
Trajectory Planning for Autonomous
Vehicles combining Nonlinear Optimal
Control and Supervised Learning ?

Lukas Markolf ∗ Jan Eilbrecht ∗ Olaf Stursberg ∗

∗ Control and System Theory, Department of Electrical Engineering
and Computer Science, University of Kassel, Germany, (e-mail:

{lukas.markolf,eilbrecht,stursberg}@uni-kassel.de).

Abstract: This paper considers computationally efficient planning of reference trajectories for
autonomous on-road vehicles in a cooperative setting. The basic element of the approach is
the notion of so-called maneuvers, which allow to cast the nonlinear and non-convex planning
task into a highly structured optimal control problem. This can be solved quite efficiently, but
not fast enough for online operation when considering nonlinear vehicle models. Therefore, the
approach proposed in this paper aims at approximating solutions using a supervised learning
approach: First, training data are generated by solving optimal control problems and are then
used to train a neural network. As is demonstrated for a cooperative overtaking maneuver, this
approach shows good performance, while (contrasting approaches like reinforcement learning)
requiring only low training effort.

Keywords: Nonlinear and optimal automotive control, automated driving, machine learning,
intelligent control, neural networks

1. INTRODUCTION

An important problem in autonomous driving and similar
applications (e.g. control of UAVs, rovers, or stationary
robots) is to plan reference trajectories for the future
states of a vehicle. This problem is difficult due to aspects
such as nonlinear vehicle dynamics and collision avoidance
constraints making the solution space non-convex. If co-
operative settings are considered, i.e., scenarios in which
multiple vehicles must adapt their plans to those of others,
additional challenges as an increased dimensionality of the
state space arise. Despite these challenges, it is required to
determine reference trajectories very quickly during online
operation, typically in around 10 ms.

Reflecting the practical importance of the problem, sev-
eral solution approaches have been proposed within the
last decade: While early work mostly focused on planning
without dynamics (LaValle, 2006), more recent approaches
address the problem within an optimal control setting:
Methods to solve quite general problem formulations, e.g.
in (Limebeer and Rao, 2015), can handle nonlinear dy-
namics subject to input and state constraints by using
specialized numerical optimal control software but cur-
rently not quickly enough for online operation. Similarly
complex problems can be addressed by sampling-based
algorithms, e.g. RRT∗ in (hwan Jeon et al., 2013), but
also there the computation times are relatively high, and
only asymptotic guarantees exist with respect to complete-
ness. Combinations of mixed-integer programming and
model-predictive control (MPC) are limited to simpler
problem instances relying on affine vehicle dynamics, but
? Financial support by the German Research Foundation (DFG)
within priority program (SPP) 1835 is gratefully acknowledged.

have found wide application both for aerial and on-road
vehicles (Schouwenaars et al., 2001; Qian et al., 2016;
Eilbrecht and Stursberg, 2018). These approaches provide
guarantees for convergence, while being computationally
efficient. Previous work of the authors is also based on this
methodology, which was recently extended by a maneuver-
based approach (Eilbrecht and Stursberg, 2018). Maneu-
vers, cf. Sec. 2.2, are modeled by hybrid automata, which
allow to formulate highly structured optimization prob-
lems that can be solved efficiently. At the same time, it
is possible to compute the set of initial states for which a
solution to the planning problem exists, thus increasing the
reliability of planning. A significant improvement in com-
putational efficiency of both offline and online calculations
was then obtained using approximate solutions in form of
linear interpolation between optimal solutions (Eilbrecht
and Stursberg, 2019).

In this paper, the previous work (Eilbrecht and Sturs-
berg, 2019) is extended to obtain plans based on non-
linear instead of linear vehicle models, contributing to
more realistic behavior. Despite the more complex prob-
lem class, computational efficiency is retained, relying
on learning-based approximations of optimal solutions.
Clearly, learning-based optimal control is no novelty per
se. Typically, it is based on reinforcement learning which,
however, may fail to converge to high-quality solutions if
exploration and exploitation are not properly balanced,
requiring much tuning effort. Another contribution of this
paper on a conceptual level is to demonstrate that ex-
ploiting problem structure allows for efficient generation
of training data, such that supervised learning can be used
instead of reinforcement learning. Including knowledge on

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 15817

problem structure allows in addition to reduce the com-
plexity of the approximation function.

The paper is structured as follows: while Sec. 2 formally
introduces the problem and outlines the solution approach,
Sec. 3 details the generation of training data by solving
nonlinear optimal control problems. Using data to train
the approximation structure is described in Sec. 4, and
Sec. 5 demonstrates the application of the procedure in a
cooperative overtaking maneuver.

2. OVERVIEW OF THE APPROACH

This section provides a general overview of the considered
problem as well as of the proposed solution approach.

2.1 Problem setting

This work considers a setting in which a group of intel-
ligent vehicles drives cooperatively on a road network.
Let G ⊂ N contain the identifiers of these vehicles and
assume that each vehicle i ∈ G is given knowledge of the
sequence of roads that lead it from its starting point to its
destination. Let the dynamics of a vehicle i be given by:

ξ̇(i)(t) = f (i)
(
ξ(i)(t), µ(i)(t)

)
,

depending on its state ξ(i) at the current time t ∈ R≥0,
and on input values µ(i). Assume that the inputs are
determined by a given controller function k(i) based on

the current state and a reference value x
(i)
des(t):

µ(i)(t) = k(i)
(
ξ(i)(t), x

(i)
des(t)

)
.

The task considered in this paper is to determine the refer-

ence trajectory x
(i)
des(t) such that constraints for the states

and inputs of the vehicle are not violated. While some of
these, such as constraints on velocity or acceleration, stem
from the dynamics of the vehicle, others result from the
road topology or the need to avoid collisions with other

vehicles. The latter implies that x
(i)
des must depend on x

(j)
des,

j ∈ G, j 6= i. This problem is considered in a cooperative
setting, meaning that vehicles can communicate informa-
tion and adapt their behavior to that of others.

2.2 Solution Approach

Main elements of the general approach are maneuvers,
used to encode sets of qualitatively similar trajectories
such as merging, overtaking, lane keeping (Eilbrecht and
Stursberg, 2018, 2019). They are modeled by hybrid au-
tomata, defined there as follows:

Definition 1. (Hybrid Automaton). A hybrid automaton
is a tuple
HA = (Q, q0,X,U, inv,X0,XT,Θ, g, f) consisting of:

• a finite set of phases Q with initial phase q0 ∈ Q,
• a continuous state space X ⊆ Rnx with state vec-

tor x ∈ X,
• a continuous input space U ⊆ Rnu with input vector
u ∈ U,
• a function inv : Q → 2X called invariant and assigning

to each phase q ∈ Q a set inv(q) ⊆ X in which the
continuous state x ∈ X may evolve without changing
the phase q,

• the sets X0 ⊆ inv(q0) and XT ⊆ X of initial and target
states, respectively,

• a set of discrete transitions Θ ⊆ Q×Q,
• a guard function g : Θ → 2X which assigns a guard

set g(θ) ⊆ inv(qi) ∩ inv(qj) to each transition θ =
(qi, qj) ∈ Θ with inv(qi) ∩ inv(qj) 6= ∅,

• and a flow function f : Q → (X× U→ Rnx).

When interpreting x and q as functions of real-valued
time t ∈ [t0, tf] ⊂ R≥0, an admissible run of the automaton

are trajectories
((
x(t)T q(t)T

)T)tf
t=t0

complying to the

following rules: Starting in the initial phase q0 and initial
continuous state x0, the state x(t) evolves according to
the flow function f(q0), depending on the current state
and input. A transition into a new phase qj according to
a transition θ ∈ Θ is only possible if x is contained in the
guard set g(θ). The evolution of the continuous state x(t)
in phase qj is bounded to the condition x(t) ∈ inv(qj).

In the following, it is assumed that a target set XT

is defined and reachable from the initial set X0 by an
admissible run. It is further assumed that all sets in the
hybrid automaton are polyhedral. A maneuver is then
defined as follows:

Definition 2. (Maneuver). A maneuver is a tuple M =
(C, Hplan, HA), consisting of a finite set C ⊆ G of involved
vehicles, a time horizon Hplan, and a hybrid automaton
HA. The vehicles carry information about their current
state and their preferences (e.g. regarding driving style,
energy expenditure) in form of a cost function, while Hplan

defines the time horizon over which a plan has to be
made. The hybrid automaton encodes compliant vehicle
behaviors (see more details in (Eilbrecht and Stursberg,
2018, 2019)).

A maneuver can specify behaviors of one or more vehicles.
A collection of different maneuvers will be referred to
as maneuver library, envisioned to be used within the
following, hierarchical procedure: Based on the maneuver
library, a high-level control algorithm determines a group C
(termed coalition) of vehicles which are to perform a
selected maneuver of a certain duration Hplan. For each
coalition, a lower-level trajectory planner then determines
reference trajectories for all cooperative vehicles.

In this work, the choice of a maneuver, its duration, and
the corresponding coalition is assumed to be determined
already (Eilbrecht and Stursberg, 2018, 2019), such that
the remaining focus can be set on the problem of efficiently
planning reference trajectories. These can be seen as solu-
tions to finite-horizon hybrid optimal control problems:

Problem 3. (Hybrid Optimal Control Problem). Given a
maneuver M and a cost functional:

J(x0, u(·), Hplan) =

∫ Hplan

0

‖Cx− ȳq‖Q + ‖u‖R dt, (1)

determine an admissible run of HA which minimizes J and
satisfies:

x(Hplan) ∈ XT, Hplan ∈ T. (2)

Here, T = [0, tmax] is a finite time interval, ȳq ∈ Rny allows
to consider constant, location-dependent reference values
for ny state variables selected by C ∈ Rny×nx , and Q ≥ 0
and R ≥ 0 are weighting matrices of suitable dimensions.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15818

In theory, this problem can be solved by dynamic program-
ming, requiring to solve the Hamilton-Jacobi-Bellman
equation associated to the problem. The solution would
be a so-called policy function π : X× T→ Rnu , assigning
to each state at time t the optimal input u∗:

u∗(x, t) = π(x, t). (3)

While explicit solutions can be obtained only for very
simple cases, more complex problems require numerical
solution. These are, however, severely limited by the com-
putational complexity. Therefore, the approach in this
paper refrains from obtaining exact solutions, but rather
approximates these.

Approximate dynamic programming, also known as adap-
tive or neuro-dynamic programming, addresses the compu-
tational complexity by using function approximators, such
as feedforward artificial neural networks (Lewis and Vra-
bie, 2009; Liu et al., 2017; Bertsekas and Tsitsiklis, 1996).
Generally, approximate dynamic programming methods
alternate between improving the policy and improving
the value function. While these approaches typically in-
terlace the process of data generation and training of the
approximation structure, here these steps are carried out
separately: First, training data is generated by numerical
solution of optimal control problems for selected initial
states and horizons as detailed in Sec. 3. The data is then
used within a supervised learning approach to train an
approximation structure as detailed in Sec. 4.

Note that in some cases, this approach is not viable if
point-wise computation of (3) by numerical optimal con-
trol is impossible, or too time-consuming (e.g. (Limebeer
and Rao, 2015)) to generate a sufficient amount of training
data. Thus, some approaches resort to approaches like re-
inforcement learning. The enabling aspect in the approach
proposed here is the fact that the considered problem is
highly structured due to the maneuvers.

3. NUMERICAL OPTIMAL CONTROL FOR
GENERATION OF TRAINING DATA

To solve Problem 3 for selected initial states numerically,
solvers such as GPOPS− II (Patterson and Rao, 2014) can
be used. To do so, Problem 3 can be reformulated into the
following multiple-phase optimal control problem:

Problem 4. (Multiple-Phase Formulation). For each phase
q ∈ {q1, q2, . . . , qP } in a given phase sequence for a ma-

neuver, find an initial time t
(q)
0 , a final time t

(q)
f , an initial

state x
(q)
0 := x(q)(t

(q)
0), a final state x

(q)
f := x(q)(t

(q)
f), the

trajectory x(q)(t) for the time interval [t
(q)
0 , t

(q)
f], and the

controls u(q)(t) such that the cost functional:

J =

P∑
i=1

J (i) (4)

is minimized subject to the path constraints:

c
(q)
min ≤ c

(q)
(
x(q), u(q), t(q)

)
≤ c(q)max, (5)

the event constraints:

bmin ≤ b
(
x
(q1)
0 , x

(q2)
0 , . . . , x

(qP)
0 , t

(q1)
0 , t

(q2)
0 , . . . , t

(qP)
0 ,

x
(q1)
f , x

(q2)
f , . . . , x

(qP)
f , t

(q1)
f , t

(q2)
f , . . . , t

(qP)
f

)
≤ bmax,

(6)

and the dynamic constraints:

ẋ(q)
(
t(q)
)

= f (q)
(
x(q)

(
t(q)
)
, u(q)

(
t(q)
)
, t(q)

)
. (7)

The reformulation requires the following steps:

• consider the phases of the hybrid automaton as the
phases of the multiple-phase optimal control problem;

• employ the polytopes X, U, and inv(q) of each phase
q ∈ Q as path constraints;

• use the event constraints to define the polytopes X0,
XT , and g(θ) for each transition θ ∈ Θ. Further, for
each θ = (qi, qj) ∈ Θ, use the event constraints to

enforce that x
(qi)
f − x

(qj)
0 = 0 and t

(qi)
f − t

(qj)
0 = 0.

Additionally, specify the initial state x0, the initial
time t0, and the bounds on the final time in the event
constraints;

• define the dynamic constraints by choosing f (q) =
f(q) for each q ∈ Q;

• partition (1) according to (4).

A solver like GPOPS− II employs a Legendre-Gauss-
Radau quadrature method with orthogonal collocation to
solve this problem and it returns the states, controls, and
time values for each collocation point.

In this work, the training data set is defined as a collection
of so-called samples. A sample consists of a point t in time,
a state vector x(t), and an input vector u(t). It is generated
for each collocation point resulting from numerical solution
of Problem 4.

4. APPROXIMATING OPTIMAL SOLUTIONS BY
NEURAL NETWORKS

This section details the approximation of the policy func-
tion, describing both its architecture and the computation
of its parameters.

4.1 Approximation Architecture

In this work, feedforward artificial neural networks (Good-
fellow et al., 2016; Sutton and Barto, 2018; Hagan and
Menhaj, 1994) are used to approximate policy (3). Only
networks with one hidden layer and one linear output layer
are considered to keep the network architecture simple, see
Fig. 1. This decision can be justified, theoretically, by the
universal approximation theorem (Cybenko, 1989), stating
that the networks described subsequently can approximate
policy (3) with arbitrarily small error. Nevertheless, the
choice of a suitable architecture and the determination of
the parameters is a challenging task, as outlined in (Good-
fellow et al., 2016).

The hidden layer and output layer each consist of a chosen
number of units with input and output signals. A unit
maps a weighted sum of its inputs to its output. The
output of a unit is called activation and the underlying
mapping activation function. This work focuses on net-
works where the activation functions of the output units
are chosen to be identity functions, while the activation
functions of the hidden units are selected as:

tanh(z) =
2

1 + exp(−2z)
− 1. (8)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15819

Fig. 1. Feedforward artificial neural network with two
inputs, two hidden units and one output unit.

The approximated policy is defined as:

û = π̂(x, t, r) := [σ1(p, ϑ1) σ2(p, ϑ2) . . . σnu(p, ϑnu)]
T
,

p :=
[
xT t

]T
, r := [ϑ1 ϑ2 . . . ϑnu] ,

(9)

where ϑi contains the tunable parameters of network i ∈
{1, 2, . . . , nu} and σi(p, ϑi) describes the mapping from its

input p to the i-th element of û = [û1, û2, . . . , ûnu]
T

. In the
remaining part of this section, the focus is exemplarily on
one of the networks to describe the details. For simplicity,
the index of the network is omitted in the rest of this
section.

Let np := nx + 1 denote the number of inputs of the
network and nL the number of units in the hidden layer.
The mapping from the input to the output of the network
is given by:

σ (p, ϑ) =

 nL∑
i=1

w
(2)
i tanh

 np∑
j=1

w
(1)
i,j pj

+ b
(1)
i

+b(2),

(10)
where the parameter vector:

ϑ =
[
w

(1)
1,1 w

(1)
1,2 . . . w

(1)
nL,np b

(1)
1 . . . b

(1)
nL w

(2)
1 . . . b(2)

]
(11)

consists of the weights w
(1)
i,j , w

(2)
i ∈ R and biases b

(1)
j , b(2) ∈

R.

4.2 Determination of the Parameter Vector

For each network, the number of parameters and their
values are to be found within an offline procedure, such
that the approximated policy is an adequate approxima-
tion of (3). Note that the number of parameters is specified

by the chosen network, for which the number of hidden
units is a matter of choice. In Sec. 5, the performance is
improved (“trained”) by using the neural net fitting tool
of the deep learning toolbox within Matlab. The following
part describes the fundamental aspects of training. The
tool divides the training data into training samples, valida-
tion samples, and test samples. In the training procedure
itself, only the training and validation samples are used
to improve the performance. The test samples, on the
other hand, serve as a measure of how good the network
approximates samples that not contributed to the training.
This property is known as generalization.

Here, mean squared errors quantify the performance of
the training, validation, and test samples. Following the
distinction above, these errors are termed training errors,
validation errors, and test errors.

The Levenberg-Marquardt algorithm (Hagan and Menhaj,
1994) is a well-established optimization algorithm that
can be used to adapt the parameter vector by iteratively
minimizing the training error for a user-defined number
of iterations (the epochs). In addition, the training proce-
dure monitors the validation error in each iteration and
terminates upon an increase, which would indicate so-
called overfitting, indicating that too many units in the
hidden layer are chosen. On the other hand, underfitting
may occur if a too small number of units in the hidden
layer are selected, see (Goodfellow et al., 2016).

5. EXAMPLE OF A COOPERATIVE OVERTAKING
MANEUVER

5.1 Maneuver formulation

In order to demonstrate the efficacy of the proposed
procedure, the cooperative overtaking maneuver sketched
in Fig. 2 is addressed. This scenario has already been
considered in prior work with solutions based on linear
vehicle models and exact computation (Eilbrecht and
Stursberg, 2018), or approximations thereof (Eilbrecht and
Stursberg, 2019). In the maneuver, vehicle 1 is to overtake
vehicle 2, what must be enabled by vehicle 2 and the
oncoming vehicle 3. In addition, the vehicles 2 and 3 must
keep their lanes during the maneuver.

Contrasting the earlier work, the vehicle dynamics are
here based on nonlinear bicycle models (Liniger et al.,
2015), as illustrated in Fig. 3. Referring to an earth-fixed
coordinate system, longitudinal position and velocity of

vehicle i ∈ {1, 2, 3} are given by p
(i)
x and v

(i)
x := ṗ

(i)
x ,

respectively. Analogously, p
(i)
y and v

(i)
y := ṗ

(i)
y describe the

lateral components. Longitudinal and lateral velocities in

a body-fixed coordinate system are denoted by v
(i)
x̃ and

v
(i)
ỹ . These coordinate systems are related by:

v(i)x = v
(i)
x̃ cos

(
ϕ(i)

)
− v(i)ỹ sin

(
ϕ(i)

)
,

v(i)y = v
(i)
x̃ sin

(
ϕ(i)

)
+ v

(i)
ỹ cos

(
ϕ(i)

)
,

with yaw angle ϕ(i). Since the vehicles 2 and 3 must keep
their lanes, it follows for i ∈ {2, 3} that ϕ(i) = 0 and

v
(i)
y = 0 during the maneuver, implying also v

(i)
x = v

(i)
x̃ and

v
(i)
y = v

(i)
ỹ . Consequently, it is sufficient to consider only

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15820

the longitudinal position and longitudinal velocity in the
earth-fixed coordinate system for vehicle 2 and vehicle 3.
The state vector of the cooperating group is chosen to:

x =
[
p
(1)
rel p

(2)
rel p

(1)
y v

(1)
x v

(2)
x v

(3)
x v

(1)
y v

(1)
x̃ v

(1)
ỹ ϕ(1)

]T
,

with p
(1)
rel := p

(2)
x −p(1)x , p

(2)
rel := p

(3)
x −p(1)x denoting relative

positions. As controlled inputs, the accelerations in the

body-fixed frame: a
(i)
x̃ := v̇

(i)
x̃ , i ∈ {1, 2, 3} , a

(1)
ỹ := v̇

(1)
ỹ ,

and the yaw rate ω(1) = ϕ̇(1) are chosen such that:

u =
[
a
(1)
x̃ a

(2)
x̃ a

(3)
x̃ a

(1)
ỹ ω(1)

]T
.

The dynamics is then defined as ẋ = f(x, u) with:

f(x, u) =

x5 − x4
x6 − x4
x7

(u1 − u5x9) cos(x10)− (u4 + u5x8) sin(x10)
u2
u3

(u1 − u5x9) sin(x10) + (u4 + u5x8) cos(x10)
u1
u4
u5

.

The overtaking maneuver is divided into three phases: In
the first one, vehicle 1 is behind vehicle 2, in the second
one, vehicle 1 overtakes and is on the left side of the road,
and in the third phase, vehicle 1 drives in between vehicle 2
and the oncoming vehicle 3. The phases correspond to the
set of locations Q = {q1, q2, q3}, where transitions are
only allowed according to: Θ = {θ1,2 = (q1, q2), θ2,3 =
(q2, q3)}, what does not allow to fall back to a prior phase.

Reference trajectories are prescribed for the states p
(1)
y ,

v
(1)
x , v

(2)
x , v

(3)
x , and v

(1)
y , such that C = [05×2 I5×5 05×3].

This work considers ȳ1 = ȳ3 =
[
p
(2)
y 20 20 −20 0

]
and

ȳ2 =
[
p
(3)
y 20 20 −20 0

]
as reference values (in m resp.

m s−1), and Q = I5×5, R = I5×5 as weight matrices. Safety
distances in longitudinal and lateral direction are specified
as lx,safe = 5 and ly,safe = 5, respectively.

5.2 Policy approximation

Problem 4 was established and solved for 2700 initial states
randomly selected from the set X0. The time interval was
specified to T = [0, 20]. Overall, 2609 feasible solutions
were found and lead to the generation of 316334 samples
for the training data set. Fig. 4 illustrates the times that
were needed to compute each of the 2609 solutions in a
box plot diagram without and with outliers.

vehicle 1

×

vehicle 2

× vehicle 3

×

p
(3)
x − p(1)x

p
(2)
x − p(1)x

p
(1)
y

Fig. 2. Example Maneuver: overtaking with oncoming
traffic.

For each network used to approximate the policy, 40 hid-
den units were chosen and 521 parameters were determined
per network (480 weights and 41 biases) according to the
training procedure described in Sec. 4. The same structure
was used for each network. The training procedure of each
network divided the samples randomly in 221434 samples
for training, 47450 for validation, and 47450 for testing.
Table 1 presents the obtained training, validation, and test
errors, while Table 2 shows for each network the time and
the number of epochs required by the training. The net-
work index i ∈ {1, . . . , 5} in both tables refers to the net-
work corresponding to the mapping σi(p, ϑi) (see Sec. 4).
A number of epochs lower than 1000 (maximum number)
indicates that a detected increase in the validation error
caused the training to terminate. The times to evaluate
the approximated policy for all samples is illustrated as a
box plot diagram in Fig. 5.

Fig. 3. Bicycle model illustrated within an earth-fixed
coordinate system.

6 8 10 12 14 16 18

1

t in s

0 100 200 300 400

1

t in s

Fig. 4. Computation times for GPOPS− II solutions in
seconds ((a) without outliers, (b) with outliers).

Table 1. Training, validation and test errors.

Network Training Validation Test
index error error error

1 3.7 · 10−2 3.8 · 10−2 3.8 · 10−2

2 2.5 · 10−2 2.8 · 10−2 2.7 · 10−2

3 1.7 · 10−2 1.8 · 10−2 1.7 · 10−2

4 9.6 · 10−3 1.1 · 10−2 1.0 · 10−2

5 4.1 · 10−4 4.1 · 10−4 3.9 · 10−4

Table 2. Required training times and epochs.

Network index 1 2 3 4 5

Training time 823 s 701 s 559 s 605 s 693 s
Epochs 735 642 506 546 622

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15821

0.16 0.17 0.18 0.19 0.2

1

t in ms

0.2 0.4 0.6 0.8 1 1.2

1

t in ms

Fig. 5. Times to evaluate the approximated policy in
milliseconds ((a) without outliers, (b) with outliers).

For all of the 2609 initial states for which an optimal
solution could be obtained, the admissibility of the approx-
imated solution was checked. This check verifies whether
the approximated policy leads to a state sequence from
x0 to XT within the time interval T. If so, it is checked
whether each attained state is an element of at least one
invariant, and whether each control from the correspond-
ing control trajectory is an element of U. It turned out
that the admissibility was obtained for 90% of the 2609
runs.

The solutions obtained by GPOPS− II are interpreted as
optimal policies (∗) and those obtained by the networks
as approximated policies (∧). Figs. 6-8 show approximated
and optimal results obtained for an exemplary initial state.
In detail, Fig. 6a illustrates the approximated absolute
longitudinal velocities of the three vehicles involved in the
overtaking maneuver. The absolute differences between
the approximated and optimal longitudinal velocities are
shown in Fig. 6b. Both, the optimal and the approximated
lateral velocity of the overtaking vehicle are contained
in Fig. 7. Finally, approximated positions of the vehicles
and the corresponding deviations from the optimal ones
are illustrated in Fig. 8. Note that no collision between
vehicle 1 and vehicle 2 occurs, since they pass the same
part of the road at different times.

6. CONCLUSIONS

This paper has proposed a novel approach to planning
reference trajectories for cooperative autonomous vehicles
with nonlinear dynamics. A central element is policy de-
sign by feedforward artificial neural networks. The policies
are used by a trajectory planner to determine reference tra-
jectories for all cooperative vehicles. It was demonstrated
that the concept allows for efficient generation of training
data by solving highly structured optimal control problems
numerically. Even though the network design and training
was kept simple, results very similar to the optimal ones
have been obtained, as shown in Figs. 6-8 for an exemplary
initial state.

The computation times in Fig. 4 illustrate, however, that
the software is not suited for real-time application. More-
over, the outliers demonstrate that the computation times
may be unpredictable high in rare cases. However, the
solution times are low enough for the generation of training
data, not at least due to the highly structured optimal

0 1 2 3 4

18

20

22

24

26

t in s

|v̂
(i
)

x
|i

n
m

s−
1

i=1
i=2
i=3

(a) Approximated results.

0 1 2 3 4
0

2

4

6

8
·10−2

t in s
|v̂

(i
)

x
−
v
∗(

i)
x
|i

n
m

s−
1 i = 1

i = 2
i = 3

(b) Absolute differences between approximated and optimal results.

Fig. 6. Longitudinal velocities for an exemplary initial
state.

0 1 2 3 4

−5

0

5

t in s

v̂
(1

)
y
,v

∗(
1
)

y
in

m
s−

1 v̂
(1)
y v

∗(1)
y

Fig. 7. Lateral velocities for an exemplary initial state.

0 20 40 60 80 100 120 140 160 180 200
−5

0
5

p̂
(i)
x in m

p̂
(i
)

y
in

m

(a) Approximated results.

0 1 2 3 4
0

0.1

0.2

0.3

t in s

|p̂
(i
)

•
−
p
∗(

i)
•
|i

n
m |p̂(1)x − p∗(1)x | |p̂(2)x − p∗(2)x |

|p̂(3)x − p∗(3)x | |p̂(1)y − p∗(1)y |

(b) Absolute differences between approximated and optimal results.

Fig. 8. Positions for an exemplary initial state.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15822

control problem obtained from the maneuver concept. In
cases in which the optimization cannot find a solution, the
use of termination criteria are an option to reduce the time
effort. In contrast, Fig. 5 shows that the approximated
policies can be evaluated very fast.

It has to be said, though, that the tuning of several
parameters in the design and training of feedforward ar-
tificial neural networks is often a heuristic and iterative
procedure. Thus, simple network structures and a well-
established training procedure were used here to demon-
strate the efficiency of the method.

In future work, benefits of more sophisticated network
structures for the approximation quality will be evaluated.

REFERENCES

Bertsekas, D.P. and Tsitsiklis, J.N. (1996). Neuro-dynamic
programming, volume 5. Athena Scientific Belmont, MA.

Cybenko, G. (1989). Approximation by superpositions of
a sigmoidal function. Mathematics of Control, Signals
and Systems, 2(4), 303–314.

Eilbrecht, J. and Stursberg, O. (2018). Optimization-based
maneuver automata for cooperative trajectory planning
of autonomous vehicles. In Proc. of the European
Control Conference, 82–88.

Eilbrecht, J. and Stursberg, O. (2019). Reducing com-
putation times for planning of reference trajectories in
cooperative autonomous driving. In Proc. of the Intel-
ligent Vehicle Symposium, 114–120. IEEE.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
learning. The MIT Press.

Hagan, M. and Menhaj, M. (1994). Training feedforward
networks with the marquardt algorithm. IEEE Trans-
actions on Neural Networks, 5(6), 989–993.

hwan Jeon, J., Cowlagi, R.V., Peters, S.C., Karaman, S.,
Frazzoli, E., Tsiotras, P., and Iagnemma, K. (2013).
Optimal motion planning with the half-car dynamical
model for autonomous high-speed driving. In 2013
American Control Conference, 188–193. IEEE.

LaValle, S.M. (2006). Planning Algorithms. Cambridge
University Press.

Lewis, F.L. and Vrabie, D. (2009). Reinforcement learning
and adaptive dynamic programming for feedback con-
trol. IEEE Circuits and Systems Magazine, 9(3), 32–50.

Limebeer, D.J.N. and Rao, A.V. (2015). Faster, higher,
and greener: Vehicular optimal control. IEEE Control
Systems, 35(2), 36–56.

Liniger, A., Domahidi, A., and Morari, M. (2015).
Optimization-based autonomous racing of 1:43 scale rc
cars. Optimal Control Applications and Methods, 36(5),
628–647.

Liu, D., Wei, Q., Wang, D., Yang, X., and Li, H. (2017).
Adaptive dynamic programming with applications in op-
timal control. Springer International Publishing.

Patterson, M.A. and Rao, A.V. (2014). GPOPS-II: A
matlab software for solving multiple-phase optimal con-
trol problems using hp-adaptive gaussian quadrature
collocation methods and sparse nonlinear programming.
ACM Transactions on Mathematical Software, 41(1), 1–
37.

Qian, X., Altché, F., Bender, P., Stiller, C., and
de La Fortelle, A. (2016). Optimal trajectory planning
for autonomous driving integrating logical constraints:

An MIQP perspective. In 2016 19th Int. Conf. on
Intelligent Transportation Systems, 205–210. IEEE.

Schouwenaars, T., De Moor, B., Feron, E., and How, J.
(2001). Mixed integer programming for multi-vehicle
path planning. In European Control Conf., 2603–2608.
IEEE.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement
Learning: An Introduction. The MIT Press.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15823

