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Abstract: We propose a novel external indoor positioning system that computes the position
and orientation of multiple model-scale vehicles. For this purpose, we use a camera mounted at
a height of 3.3 m and LEDs attached to each vehicle. We reach an accuracy of about 1.1 cm for
the position and around 0.6 ° for the orientation in the mean. Our system is real-time capable
with a soft deadline of 20 ms. Moreover, it is robust against changing lighting conditions and
reflections.

Keywords: Autonomous Mobile Robots, Multi-vehicle systems, Localization, Indoor
Positioning

SUPPLEMENTARY MATERIAL

A demonstration video of this work is available at
https://youtu.be/k6aD5G9DW4o.

More information about the CPM Lab is provided at
https://cpm.embedded.rwth-aachen.de

1. INTRODUCTION

Applications for indoor positioning are, e.g., humanoid
robots or (model-scale) autonomous vehicles. We are
building the Cyber-Physical Mobility Lab (CPM Lab)
with 20 model-scale vehicles (µCars) to develop and to
evaluate algorithms for networked and autonomous ve-
hicles. For this purpose, we developed an Indoor Posi-
tioning System (IPS), since the knowledge of the vehicle
positions is significant as computations of trajectories and
the interaction between vehicles highly depends on their
current positions. Additionally, trajectory control depends
on the accuracy of positioning. The precision of the IPS
is improved by sensor fusion with dead reckoning data.
Nevertheless, the IPS is the only absolute reference system
for the positioning. Therefore, to test functionalities in the
field of networked and autonomous vehicles using model-
scale vehicles, an accurate IPS is required.
There are already many systems providing the position
of indoor robots. Some approaches are wave-based using
WLAN or Radio Frequent Identification (RFID), e.g.,
(Ladd et al., 2005; Chawla et al., 2010), or ultrasonic and
Radio Frequency (RF), e.g., (Diab et al., 2015; Fukuju
et al., 2003). Overall, those approaches have the deficiency
of an accuracy in the decimeter to meter range. More
precise approaches are vision-based.
? This research is supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) within the Priority Pro-
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Graduate Program GRK 1856 “Integrated Energy Supply Modules
for Roadbound E-Mobility”.

There are many different attempts for vision-based in-
door positioning, e.g., (Mautz and Tilch, 2011). Some
use feature detection, e.g., (Hile and Borriello, 2008; Lee
and Song, 2007), some use Visible Light Communication
(VLC), e.g., (Ghimire et al., 2018; Rátosi and Simon, 2018;
Yoshino et al., 2008) and others use Simultaneous Local-
ization and Mapping (SLAM) methods, e.g., (Ido et al.,
2009; Noonan et al., 2018). However in those approaches
the target object is equipped with a camera and posi-
tions itself depending on its view. This requires additional
computation power on the robots. In order to keep the
computation requirements on the vehicles low, we develop
a system which externally determines the position and the
orientation (pose) of the target object. Our approach is
inline with the attempt of (Faessler et al., 2014). However,
(Faessler et al., 2014) deals only with a single vehicle
for positioning. Our IPS is able to determine the pose of
multiple vehicles.
There are also approaches to detect tags, e.g. (Neunert
et al., 2016; Olson, 2011). However, due to changing light-
ing conditions, the tags have to be larger than the model-
scale vehicles. Therefore, such approaches are not suitable
in our case.
We propose a new vision-based IPS that externally com-
putes the poses of multiple model-scale vehicles. For this,
we use LEDs attached to the autonomous vehicles and a
camera mounted on the ceiling. The LEDs can be detected
robustly even with changing lighting conditions using short
exposure times and bright LEDs. To distinguish the vehi-
cles, one of the LEDs flashes in a vehicle specific frequency.
Furthermore, our system can be used in a real-time envi-
ronment with a soft deadline of 20 ms.

The rest of the paper is structured as follows. Section 2
gives an overview of the infrastructure and the IPS al-
gorithm. The correctness of this algorithm is shown in
Section 3. Section 4 evaluates our IPS and Section 5
concludes this paper.
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Fig. 1. System overview. µCars drive on a printed map and
control trajectories planned by external computation
units in a networked manner. The camera is used for
positioning of the vehicles.

Fig. 2. µCar with four mounted LEDs. The blue-marked
LEDs (outer ones) are the positioning LEDs where
the yellow-marked LED (inner one) describes the
identification LED.

2. INDOOR POSITIONING SYSTEM

2.1 System Overview

Fig. 1 sketches our system overview. Up to 20 vehicles
drive on a map of 4mx4.5m size. One external computation
device is provided for each vehicle. A camera records the
whole map and a main computer performs the image
processing. A router allows for wireless communications
between the external computation devices, the main com-
puter, and the vehicles. For more details of the CPM Lab,
see (Kloock et al., 2020).

We mount the camera at a height of 3.3 meters straight
downwards. Its field of view covers the whole map. Fur-
thermore, we attach four LEDs to each vehicle as shown in
Fig. 2. The three outer LEDs marked in blue are arranged
in a non-equilateral triangle and used to determine the
pose of the vehicle. Since the triangle is not equilateral,
the direction of the vehicle can be depicted. We use the
fourth LED marked in yellow to distinguish the vehicles.
For this purpose, it flashes in a vehicle specific frequency.
This LED lays in the borders of the triangle of the outer
LEDs to simplify the clustering of the points to a vehicle.
Since a frequency cannot be determined in a single image,
we consider a sequence of images. However for pose deter-
mination, we only use the latest one. For more details of
the vehicle construction, see (Scheffe et al., 2020).

2.2 Algorithm Overview

Our algorithm consists of five steps. In a first one, a camera
stream is received. In the second step, we extract the LED

Fig. 3. The green marked annulus is the area in the vehicle-
width up to a tolerance to the green marked point. It
includes points that may belong to the same vehicle
back.

Fig. 4. The black ellipses surround all vehicle backs found
with the help of the vehicle-width. The blue points
are the LEDs of the vehicle back.

points. For each image, we cluster the detected points
belonging to a single vehicle afterwards. In a fourth step,
the detected vehicles in the current image are mapped to
the vehicles from the previous one. With this, we gain the
sequence of points belonging to each vehicle in different
images. Having this sequence, we compute the pose and
the ID of each vehicle in a last step. In the following, those
steps are explained in detail.

Get Image The camera takes images and writes them in
a queue. Those images are taken equidistant with a short
exposure time. The time difference between the images is
constant.

Find Points In a second step, we search for the LED
points in the image. As the images are taken with short
exposure times, the LEDs are detected robustly using
OpenCV (Bradski, 2000). We detect the contours of the
LED points and determine their moments. The moments
describe the centers of the blob. We filter the detected
contours by size to remove disturbance points, i.e., blobs
which are bigger or smaller than the expected size are
dropped.

Find Vehicles In a next step, we match points to
vehicles. For this purpose, we use the known distances
between the LEDs as a measure. We propose two methods.
First, we know the distance between the two LEDs on
the back of the vehicle. In our case, the basis of the
triangle. In the following, this distance is called vehicle-
width. Furthermore, the longest distance between two
LEDs on the same vehicle is known. This one is called
vehicle-length. We use the vehicle-width to determine the
vehicle back, i.e. the two LEDs mounted on the back of
the vehicle.

For each point, we compute all points exactly in its vehicle-
width up to a tolerance. This is shown exemplary in Fig. 3.
From the geometry of the LEDs on the vehicle, it holds
that if a point has another point in its vehicle-width, they
form a vehicle back. Hence, we can compute all vehicle
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Fig. 5. The green cycles are the areas in which points
belonging to the green vehicle back points are placed.
They are in the vehicle-length orthogonal to the
vehicle back, up to a tolerance.

Fig. 6. The green marked annulus includes the area in the
vehicle-length from the green point. This is the area,
in which vehicle backs are placed that may belong to
the same vehicle.

backs as illustrated in Fig. 4, i.e. the geometry avoids
ambiguities in scenarios with multiple vehicles. Since the
LEDs are mounted in a non-equilateral triangle, we receive
the direction of the vehicle from the vehicle backs. With
this knowledge, we can reduce the search space for the
remaining points. Those points are orthogonal to the ve-
hicle back in the vehicle-length. For this, we only consider
those points including a tolerance, as shown in Fig. 5. That
means for all vehicle backs, we know with which other
points they can form a vehicle, namely those inside the
green shaped area in Fig. 5. Now, we consider all points
that do not belong to a vehicle back. For those, we have no
restriction in direction to determine the points with which
they can form a vehicle. Here, the only restriction is the
vehicle-length. Hence, for each non-vehicle-back point, we
consider all points in the vehicle-length as possible points
with which it can form a vehicle. Those areas are shown
for one point in Fig. 6. Now, we know for each point with
which other points it can form a vehicle. Thus, if two points
are not in the area of the other, they cannot be mounted
on the same vehicle. That also means, if two LEDs are
mounted on the same vehicle, the corresponding points
are in the area of each other. We use this to determine the
vehicles. For this purpose, we choose one point with the
least possible matches. Then, we compute the intersection
of its matches, including itself, with the matches of all
points in its area. If this intersection is equivalent to the
matches of the chosen point, the intersection only contains
points belonging to the same vehicle.

Since the points from the intersection are mapped to a ve-
hicle, we remove all those points from the remaining areas.
Then, the procedure of choosing a point and intersecting
the areas is repeated until all points are mapped or no
progress is reached.

Fig. 7. The annulus of the green point and the areas of the
orange vehicle back points and the blue vehicle back
points. The double-colored cycle is in the area of the
orange vehicle back points and the blue vehicle back
points. The second blue cycle is omitted due to space
reasons.

However, there may be points that are in each others area
that are not mounted on the same vehicle, see Fig. 7.
The green point has two vehicle backs in its area and
is in the area of both vehicle backs, orange and blue.
Therefore, the intersection of the sets of possible matches
of the green point and the orange vehicle back is different
from the original sets. Hence, they cannot be matched yet.
Nevertheless, the intersection of the sets of the green point
and the blue vehicle back is equal to the original set of
the blue vehicle back. Thus, they may be matched. Once
removed from the pool of unmatched points, the remaining
points can be matched unambiguously.

For a small amount of vehicles it may be feasible to check
every combination of points and check if its distances are
feasible to match a vehicle. In this case, conflicts may occur
where ambiguities occur in the previous procedure, e.g. in
the example in Fig. 7. The check of combinations would
detect three vehicles, the ones shown in the Fig. 7 and a
vehicle containing of the orange vehicle-back and the green
front LED. Therefore, those conflicts have to be resolved
until each LED point is part of only one vehicle.

Match Vehicles Now, we have found all vehicles in one
image. To determine the frequency of the identification
LED, we need the sequence of points for each vehicle. For
this purpose, we need to match the vehicles in the current
image to the corresponding vehicles in the previous image.
We use that we receive the images with a high frequency.
Hence, vehicles can only move a short distance between the
images. We match each vehicle to the nearest vehicle in the
previous image. To avoid false matching, some plausibility
checks are done. For the position and the orientation, we
check whether the observed change between the previous
and the current image is physically possible. For identifi-
cation, we check whether the recalculation of the identity
yields the same result as before.

Compute Pose By now, we have the sequence of points
for each vehicle in the different images. As a resulting step,
we compute the pose of the vehicles. For this, we consider
the three positioning points from the current image. If the
identification point is visible in the latest image, it can
be filtered by the sum of the distances of one point to all
other. To compute the orientation, we consider the straight
line between two LED points. Then, we can compute
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the angle between this line and the x-axis. Since we are
interested in the orientation to the side of the vehicle,
we determine the offset of the straight line to the side
of the vehicle and add it to the previous computed angle.
For more robustness, we compute the orientation for all
three pairs of LEDs and take the median as result. In this
way, we can remove outliers. The position of a vehicle is
defined as its midpoint. Hence for positioning, we compute
the midpoint of the two back points and shift this point to
the midpoint of the vehicle using the previously calculated
orientation.

Identification For the identification, we use the sequence
of points. This sequence is received from the order of
images received by the camera. For each vehicle, that
sequence is an order of sets of three or four points each
belonging to this vehicle in the respective image. To deter-
mine the identity, we count in how many consecutive im-
ages the identification LED is on numon and in how many
it is off numoff . Using the camera frequency fCamera, the
time in which it is on or off ton/toff , respectively, can be
computed by

ton/off =
numon/off

fCamera
A mapping of LED frequencies to concrete IDs has to
be provided to our system beforehand. For this approach,
it is important that the LED frequencies have such high
distances that they can be recognized uniquely. For this
purpose, we choose the LED frequencies depending on the
camera frequency and the number of images in which we
expect the LED to be on or off. To guarantee that there
is no overlapping, we only consider every third number for
a sequence of images. For example, we expect that for the
first ID it is on in two following up images and for the
next ID that it is on in five following up images. With
this, we can handle sampling during a switch of the LED
value, as illustrated in Fig. 8. In Fig. 8(a), the camera
samples while the LEDs are on or off, while Fig. 8(b)
and 8(c) show scenarios where the camera samples while
the LEDs are turning on or off. For robust recognition,
we map the frequencies detected with the intermediate
numbers to the nearest number. In the end, we have for
each ID a number of images n in which we expect it to
be on. From this number we can compute the frequency of
the LED with the camera frequency fLED = fCamera

n and
the interval of detected frequencies which we map to this
ID [ fCamera

n+1 , fCamera

n−1 ]. Please note that we do not check
the last images again. Instead, the number of images in
which the identification LED is on and the overall amount
of images are tracked during operation. This approach
requires some initial time to initiate the IDs of the vehicles,
i.e., the minimum number of images to distinguish all used
IDs.

The algorithm is summarized in Algorithm 1 where
[v1, . . . , vn] describes a vehicle consisting of the image
points v1, . . . , vn belonging to its LED points, g1, . . . , gn
are the reference LED points as image points from the
vehicle geometry, dis computes all distances of the points
in the provided set sorted in ascending order and nj is the
size of the vehicle-mapping of vj with the corresponding
points pj1, . . . , pjnj−1.

(a) Sampling when the LED is on or off.

(b) Sampling when the LED
is turning on or off.

(c) Sampling when the LED
is turning on or off.

Fig. 8. Possible situations while sampling. The dashed red
lines depict the time points when an image with the
camera is taken. The blue line describes the signal
which is sampled and the black line the result of the
sampling.

Algorithm 1: One step of matching a set of
points to a vehicle.

Input : Vehicle Mapping for each point and a
point p

Output: Whether p belongs to a vehicle, is a
disturbance point or cannot be mapped,
yet. If p belongs to a vehicle, the
corresponding vehicle.

1 get {[p], p1, . . . , pn−1};
2 if n < 3 then return disturbance point;
3 if n > 4 then return cannot be mapped yet;

4 S =
n−1⋂
i=1

{[pi], pi1, . . . , pimi
} ∩ {[p], p1, . . . , pn−1};

5 if S == {[p], p1, . . . , pn−1} then
6 if dis(S) ≈ dis({g1, . . . , gn}) then return

Vehicle [p, p1, . . . , pn−1];
7 if n == 3 then return disturbance point;
8 return cannot be mapped yet;
9 end

10 if n == 3 then return disturbance point;
11 return cannot be mapped yet;

3. CORRECTNESS

In the following, we prove that this computation is correct.
That means, we prove the following theorem.

Theorem 1. Assume that disturbance points do not form
exactly a vehicle geometry with other points. Then, it
holds that:
If our system detects a vehicle consisting of the points
v1, . . . , vn with n = 3 or n = 4, the LEDs corresponding
to these points are mounted on the same vehicle.

First, we formalize some properties. From the reality, we
know that if we have a vehicle, all LEDs on the vehicle are
at most in the vehicle-length to each other and the distance
of the LED points match the distances of the vehicle
geometry. The assumption yields the other direction. We
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assume that if a set of points is in the vehicle-length of each
other and all the distances match the vehicle geometry, the
set of points belongs to one vehicle. Formally,

[v1, . . . , vn]⇔∀i = 1 . . . n.∀j = 1 . . . n, j 6= i.

vi ∈ {[vj ], pj1, . . . , pjnj−1}
∧ dis({v1, . . . , vn}) = dis({g1, . . . , gn})

(1)

For proving the Theorem 1, we first show the following
lemma.

Lemma 1. Assume Equation (1). Then, it holds that:
If Algorithm 1 forms a vehicle [p, v1, . . . , vn−1] with n = 3
or n = 4 for a provided point p, the LEDs corresponding
to these points are mounted on the same vehicle.

Proof. We prove that if the algorithm matches a point to
a vehicle, the found vehicle is indeed a vehicle by a case
distinction on n. So let p be an arbitrary point with

{[p], p1, . . . , pn−1}. (2)

Case 1. Let n < 3.
p is filtered out as disturbance point by line 2 of Algorithm
1. Thus, no vehicle is detected and especially no wrong
vehicle.

Case 2. Let n = 3 with {[p], q, r}.
a) Let the LEDs corresponding to p, q, r be mounted on

the same vehicle
Thus, we know from Equation (1) that

p ∈ {[r], r1, . . . , rm−1}
p ∈ {[q], q1, . . . , qk−1}
q ∈ {[r], r1, . . . , rm−1}
r ∈ {[q], q1, . . . , qk−1}

with this and Equation (2) we have

{p, q, r} ⊆ {[r], r1, . . . , rm−1} ∩ {[q], q1, . . . , qk−1}.
(3)

Furthermore, the set S from Algorithm 1 line 4
intersecting the above intersection with the mapping
of p is

S = {[r], r1, . . . , rm−1} ∩ {[q], q1, . . . , qk−1} ∩ {[p], q, r}.
Thus, from Equation (3) we receive that

S = {[p], q, r}.
Now, the algorithm checks in line 6 the distances.
Thus, the distances of the points dis({p, q, r}) are
compared to the distances of the position points
dis({g1, g2, g3}). Since the LEDs corresponding to
the points p, q, r are mounted on the same vehicle,
we know from Equation (1) that the distances are
similar. Therefore, the Algorithm 1 finds the vehicle
[p, q, r] which is indeed a vehicle.

b) Let the light points corresponding to the points p, q, r
do not be mounted on the same vehicle.

i) ∃s ∈ {p, q, r}.∃t ∈ {p, q, r}\{s}.
s 6∈ {[t], t1, . . . , tl−1}
Thus, the intersection does not contain one of the
points p, q, r that means

{p, q, r} 6⊆ S
= {[r], r1, . . . , rm−1} ∩ {[q], q1, . . . , qk−1}
∩ {[p], q, r}

Therefore, S 6= {[p], q, r}. In that case, the Algo-
rithm 1 determines p as a disturbance point in
line 10 and does not detect a wrong vehicle.

ii) ∀s ∈ {p, q, r}.∀t ∈ {p, q, r}\{s}.
s ∈ {[t], t1, . . . , tl−1}
From Equation (1), we then know that

dis({[r], r1, . . . , rm−1} ∩ {[q], q1, . . . , qk−1}
∩ {[p], q, r})
6= dis({g1, g2, g3}).

Thus, the Algorithm 1 detects p as disturbance
point in line 7 and does not detect a wrong
vehicle.

Case 3. Let n = 4 with {[p], q, r, s}.
a) Let the LEDs corresponding to p, q, r, s be mounted

on the same vehicle
This case is equivalent to Case 2a). The set S is
equal to {[p], q, r, s} and since the points p, q, r, s
belong to a vehicle, the distances are comparable
to dis({g1, g2, g3, g4}). Thus, the algorithm finds the
vehicle [p, q, r, s] which is indeed a vehicle.

b) Let the light points corresponding to the points
p, q, r, s do not be mounted on the same vehicle.
Analog to Case 2b), we need to distinguish two
further cases.

i) ∃u ∈ {p, q, r, s}.∃t ∈ {p, q, r, s}\{u}.
u 6∈ {[t], t1, . . . , tl−1}
Thus analog to Case 2b)i), the set S 6= {[p], q, r, s}.
Therefore, the Algorithm 1 cannot map the point
p yet and terminates in line 11 without finding a
wrong vehicle.

ii) ∀s ∈ {p, q, r}.∀t ∈ {p, q, r}\{s}.
s ∈ {[t], t1, . . . , tl−1}
Thus with the same argumentation as in Case
2b)ii), the algorithm cannot map p yet and ter-
minates in line 8 without finding a wrong vehicle.

Case 4. Let n > 4
p cannot be mapped yet by Algorithm 1 and thus it
terminates in line 3 without finding a wrong vehicle.

Thus, in all cases if a vehicle was found, it was indeed a
vehicle.

From Lemma 1, we can conclude that the Theorem 1 holds.
As the lemma shows that for one point p only a correct
vehicle is found by Algorithm 1, we can extend this to all
points since p was an arbitrary point and Algorithm 1 is
the only part of our system that recognizes vehicles.
Thus, we have shown that if a vehicle is found by our
algorithm, these points indeed form a vehicle.

4. EVALUATION

We evaluate our system in different scenarios in simula-
tions as well as in experimental tests. In simulations, we
simulate the camera and feed our system with black images
with white points at the positions where the LED would
be observed. This has the advantages over the real tests
that we exactly know the ground truth. Hence, we have
a perfect reference value. However, the real test provides
more realistic results for the accuracy of our system.
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Table 1. Accuracy in the simulation for all
175 scenarios. There is a small error in the
simulation results, since calibration is used for

comparison to experiments.

Position Orientation
Error in cm Error in °

Mean 0.449673 0.256081
Max 0.569379 0.876293
Std dev 0.0405785 0.153931

4.1 Scenarios

First, we have static scenarios. Here, we place the vehicle
at nine different positions in the room. In each position,
we place the vehicles in eight different orientations. We
choose the angles 0,±π4 ,±

π
4 ,±

3π
4 and π. Furthermore, we

evaluate dynamic scenarios. First, we force the vehicles
drive along a straight line. Here, we test eight different
lines in both directions, each with 0.5 m/s, 0.8 m/s and
1 m/s. In the experimental test, we additionally evaluate
a vehicle driving along a circle with 0.5 m/s, 0.8 m/s, 1
m/s and 1.5 m/s in both directions. We evaluate a higher
velocity in the circle experiments, as the distance is larger
than in the straight line experiments. In the simulation, we
test a vehicle driving an ellipse and afterwards an eight.
Here, we simulate up to 20 vehicles. In a first step, we
simulate them standing in small clusters and in a second
step driving the ellipse and the recumbent eight. Moreover,
we evaluate scenarios with two vehicles simulation right-
hand or left-hand traffic, two parallel lines or passing a
parking vehicle in different angles. Overall, we simulate
175 scenarios and test 128 in experiments.

4.2 Simulation Results

To create the images that are the input to our system, we
compute the positions of each vehicle in the world depend-
ing on the path which they follow. Then, we calculate the
LED positions from the vehicle positions. With the help of
a camera calibration, those world point can be translated
in the image plane. At those positions, we draw white blobs
in a black image and provide it to the system. Hence, we
only simulate the camera. For the identification LED, we
compute whether the LED is on or off at a specific time
point. Each image gets a time stamp.
To compute the accuracy of our system, we compare the
expected position from which the LED positions are com-
puted with the position received by our system. For this
purpose, we compute the euclidean error. The results of
all 175 scenarios as described above are summarized in
Table 1.

4.3 Experimental Results

Beside the simulation, we evaluate different scenarios in
experimental tests with a model-scale vehicle and a camera
in a height of about 3 m. For the static scenarios, we
place a vehicle at specific poses in the room. Then, we
compare the pose gained by our system with the one that
we intended to place. In contrast to the simulation, we
cannot guarantee that the vehicle is placed exactly in
the intended pose. Hence, an error may be introduced. In
Fig. 9, the computations in the simulations are compared
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(a) Comparison of the positioning error. The error is
given in cm.
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(b) Comparison of the orientation error. The error is
given in degree.

Fig. 9. Comparison of the accuracy results of the simula-
tions to the results of the experiments for all 72 static
scenarios.
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Fig. 10. Comparison between the velocity measured by the
vehicle and the velocity detected by our system in the
straight line experiment. Here, the distances of the
image to its predecessor is illustrated

to the results in the experiments for all 72 static scenarios.
In the dynamic scenarios the placement in reality gets even
worse. Beside the inaccurate placement, we need to know
the poses at the different time points depending on the
velocity. For this, we use data from odometer and Inertial
Measurement Unit (IMU) on the vehicle to compute the
reference value. To force the vehicle driving a straight line,
we use a rail. For the circle, we fix a midpoint and attach
a cord to this midpoint as well as to the vehicle. If the
vehicle drives straight ahead, it is pulled along a circle. In
Table 2, the accuracy results for the static test as well as
for the lines and the circles are shown. Fig. 10 compares the
speed received from the odometer to the velocity computed
from our IPS for the straight line experiment. Here, we
can see that those are comparable. However, there are
some differences, e.g. at the start of the experiment. The
tires start spinning, but the vehicle is not moving. The
speed measured by the odometer rises, but the IPS does
not measure any movement. The errors for the static tests
and the straight lines are comparable. However, the errors
of the circles are worse. This is because the placement
of the circles was the most difficult. If the length of the
cord is measured only a few millimeters too short or too
long, the error of the intended position to the actual po-
sition increases with covered distance. Furthermore since
the vehicle drives straight ahead, the actual angle of the
vehicle does not fit to the angle of the tangent to the circle.
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Table 2. Accuracy of the dynamic scenarios
evaluating experimental results compared to
the results of the static scenarios evaluated

experimentally.

Static Lines Circles
Position [cm]
Mean 1.119578024 1.41932 5.77446
Max 3.250616575 4.64408 19.4436
Std dev 0.663445809 0.804597 3.62245

Orientation [°]
Mean 0.629930184 0.621901 2.10362
Max 2.248496847 10.4818 12.7505
Std dev 0.516798292 0.438002 1.73485

However for the straight lines, the results are comparable
to the static tests. Here, we only have a single computation
yielding a wrong result. This, we consider as an outlier.
For all other computations, the maximal errors are in the
range of the maximal errors of the static experiments.
Overall, the errors of the experimental test increase com-
pared to the simulation. On the one hand, this is because
the placement is more difficult as described above. On
the other hand, the error of the calibration of the camera
introduces an error in the positioning. Since no mapping
between the world points of the camera and the world
coordinate system used by the system is done in the
simulation, there is no such calibration error.

4.4 Efficiency

The next property of our system that we evaluate is the
efficiency. For this purpose, we determine the average and
the worst case. In the worst case, we have all vehicles
driving in a platoon. Then, we can determine in the ’Find
Vehicle’−step only two vehicles at the same time namely
the head and the tail of the platoon. Hence, we need
many iterations to detect all vehicles. In contrast to this,
the vehicles are clustered in small groups in the average
case. In Fig. 11, the computations times for the different
steps are shown for different number of vehicles in the
worst case as well as in the average case. We can see that
finding points in the image and computing the ID and
the pose is constant for increasing number of vehicles as
well as for the average and the worst case. Matching the
vehicles is constant for the average case compared to the
worst case, but increasing with the number of vehicles.
This is because we need to match more vehicles. However,
it has not influenced how those vehicles are positioned.
The step with the most influence on the overall runtime is
finding the vehicles. With increasing number of vehicles,
the computation time increases. Furthermore in the worst
case, the computations are higher than in the average
case. This is because more vehicles need to be found with
increasing number of vehicles and it is more difficult to
find them in the worst case compared to the average case.
Furthermore, we compare the runtimes with increasing
number of vehicles for the average case and the worst case.
The results can be seen in Fig. 12 and Fig. 13, respectively.
In the average case, all computations terminate within the
soft deadline of 20 ms. In the worst case, all computations
for less than 14 vehicles also terminate within the deadline.
For more than 14 vehicles, the deadline is exceeded.
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Fig. 11. Mean latencies of the single steps of the algorithm
for 3, 16 and 20 vehicles in the average case and in
the worst case.
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Fig. 12. Mean and max latencies of our algorithm in the
average case (vehicles split in clusters) for different
number of vehicles and clusters. The deadline gained
from the vehicle cycle time is marked as dashed red
line.
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Fig. 13. Mean and max latencies of our algorithm in the
worst case (driving in a platoon) for different number
of vehicles. The deadline gained from the vehicle cycle
time is marked as dashed red line. The percentages
describe the amount of computations that terminate
within the 20 ms.

However, for 20 vehicles 87.57 % of the computations
terminate within the deadline. After computation, there
is a delay of about 5 ms for communications of the poses
to the vehicles.
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Fig. 14. A model-scale vehicle on an intersection, as seen
from the IPS. The colors are inverted due to print
reasons.

4.5 Robustness

We also evaluated the robustness of our system against
changes of the lighting conditions. Due to the low exposure
time and the light LEDs, the vehicles are detected robustly
even in light environments. Fig. 14 shows an image of a
vehicle on an intersection as seen from the IPS. Please
note that the colors are inverted. The white lines of the
road are light grey, while the LED points of the vehicle
are black. Hence, we can easily filter LED points of the
vehicles using a threshold.

However, if an led is broken or occluded, it can not be de-
tected. For robustness aginst such errors, we implemented
a timeout on the vehicles. If the IPS is not able to detect
a vehicle, the points are omitted, as stated in Section 2.
Then, the vehicle does not receive any pose update for
some time. If the vehicle does not receive an update for
100 ms, i.e. of 5 consequtive images, the vehicle stops. If
the identification LED is occluded, the IPS may detect a
vehicle with a wrong ID. Therefore, one vehicle will not
receive pose updates and will stop.

5. CONCLUSION

We developed a new indoor positioning system which
externally computes the position and the orientation of
multiple vehicles. We evaluated our system with 20 vehi-
cles. Our system is real-time capable with a soft deadline of
20 ms. Moreover, we reach an accuracy of around 1 cm and
of about 0.6 ° in the mean. We robustly detect all vehicles
in the plane even with changing lighting conditions and
reflections. While evaluating our system, no identification
errors occurred. Hence, our indoor positioning system can
be used in applications with model-scale autonomous vehi-
cles in which the knowledge of the position of each vehicle
is crucial.
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