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Abstract: This work considers a level-set based algorithm for guiding evacuees in indoor environments.
The algorithm considers the accumulated inhalation of a hazardous substance such as carbon monoxide
and attempts to provide an optimal path to ensure survivability. The algorithm also considers psycholog-
ical decision making of evacuees. The most significant psychological contribution to overall evacuation
time is the tendency of evacuees to underreact, causing decision making delays. During an emergency,
evacuees with high risk perception will be directly incentivized to make evacuation decisions, while
those with low risk perception will likely continue to delay decision making. This work models this
phenomenon by simulating an initial accumulated concentration before the evacuee begins moving.
Earlier work has shown that level-set based paths are much more likely to lead an evacuee to safety
than a constant angle path, because they ensure the evacuee’s peak exposure to the hazardous substance
remains low. After including the psychological delay, this work supports these results. Additionally, a
higher initial concentration (i.e. a longer psychological delay) decreases the chances of survival more
significantly than does a higher instantaneous concentration of the field itself.
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1. INTRODUCTION

Evacuation of enclosed spaces during building fires and chem-
ical emergencies has been the subject of earnest research in the
fields of fire protection engineering, psychology and sociology.
It is thanks to these research communities that policies have
been put in place by agencies such as the United States Federal
Emergency Management Agency (FEMA) to ensure safety dur-
ing evacuations (e.g., building codes, exiting procedures, readi-
ness awareness programs, etc.) (ICC, 2014). However, these
initiatives by and large may not take into account the chemical
byproducts of fire–such as carbon monoxide (CO)–and how
these byproducts may affect the survivability of potential exit
paths.
This work attempts to address the issue of CO survivability in
an evacuation environment by considering both the psychologi-
cal factors which affect human behavior during evacuations, as
well as the physiological factors which affect human movement
and survivability in evacuations.

1.1 Psychological Factors

Small scale evacuation refers to sudden and relatively localized
emergencies, such as a fire outbreak or building collapse. Evac-
uation of such events occurs on foot. They differ from long-
distance regional evacuations, which result from events such as
earthquakes, and often involve vehicles as transport (Li et al.,
2014). The former will be our primary focus here.
A general set of human reactions prior to evacuation has been
identified throughout literature. This time period, beginning
with the first emergency cue and ending with the movement
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towards exits, is known as pre-evacuation (Zhao et al., 2009).
The pre-evacuation period can be further broken down into
three parts: (i) the pre-alarm phase, (ii) the information seeking
phase, and (iii) the response phase (Kinateder et al., 2015). The
decisions made during this stage have significant effect on the
overall pre-evacuation time (Zhao et al., 2009).
The pre-alarm phase refers to period prior to and including
the first emergency cue, i.e. smoke, debris, an alarm, etc. (Ki-
nateder et al., 2015). Following the first sign of emergency,
the first psychological choice of action is to investigate fur-
ther in order to either confirm or deny that there is in fact an
emergency (Wang et al., 2016; Zhao et al., 2009; Mu et al.,
2013). This marks the beginning of the information seeking
phase and is likely due to the dislike of ambiguity (Mu et al.,
2013). It is also affected by the degree of perceived risk and
is further discussed below (Waldau et al., 2005). The second
choice of action is to discuss the nature of the event or to alert
others of an emergency (Zhao et al., 2009). Finally, decisions
regarding evacuation are made in the response phase, during
which an individual will take protective actions, which include
evacuation or seeking shelter in place (Kinateder et al., 2015).
Made evident through evacuation delays in the pre-evacuation
phase is the tendency for humans to under-react in potentially
hazardous situations (Drury and Cocking, 2007). Fire injury
and death research has found that over two-thirds of the in-
jured and over half of the dead in building fires could have
evacuated, but instead engaged in behaviors that delayed their
exit (Kuligowski, 2017). The notion of widespread panic dur-
ing emergencies, though popularized through media, is seldom
seen in actual evacuation or emergency scenarios (Drury and
Cocking, 2007; Zhao et al., 2009). Freezing behavior often
occurs in individuals during an emergency, which further in-
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creases evacuation delays (Leach, 2004; Drury and Cocking,
2007). This passivity in the face of danger is attributed to
difficulty processing the reality of their situation, resulting in
this reflexive reaction (Leach, 2004). Moreover, freezing can
be considered a coping mechanism (Drury and Cocking, 2007).
Therefore, the psychology of decision making in such an event
is likely more informative in regard to the total evacuation
time, which includes the pre-evacuation stage and the final act
of evacuating, than factors such as building design, i.e. exit
width and travel distance (Drury and Cocking, 2007). Delaying
evacuative actions can take longer than the time necessary to
travel the distances to and through exits (Vorst, 2010).
Evacuation delays also serve as a buffer during which an in-
dividual will work to assess and confirm the warning cues
(Kuligowski, 2017). As previously discussed, this is achieved
through information seeking behaviors. More ambiguous cues
result in a higher probability that individuals will search for
information (Kuligowski, 2017). Information obtained during
this time, as well as the cues themselves, heightens the recipi-
ent’s perceived risk. This is because experiencing warning cues
associated with emergency make dismissing the situation more
difficult and obtaining information makes the event’s severity
known, thus increasing perceived risk (Kuligowski, 2017).
Risk perception is one of the most prominent factors affecting
human decision making during the pre-evacuation period. Re-
search and interviews with survivors from the September 11,
2011 attacks on the World Trade Center indicated a positive
correlation between perceived risk and protective evacuation
decisions. Seventy percent (70%) of the building’s occupants
reported that feeling at risk pushed them to make an evacuation
decision. Similarly, lower perceived risk was linked to evacu-
ation delays (Kinateder et al., 2015). Thus, risk perception is
considered to directly influence protective decision-making, as
well as the direction and strength of the relationship between
the predictor variable and the protective action (Kinateder et al.,
2015). Additionally, a curvilinear relationship exists between
perceived risk and information seeking behaviors; if extremely
high or low, individuals are less likely to investigate the emer-
gency (Kinateder et al., 2015).

1.2 Physiological Factors

A multitude of physiological factors affect an evacuee’s effec-
tiveness in escaping areas where hazardous amounts of CO
are liberated, such as building fires (Gozubuyuk et al., 2017).
Some of these factors include age, bodily size, and physical
conditions such as cardiac stability, aerobic fitness, and bodily
mobility (Gozubuyuk et al., 2017). Furthermore, health con-
ditions such as emphysema and asthma will lower respiratory
capacity (Gozubuyuk et al., 2017). Age also plays a role in
evacuation efficiency; young adults are generally able to walk
more quickly than children and the elderly. Additionally, men
walk faster than women. An ideal path planning algorithm will
consider in detail physiological factors such as these. For the
sake of simplicity, this work does not consider these factors in-
dividually. However, it attributes the pre-existing accumulated
amount of CO due to both evacuative action such as evacuation
delays, and physiological factors.
While the physiological factors that affect the evacuee’s ability
to escape vary greatly between individuals, the susceptibility of
humans to CO exposure is well documented and may be gener-
alized across the human population. According to the National
Fire Protection Association, the concentration of CO–measured
in parts per million (ppm)–is a determining factor of the symp-

toms of an average adult (National Fire Protection Association,
2008). The symptoms of CO poisoning can be predicted based
on the percentage of CO in the bloodstream (Gozubuyuk et al.,
2017). According to Permentier et al. (2017), percentages less
than 5% cause little to no toxicological effects. However, CO
percentages between 41% and 50% can cause loss of con-
sciousness in seconds (Gozubuyuk et al., 2017). According
to Demetriou and Kontopyrgos (2019a), the safe limit of CO
inhalation is based on the peak concentration already sustained.
If an individual has encountered a high peak CO concentration,
then their safe limit of exposure is drastically reduced. If the
same individual avoids high peak exposure, they will have a
higher limit for accumulated exposure.

1.3 Previous Work and Contributions

Previous work in this field has provided insight into the effects
of CO exposure on the human body. Coşkun et al. (2019)
proposes that CO exposure time is positively correlated to
the concentration of carboxyhaemoglobin, a chemical which
impairs oxygen transport. Demetriou and Kontopyrgos (2019a)
also propose a model for CO poisoning. If an individual has
sustained a peak CO concentration in excess of 2,000 ppm,
then the safe limit of accumulated exposure for this individual is
cthresh = 25,000 ppm. Conversely, the safe limit of accumulated
exposure for peak CO concentrations less than 2,000 ppm is
cthresh = 64,000 ppm. This is the model for CO poisoning that
will be used for this work.
Earlier work in this field has proposed a model for evacuee
survival that includes instantaneous (peak) CO concentration
as well as accumulated concentration. It has been demonstrated
by Demetriou and Kontopyrgos (2019a) that in such a model,
a straight-angle path may not be survivable, while a level-set
approach might be. The current work attempts to replicate this
result, while taking into account a brief psychological delay
incurred during the pre-evacuation phase.
The current work aims to contribute the effects of an initial con-
centration inhaled on the survivability of a candidate evacuation
path. Such an initial accumulated concentration (amount of CO
inhaled in lungs) stems from the evacuation delay whereby
the evacuee, due to the psychological factors takes no action
while inhaling and accumulating CO in the lungs. The effects
of initial concentration versus field intensity are analyzed so as
to determine a relationship between field concentration, initial
concentration due to delayed evacuative action, and survivabil-
ity for both constant angle and level-set based paths.
The remainder of this paper is as follows. Section 2 describes
the mathematical method used to solve the aforementioned
problem. Section 2.1 summarizes the mathematical model of
CO field. Section 2.2 describes the kinematic equations mod-
eling the motion of a single evacuee during an evacuation
procedure. Section 2.3 presents the accumulation model due to
inhalation of CO. Section 2.4 states the path planning (control)
problem and Section 2.5 describes the path planning algorithms
used. Section 3 presents the results of the numerical studies, and
Section 4 discusses conclusions and areas for future work.

2. PROBLEM FORMULATION AND MAIN RESULTS

2.1 Mathematical modeling of spatial field

The dispersion of hazardous substance, such as the CO, is
assumed to be governed by an advection-diffusion partial dif-
ferential equation (PDE), (Seinfeld and Pandis, 1997; Arya,
1999). Assuming multiple sources of the species, the dispersion
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equation is given, in its general form by the PDE in a 3D
rectangular spatial domain Ω = [0,Lχ]× [0,Lψ]× [0,Lζ], by

∂c
∂t

= ∇ · (D∇c)−∇ · (uc)+
n

∑
i=1

bi fi (1)

where c(t,χ,ψ,ζ) denotes the species concentration at time
t ∈ R

+ and spatial coordinates (χ,ψ,ζ) ∈ Ω, D the (eddy)
diffusivity, u the wind velocity vector and bi = bi(χ,ψ,ζ),
i = 1, . . . ,n the spatial distribution of the source terms and
fi = fi(t), i= 1, . . . ,n their corresponding temporal component;
i.e. fi(t) denotes the mass release rate. The above is furnished
with boundary and initial conditions

c(0,χ,ψ,ζ) = c0(χ,ψ,ζ), c|∂Ω1
= 0, ∇c∂Ω2

= 0, (2)

where the mixed conditions are assumed for the boundary ∂Ω=
∂Ω1 ×∂Ω2. Equations (1), (2) can be simplified to their steady-
state representation, thereby arriving at Poisson’s PDE.
Following the assumption argued in (Demetriou and Kontopy-
rgos, 2019b), the 3D PDE representing the species dispersion
in an indoor environment can be reduced to a 2D PDE by
assuming axisymmetry in the vertical direction; this stems from
the fact that the vertical variation of the concentration field
around the head of an average human is negligible compared
to the variation across the horizontal plane. The 2D PDE can be
further simplified if the time scales involved (total evacuation
duration and PDE time constant) are not of the same order.
This reduces the 2D advection-diffusion PDE to 2D Poisson’s
equation. In its simplest form Poisson’s equation is

∆c = g, c|∂Ω1
= 0, ∇c∂Ω2

= 0, (3)

where the Laplace operator is ∆ϕ = ϕχχ +ϕψψ +ϕζζ for ϕ ∈

H1
0 (Ω) and g ∈ H−1(Ω) encompasses the spatial distribution

and strength of all n sources in (1).
Since each evacuee has access to the full state c(χ,ψ) in (3),
then the concentration at the coordinates (x,y) ∈ Ω of the
evacuee is given by

γ =
∫ Lχ

0

∫ Lψ

0
δ(χ− x)δ(ψ− y)c(χ,ψ)dψdχ = c(x,y).

When the evacuee is moving, the coordinates are given by
(x(t),y(t)) and the above becomes a time-varying function

γ(t) =
∫ Lχ

0

∫ Lψ

0
δ(χ− x(t))δ(ψ− y(t))c(χ,ψ)dψdχ

= c(x(t),y(t)).
(4)

This can be viewed as the output of a sensor placed at the
evacuee’s coordinates and having a spatial distribution given
by the spatial delta function centered at (x(t),y(t)).
The CO field used here is assumed to be governed by the 2D
Poisson’s PDE in (3) with a known source location and strength.
As such, a gaussian distribution is used as its solution with a χ-
and ψ-covariance Sχ and Sψ, and centered at location (Cχ, Cψ)
(source location). Thus, the CO concentration is given in (5)
below, where the constant K may be altered to change the field
intensity. Fig. 1 is included to visualize the spatial field.

c(χ,ψ) = 4.1×104 K e

(

−

(

(χ−Cχ)2
Sχ

)

−

(

(ψ−Cψ)2

Sψ

))

(5)

The constant K is included as a way of directly manipulating
the intensity of the CO field. This will be used in Section 3 to
examine the relationship between field intensity, initial concen-
tration, and survivability.

Fig. 1. Top view of the spatial distribution of the field in (5).
2.2 Kinematic equations for single evacuee

Human behavior during an evacuation is complex, and is based
on many separate agents’ interactions, in addition to their in-
dependent trajectories, (Cristiani et al., 2014; Kachroo, 2009).
The full dynamics include both translational and rotational mo-
tion as well as interaction forces due to collisions, see (Zhou
et al., 2018, 2019). For this analysis, only one agent is consid-
ered and as such a simplified model can be used. The evacuee’s
movement can be modelled as a modification to Zermelo’s nav-
igation problem (Bryson and Ho, 1975), where the velocities in
the χ- and ψ- directions are given below

ẋ(t) =V (t)cos(θ(t)),

ẏ(t) =V (t)sin(θ(t)),
(6)

where θ(t) is the orientation angle (pose), measured counter-
clockwise from the χ-axis. The evacuee speed V (t) is time-
varying and depends on both psychological and physiological
factors. Physiological factors include the accumulated amount
of CO inhaled and the level of fitness of the evacuee; psycho-
logical factors include stress and anxiety levels. For simplicity,
the speed V here is chosen to be constant and equal to 7 m/s,
as proposed in (Demetriou and Kontopyrgos, 2019a) to be the
average speed of humans during an evacuation. The solution
to (6) provides the position (coordinates (x(t),y(t))) of the
evacuee with respect to the origin of the reference frame within
the spatial domain Ω, taken to be the indoor environment.

2.3 CO Accumulation Modeling

The total amount of CO inhaled along a particular escape path is
computed using the line integral of the concentration along the
chosen path (Demetriou and Kontopyrgos, 2019a). If the path
is denoted by r(t) = (x(t),y(t)) then the line integral (Kaplan,
1984) along this path is defined as a function of θ (control)

z(θ) =
1
2

∫
θ

c(r)ds. (7)

This is expressed as an explicit function of time as follows

z(t) =
1
2

∫ t

0
c(x(τ),y(τ))

√

(

dx(τ)
dτ

)2

+

(

dy(τ)
dτ

)2

dτ

=
1
2

∫ t

0
c(x(τ),y(τ))V (τ)dτ.

(8)
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When the speed is assumed constant, then the above becomes

z(t) =
V
2

∫ t

0
c(x(τ),y(τ))dτ.

The line integral is visualized in Fig. 2. Equation (8) provides

Fig. 2. Line Integral of concentration field c(χ,ψ) along an
escape path for the field in Fig. 1.

the total amount of CO inhaled by the evacuee. The factor of
1/2 is introduced to model the breathing pattern of a human,
wherein only half of the time is spent breathing in and accu-
mulating CO. It represents a simple model in the inhale-exhale
cycle which is assumed constant and symmetric. More involved
models would have a time-varying fraction, dependent in the
CO concentration.
The present suggests the inclusion of an initial concentration
z(0) 6= 0 due to pre-evacuation psychological freezing. This
initial condition may be included in equation (8) as follows

z(t) = z(0)+
V
2

∫ t

0
c(x(τ),y(τ))dτ,

or used as a third state variable in (6)

ż(t) =
V
2

c(x(t),y(t)), z(0) = z0 6= 0. (9)

Note that z is related to the “evacuee measurement” in (4) via

z(t) = z(0)+
V
2

∫ t

0
γ(τ)dτ,

2.4 Problem statement

The problem can be cast as a variation of the optimal navigation
problem where the accumulated amount inhaled z(t) is to be
minimized subject to (6). Two related limits are needed: (1)
the instantaneous value of the CO concentration at the current
location of the evacuee (x(t),y(t)) given by γ(t) in (4) and (2)
the accumulated amount inhaled up to the current time given by
z(t) in (9). The threshold for survivability cthresh is a function
of the instantaneous value as presented in (Demetriou and Kon-
topyrgos, 2019a). Thus, the problem is to ensure that an evacuee
reaches any of the exits (Xi,Yi), i = 1, . . . ,N in the smallest
possible time and with the accumulated amount z(t) well below
cthresh. The constrained optimization problem becomes that of
minimizing the flight time t f with (x(t f ),y(t f )) = (X ,Y ), while
ensuring z((t f )≤ cthresh:

minimize:
∫ t f

0
1dt

subject to (6), (9) with initial and boundary conditions

x(t0) = x0, x(t f ) = X ,

y(t0) = y0, y(t f ) = Y,
z(t0) = z0, z(t f )≤ cthresh.

The optimal solution has been examined in (Demetriou and
Bakolas, 2020) for the 3D case having the 2D case examined
here as a special case. This optimal solution is a computation-
ally intensive open-loop solution, which cannot be considered
in the context of a real-time human evacuation. Instead, we
consider a modification to the level-set guidance presented in
(Demetriou and Kontopyrgos, 2019a,b) summarized below.

2.5 Path Planning Algorithms: modified Level-set path planning

The desired path planning algorithm must ensure that the evac-
uee with initial coordinates (x(0),y(0)) follows a path which
obeys (6) and which ensures that the accumulated CO, given
by (9), remains below the allowable limit cthresh presented in
Section 1.3. This will ensure the successful exit of the evacuee.
If Θ is defined as the set of paths which satisfy (6), then
the optimization problem becomes the selection of the path
θ(t) ∈ Θ that ensures that the CO inhaled, given by (9) remains
below the limit cthresh.
For the evacuee with initial position (x(0),y(0)), Θ is the set of
constant-angle paths for the evacuee

Θ =

{

θ j : tan(θ j) =
Yj − y(0)
X j − x(0)

, ∀ j = 1, . . . ,N

}

(10)

with (X j,Yj), j = 1, . . . ,N the coordinates of each exit.
The algorithms presented assume there to be no obstructions
between the initial position of the evacuee and any of the ex-
its. The inputs to the algorithm shall be the initial location of
the evacuee, (x(0),y(0)), the coordinates of each of the exits
(X j,Yj), j = 1, . . . ,N, and the CO concentration described in
Section 2.1. The algorithms will predict the total accumulated
concentration of CO for each admissible path and will then
select the one which results in the least accumulated concentra-
tion z(t). Algorithm 1 presents the constant-angle algorithm for
a single evacuee. It should be noted that Algorithm 1 appears
in previous work (Demetriou and Kontopyrgos, 2019a), but is
included here for completeness.
The present work adds an initialization step to Algorithm 1,
which stipulates that the initial concentration z(0) be nonzero.
This is due to the proposed effect of psychological freezing.

Algorithm 1 Constant-angle path based evacuation
1: Using physiological and psychological factors, compute

z(0) 6= 0
2: Determine evacuee velocity using physiological factors
3: Use (10) generate a set of admissible paths Θ subject to (6)
4: Use (7) with z(0) 6= 0 to calculate the accumulated CO over

all paths Θ
5: Generate the subset θ j for which z(θ j) < cthresh

Θopt = {θ j ∈ Θ : z(θ j)< cthresh}

6: The smallest Θopt below cthresh is the optimal path

θopt = arg min
θ∈Θopt

z(θ),

Algorithm 1 may in some cases be unable to generate a feasible
path. This suggests a time-varying angle escape path should be
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used. To ensure the highest chance of survival, a level-set based
approach is used (Demetriou and Kontopyrgos, 2019a). Based
on Section 1.2, the 2,000 ppm level set is particularly important
to follow. For this algorithm, a constant angle path is followed
until the instantaneous CO reaches 2,000 ppm. Subsequently,
new angles are generated for each time step to remain on the
2,000 ppm level set. When a path along the line of sight to the
exit becomes tangent to the level set, the algorithm follows the
new constant-angle path towards the exit. This ensures the peak
CO inhaled never exceeds 2,000 ppm, thus allowing for a higher
accumulated inhalation and increasing the evacuee’s chances of
reaching the exit while conscious. Algorithm 2 is presented for
the level-set based approach. As with Algorithm 1, Algorithm 2
also includes a nonzero z(0) due to psychological freezing and
pre-existing physiological factors.

Remark 1. It should be noted that while following the 2,000
ppm level set is important for ensuring the survivability of a
candidate path, it may also be desirable to follow a different
level set in the interest of time. Following a level set of 1,000
ppm, for example, would increase survivability at the expense
of escape time, while following a 3,000 ppm level set may
be more survivable overall due to its time savings. However,
the latter comes at the expense of having smaller accumulated
threshold of cthresh = 25,000 ppm.

Algorithm 2 Level-set based approach
1: Using physiological and psychological factors, compute

z(0) 6= 0
2: Determine evacuee velocity using physiological factors
3: for time 0 ≤ t ≤ t f do
4: if γ(t)< 2,000 ppm then
5: choose a constant angle path from (10)
6: if z(t)>64,000 ppm then
7: V = 0 (death)
8: end if
9: end if

10: if γ(t)> 2,000 ppm then
11: calculate gradient of CO field ∇c at current location

(x(t),y(t))
12: Using ∇c generate a new θlevel at every time step so

that the path follows the 2,000 ppm level set

θ(t) = arctan2(∇xz,∇yz) (11)

13: if z(t)> 25,000 ppm then
14: V = 0 (death)
15: end if
16: end if
17: At each iteration generate the constant angle path. If

the instantaneous peak concentration at the adjacent point
is γ(t)> 2,000 ppm then follow the constant angle path.

18: end for

3. NUMERICAL RESULTS

The two algorithms are implemented over the rectangular do-
main Ω = [0,100]× [0,30]m for a steady CO field. The field
intensity is varied, as is the initial concentration z(0). For the
case shown in Fig. 3, the field is of baseline intensity (i.e.
K = 1). The initial concentration z0 for this case is zero, which
corresponds to no psychological delay.
Figure 3 suggests that Algorithm 2 is much more effective at
generating a survivable path than Algorithm 1. Next, the field
intensity K is increased until the path generated by Algorithm 2

Fig. 3. Escape paths with field intensity K = 1 and z(0) = 0.
is no longer survivable. This is shown in Fig. 4. It should be
noted that K is varied for simulation purposes only and does
not represent a physical constant.

Fig. 4. Escape paths with field intensity K = 20 and z(0) = 0.

Next, the field intensity K is decreased back to one, and the ini-
tial concentration z(0) 6= 0 is added. This procedure is followed
for initial concentrations of z(0) = 5,000 ppm, z(0) = 10,000
ppm, z(0) = 15,000 ppm, and z(0) = 20,000 ppm with any
higher than this and the initial concentration itself would in-
capacitate the evacuee. The results of this are shown in Fig. 5.
The results in Fig. 5 indicate that as the field intensity increases,
Algorithm 2 will be less and less able to predict a survivable
path. They also indicate that the effectiveness of Algorithm 2
decreases as a function of z(0). This implies that an increased
initial concentration renders Algorithm 2 ineffective in over-
coming a high field intensity.
This result may be interpreted as a negative correlation between
psychological delay and survivability–an intuitive result. Fur-
thermore, the results suggest that z(0) has a greater impact on
survivability than does the field intensity, meaning any level-
set algorithm which hopes to be successful in guiding human
evacuees must take psychological delay into account. It should
be noted that this conclusion cannot be drawn for Algorithm 1
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Fig. 5. Intensity K required to render Algorithm 2 unsurvivable.
from these results, because Algorithm 1 was unable to generate
a survivable path for any of the field intensities examined.

4. CONCLUSIONS AND FUTURE RECOMMENDATIONS

This work incorporated the psychological effects of pre-
evacuation phase in the evacuation planning of humans in in-
door environments. The psychological effect of freezing re-
sulted in a non-zero accumulation of the hazardous substance
in the evacuee thereby minimizing the options for safe escape.
The present work only considered one evacuee in isolation.
Other psychological phenomena that result from the interac-
tions between multiple evacuees will be investigated by the
authors in a forthcoming publication. Further psychological
traits such as high versus low risk perception and anxiety level
will also be considered because they affect the individual’s
pre-evacuation behavior. Additionally, physiological qualities
such as physical fitness will be further examined. Integrating
established results on path planning of multi-agent systems
with minimal information and the incorporation of obstacles
as an additional constraint forms a natural extension to the
current work. These extensions with individual and multiple
evacuees will appear in a separate forthcoming publication by
the authors.
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