thus defined as the spacing error
between the first vehicle and the virtual reference vehicle
whose position and velocity are denoted p0(t) and v0(t)
respectively.
2 h represents the time that vehicle Vi will take to arrive at the same
position as its predecessor Vi−1 when the standstill distance d0,i is
equal to zero.

Remark 1. Please note that the virtual velocity v0(t) is
generated by the platoon operator according to a predefined
operating scenario.

The vehicle dynamics are presented by the simple model

v̇i(t) = Fi(t)/Mi

where Fi(t) is the resulting traction forces and Mi is the
mass of vehicle Vi. Please note that Fi(t) is the considered
control input of vehicle Vi. Note that, in the simulation
results, the vehicles are assumed homogeneous.

Moreover, following the usual variable spacing policies,
it is here assumed that ḣ(vi(t)) is much smaller than 1.
Therefore, the considered model for each vehicle Vi, with
i ∈ N , is given by{

ėi(t) = vi−1(t)− vi(t)− h(vi(t))Fi(t)/Mi

v̇i(t) = Fi(t)/Mi
∀i ∈ N (1)

It is worth noting that the time headway h(vi(t)) is also
assumed to vary within a fixed range in accordance with
the chosen time gap policy, that is

h(vi(t)) ∈
[
h, h
]
, ∀vi(t)

In what follows, h(vi(t)) will be denoted h for simplicity
when there is no confusion.

2.2 String stability

String stability can be characterized as the attenuation of
the disturbance effects along the platoon. In the CACC
considered in this paper, the different velocities vi(t) are
the signals exchanged between vehicles Vi via wirelesses
communication. Therefore, these signals will be used in
the string stability criterion to ensure that any velocity
disturbance of an individual vehicle in a string do not
amplify when propagating upstream.

The following string stability criterion is adapted from Seiler
et al. (2004)

‖vi(t)‖L2
≤ ‖vi−1(t)‖L2

∀ i ∈ N (2)

where ‖vi(t)‖L2
denotes the L2 norm of the signal vi(t).

Please note that for V1, the string stability is with respect
to v0(t) which is not required as v0(t) is just a virtual signal
and does not correspond to any vehicle. The term ∀ i ∈ N
in (2) could be then replaced by i ∈ N \{1}. However, this
distinction is omitted in order to ease the notation and not
to make distinction between vehicle V1 and other vehicles
in the control design.
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2.3 Problem Statement

Consider a vehicle platoon consisting of N vehicles whose
dynamics are given by (1) with h ∈

[
h, h
]
. The CACC

problem consists in finding a controller Ki, whose output
is Fi(t), for each vehicle Vi, with i ∈ N , which satisfy the
following control requirements.

• Inter-vehicle distance tracking error convergence: For
each vehicle Vi, with i ∈ N , and if vi−1(t) = c with
c some velocity constant, the controller Ki has to
ensure

lim
t→∞

ei(t) = 0 ∀ i ∈ N .
• Platoon string stability: For each vehicle Vi, with
i ∈ N , the controller Ki has to ensure

‖vi(t)‖L2
≤ ‖vi−1(t)‖L2

∀ i ∈ N

3. CONTROLLER DESIGN

As seen before, since it assumed that the time headways
h vary within a range

[
h, h
]
, each vehicle Vi dynamical

behavior depends on the varying parameter h. Therefore,
the design of each controller Ki will be treated in Linear
Parameter Varying (LPV) control framework. More pre-
cisely, the polytopic H∞ approach for LPV systems will be
adopted here to achieve the different closed loop control
objectives.

In this section, a brief background on LPV systems and
the polytopic H∞ approach for LPV systems is presented.
Furthermore, an augmented suitable LPV control model
for each vehicle Vi is derived. Some additional components
(weighting functions) are added to the obtained model to
capture the different CACC control objectives considered
in this paper.

3.1 Brief background on LPV control design

The material presented in this subsection is from Poussot-
Vassal (2009) and more details can also be found in
Apkarian et al. (1995).

Consider the convex set Θ of varying parameters

Θ =

{
θ

∣∣∣∣∣ θ =
(
θ1 . . . θnθ

)T ∈ Rnθ

with θm ∈
[
θm, θm

]
∀ m ∈ {1, . . . , nθ}

}
(3)

where nθ is the number of the varying parameters.

A dynamical LPV system can be described as follows

P (θ) :

ξ̇(t)z(t)
y(t)

 =

A(θ) B1(θ) B2(θ)
C1(θ) D11(θ) D12(θ)
C2(θ) D21(θ) 0

ξ(t)
w(t)
u(t)

 (4)

where ξ(t), w(t) and u(t) are the state vector, the ex-
ogenous and the control inputs, respectively; z(t) and
y(t) hold for the controlled outputs and the measured
outputs, respectively. θ ∈ Θ is the set of varying pa-
rameters that describe a set of systems. A(θ) ∈ Rnξ×nξ ,
B1(θ) ∈ Rnξ×nw , B2(θ) ∈ Rnξ×nu , C1(θ) ∈ Rnz×nξ ,
D11(θ) ∈ Rnz×nw , D21(θ) ∈ Rnz×nu , C2(θ) ∈ Rny×nξ ,
and D21(θ) ∈ Rny×nw .

Please note that the dynamical system representation
includes the performance weighting function which are

usually used in the H∞ approach to achieve some closed-
loop requirements. Therefore, the vector ξ(t) contains the
state vector of the system in addition to the state vector
of the weighting functions (as seen later).

A dynamical LPV controller is defined by

K(θ) :

(
ẋK(t)
u(t)

)
=

(
AK(θ) BK(θ)
CK(θ) DK(θ)

)(
xK(t)
y(t)

)
(5)

where xK(t), y(t) and u(t) are the state vector, the input
and the output, respectively, of the controller associated to
system (4). AK(θ) ∈ Rnξ×nξ , BK(θ) ∈ Rnξ×ny , CK(θ) ∈
Rnu×nξ , and DK(θ) ∈ Rnu×ny .

The H∞ control problem for the LVP system P (θ) consists
in finding a LPV controller K(θ) such that the closed loop
system is quadratically stable and that, for a given positive
real γ, the L2-induced norm of the operator mapping w
into z is bounded by γ for all possible trajectories of θ.

Assuming that

(1) the different varying parameters θm of (3) are inde-
pendent and the different matrices of the LPV plant
state space realisation of (4) are affine with respect
to the parameter vector θ;

(2) the input and the output matrices do not depend on
the varying parameters θ that is

B2(θ) = B2, D12(θ) = D12, C2(θ) = C2, D21(θ) = D21.

Therefore, using a single Lyapunov function (quadratic
stability) and the global attenuation level γ, a LPV con-
troller is obtained by solving an off-line Linear Matrix
Inequalities (LMI) problem evaluated at each vertex of the
polytope formed by the extremum values of the varying
parameters.
The state space matrices of the LPV controller (5) are then
computed on-line as a convex combination of the vertices
controllers(

AK(θ) BK(θ)
CK(θ) DK(θ)

)
= Co

{(
Aj Bj
Cj Dj

)}
where Co denotes the convex combination and j =

1, . . . , 2nθ . The matrices

(
Aj Bj
Cj Dj

)
are the controller state

space matrices corresponding to the jth vertex.

3.2 Vehicle Vi LPV model

In order to solve the CACC problem with variable time
headway presented in Section 2 within LPV framework, a
first step is to elaborate a suitable control model.

As it was mentioned earlier, it is assumed that, for each
vehicle Vi, the measures of spacing error ei(t) and the ve-
locity vi(t) are available (measured or estimated); and that
the predecessor velocity vi−1(t) is transmitted through
wireless communication to vehicle 3 Vi. Therefore, a con-
trol oriented LPV model for (1) can be given with the
following state space representation{

ẋi(t) = Axi(t) +Bwiwi(t) +BFi(h)Fi(t)
yi(t) = Cxi(t) +Dwiyiwi(t)

(6)

3 For vehicle V1, the velocity v0(t) is assumed available and trans-
mitted by the platoon operator to vehicle V1.
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where xi(t) =
(
ei(t) vi(t)

)T
, wi(t) = vi−1(t) and yi(t) =(

vi−1(t) ei(t) vi(t)
)T

. The matrices A,Bwi , BFi(h), C and
Dwiyi are given by

A =

(
0 − 1
0 0

)
, Bwi =

(
1
0

)
, BFi(h) =

1

Mi

(
−h

1

)
,

C =

(
0 1 0
0 0 1

)T
, Dwiyi =

(
1 0 0

)T
.

(7)

where the parameter h is varying within the range
[
h, h
]
.

Note that in the obtained state space representation (6)
the resulting traction force Fi(t) is the control input for
the vehicle Vi. Therefore, the control input matrix BFi(h)
is parameter dependent, which is not consistent with the
H∞ polytopic design approach. To solve this problem, a
strictly proper filter fi(s) from a new control input ui(t)
to the force Fi(t) can be added into (6) in order to make
the controlled input matrix BFi(h) independent from the
varying parameter h, that is

fi(s) =
ωfi

s+ ωfi
where ωfi is the bandwidth which is chosen sufficiently
large to decouple the input and the varying parameter h.
This filter has the following state space representation

fi :

(
ẋfi(t)
Fi(t)

)
=

(
Afi Bfi
Cfi 0

)(
xfi(t)
ui(t)

)
(8)

where xfi(t) is the state variable and

Afi = −ωfi Bfi = −ωfi Cfi = 1. (9)

Using (6) and (8), a suitable LPV control oriented model
for the vehicle Vi is given by

Vi(h) :

{
ẋVi(t) = AVi(h)xVi(t) +BwiVi wi(t) +BuiVi ui(t)
yi(t) = CVixVi(t) +Dwiyi

Vi wi(t)
(10)

where xVi(t) =
(
xi(t)

T xfi(t)
T
)T

and the matrices AVi ,
BwiVi , BuiVi , CVi and Dwiyi

Vi are given by

AVi(h) =

(
A BFi(h)Cfi
0 Afi

)
, BwiVi =

(
Bwi

0

)
BuiVi =

(
0
Bfi

)
, CVi =

(
C
0

)T
, Dwiyi

Vi = Dwiyi

The different matrices A, BFi(h), Bwi , C and Dwiyi are
given by (7), with h ∈

[
h, h
]
, while Afi , Bfi and Cfi are

given by (9).

3.3 Control scheme and vehicle Vi augmented LPV model

The generalized parameter dependent plant Pi(θ), with
θ = h, for the vehicle Vi with the performance signals
considered for the CACC design is given by Fig. 2.

In Fig. 2, the system Vi(θ) is given by (10) while the filters
Wei and Wvi are weighting functions added to account for
performance specifications.

• Wei is added to ensure the convergence of the inter-
vehicle distance tracking errors towards zero. The
requirement is guaranteed if for θ ∈

[
h, h
]

the transfer
function from vi−1(t) to ei(t) satisfies the frequency
domain inequality, for all vertices θ1 = h and θ2 = h,
of the polytope∣∣Tvi−1(t)→ei(t)(jω, θj)

∣∣ ≤ 1

|Wei(jω)| ,∀ω ∈ R+, ∀θj (11)

Pi(θ)

Vi(θ)

Ki(θ)

Wei

Wvi

zei(t)

zvi(t)

vi−1(t)

ei(t)

vi(t)

ui(t)

vi−1(t)

Fig. 2. The generalized plant and the control synthesis
scheme for vehicle Vi.
with Wei of the form

Wei(s) =
s/Mei + ωei
s+ ωeiε

where ωei refers to the desired closed loop tracking
error response cut-off frequency, ε refers to the the
maximum permitted steady state error and Mei refers
to the maximum permitted overshoot value for the
error.

• Wvi is added to ensure the platoon string stability
requirement

‖vi(t)‖L2
≤ ‖vi−1(t)‖L2

which can be expressed as the frequency domain
inequality for all vertices θ1 = h and θ2 = h, of the
polytope∣∣Tvi−1(t)→vi(t)(jω, θj)

∣∣ ≤ 1

|Wvi(jω)| ,∀ω ∈ R+,∀θj (12)

where
Wvi(s) = 1.

The resulting LPV system Pi(θ) belongs to a polytope
defined as the convex combination of systems defined at
the two vertices θ1 = h and θ2 = h. The controllerKi(θ) for
this LPV system is easily found by applying the polytopic
H∞ approach presented above.

4. RESULTS AND SIMULATIONS

In this section, a validation of the designed CACC H∞
LPV controller is performed. First, some frequency domain
analysis are carried out to check that the closed loop of
one vehicle with its designed controller meets the design
requirements. Thereafter, some time domain simulations
of five vehicle platoon are performed to check that the
platoon control objectives are fulfilled.

Without loss of generality, the different parameters of the
model, the weighting functions and the simulation settings
are considered the same for all vehicles, as follows
Mi = 1200 kg, ωfi = 500 rad/s, ωei = 3 rad/s,
Mei= 1, d0,i = 5 m, Li−1,i = 0 m,

h = 0.5 s, h = 2 s.

4.1 Frequency domain analysis

The design requirements involve the inter-vehicle distance
tracking error convergence and the string stability.
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Fig. 3. Frequency domain investigation of the inter-vehicle
distance tracking error convergence.

Fig. 4. Frequency domain investigation of string stability.

The convergence of inter-vehicle distance tracking errors
towards zero is guaranteed if constraint (11) is respected.

Fig. 3 shows
∣∣Tvi−1(t)→ei(t)(jω, θ)

∣∣ evaluated at the two ver-

tices (θ = h and θ = h) of the closed loop poly-
tope and 1/ |Wei(jω)| is dashed red. As seen, the con-
straint (11) is respected as

∣∣Tvi−1(t)→ei(t)(jω, θ)
∣∣ is always

below 1/ |Wei(jω)|. Therefore, the inter-vehicle distance
tracking error convergence is achieved with the desired ob-
jectives (bandwidth, maximal overshot and steady state).

The string stability is guaranteed if constraint (12) is
respected. Fig. 4 shows

∣∣Tvi−1(t)→vi(t)(jω, θ)
∣∣ evaluated

at the two vertices (θ = h and θ = h) of the closed
loop polytope. As seen the constraint (12) is respected as∣∣Tvi−1(t)→vi(t)(jω, θ)

∣∣ is always less than 0 dB. Therefore,
any input disturbance is attenuated along the platoon as
it will be illustrated with the time domain simulations.

4.2 Time domain simulations

As the designed CACC H∞ LPV controller satisfies the
different control objectives, it can be implemented to
simulate the behaviour of five vehicle platoon.

The performed simulation consists of two parts.

• Part A: Platoon creation starting a stationary state in
order to illustrate the inter-vehicle distance tracking
error convergence towards zero.

(a) Different vehicle velocities

(b) Different inter-vehicle distance tracking errors

Fig. 5. Platoon creation illustration

• Part B: Virtual leader velocity and time headway
variations in order to illustrate the string stability
even with parameter variations.

In Part A, the virtual leader velocity v0(t) changes from
zero to reach a constant value while the time headway is
constant with h = 1 s. The results are illustrated in Fig. 5.

Fig. 5. (a) illustrates how the different vehicle velocities
convergence towards the virtual leader velocity (60 km/h).
Meanwhile, the different inter-vehicle distance tracking
errors converge towards zero as shown in Fig. 5. (b).

After all the different vehicle velocities has converged
towards the virtual leader velocity and consequently all
the inter-vehicle distance tracking errors have converged
to zero, it is possible now to test the string stability of
the vehicle platoon by introducing some variations in the
virtual leader velocity.

In Part B, the virtual leader velocity v0(t) is increased
or decreased according to a predefined scenario of accel-
erations and decelerations. In the same time, the time
headway h is also increased or decreased (in accordance
with v0(t)) to test if the vehicle platoon remains string
stable even when changing time headway h. The results
are illustrated in Fig. 6.

Fig. 6. (a) illustrates how the virtual leader velocity
v0(t) increases form 60 km/h to 120 km/h then decreases
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(a) Different vehicle velocities

(b) Different inter-vehicle distance tracking errors

(c) Time headway variation

Fig. 6. String stability illustrations

to achieve 20 km/h. Fig. 6. (c) shows how the time
headway h is changed in accordance with the virtual leader
velocity v0(t). As in Part A, the different vehicle velocities
convergence towards the new virtual leader velocity values.

The string stable behaviour of the vehicle platoon is illus-
trated Fig. 6. (b) where all the inter-vehicle distance track-
ing errors re-convergence towards zero with a decreasing
disturbance propagation.

In conclusion, the frequency domain analysis and the time
domain simulations performed in this section illustrate the
efficiency of the designed CACC H∞ LPV controller.

5. CONCLUSION

The problem of CACC with variable time headway based
spacing policy was considered in this paper. The control
objectives consists of ensuring that even with a variable
time headway, the inter-vehicle distance tracking errors
converge towards zero and that any disturbances on these
errors are attenuated when propagating along the platoon.
The problem is formulated within the LPV framework
where a suitable oriented model is first obtained and the
different control objectives are taken into account within
the H∞ control framework. Thereafter, a controller was
obtained using the polytopic H∞ approach. Frequency
domain analysis are carried out to confirm that the ob-
tained controller satisfy the different control objectives.
Furthermore, time domain simulations are performed to
illustrate that the inter-vehicle distance tracking error
convergence and the platoon string stability are satisfied
using the obtained controller.
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