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Av. Rovisco Pais, 1049-001 Lisboa, Portugal
(e-mails: rafael.a.cordeiro@tecnico.ulisboa.pt,

jose.raul.azinheira@tecnico.ulisboa.pt and
alexandra.moutinho@tecnico.ulisboa.pt).

Abstract: Actuation failure is one of the causes of loss of control in flight accidents. Aircraft
usually have multiple redundant actuators to mitigate failures, and Failure Detection and
Isolation Systems (FDIS) are used to diagnose failures and reconfigure software/hardware to
enhance safety. However, the large number of redundant actuators interferes with the FDIS. To
detect and isolate failures in fixed-wing aircraft with redundant actuators, this work proposes
the combined use of two different strategies of the Two-Stage Kalman Filter. A Supervisory
Loop is included using heuristics and statistics to diagnose the actuators, and a Feed-Forward
Differential is implemented to improve the isolation process without interfering with the aircraft
flight. The solution is evaluated in the detection of an aileron failure in a Boeing 747 simulator.
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1. INTRODUCTION

The aircraft industry is constantly seeking technologies to
improve flight safety. The Loss Of Control In-flight (LOCI)
is one of the main causes of flight accidents for both
manned and unmanned aerial vehicles (van Gils et al.,
2016). In some occasions, LOCI is a consequence of failures
in the aircraft actuators. Thus, it is of utmost importance
that pilot and Flight Control System (FCS) be aware of
actuation failure as fast as possible.

Although most aircraft have several redundancies to avoid
accidents in failure scenario, the knowledge of the failure
can be used to reconfigure software and hardware in order
to enhance safety (Hwang et al., 2010). Therefore, Failure
Detection and Isolation Systems (FDIS) applied to fixed-
wing aircraft have been studied since the 1970s (Willsky,
1976).

One of the most applied FDIS technique used in air-
craft consists on the Multiple Models Adaptive Estima-
tion (MMAE) (Montgomery and Price, 1974; Menke and
Maybeck, 1995; Kim et al., 2008). The main idea of this
technique is to have several models of the aircraft, in-
cluding one “healthy” model and additional models for
each considered failure scenario. Thus, state estimations
are obtained from each one of the models and a decision
algorithm infers the one most likely to correspond of the
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actual aircraft condition (Montgomery and Price, 1974).
Menke and Maybeck (1995) applied MMAE to a F-16
test aircraft where the decision making process uses a
combination of all filter inputs based on the computed
probability of the filters to be the one corresponding to the
real scenario. In (Kim et al., 2008) a fuzzy-logic approach
is proposed to combine the individual filter results.

If on the one hand the high level of redundancies in
the actuation increases flight safety, on the other hand
the several actuators makes the failure isolation process
harder. When an abrupt change in the flight dynamics
is sensed, it is necessary to identify which one of the
many redundant actuators is failing. In addition, the large
number of actuators increase significantly the number of
models required by the MMAE technique.

This paper proposes a model-based approach for FDIS
without requiring modeling the aircraft in failure scenar-
ios. The two main contributions are:

• The combination of two strategies of the Two-Stage
Kalman Filter (TSKF): 1) the standard TSKF formu-
lation is applied to estimate biases in the control actu-
ation (Friedland, 1969; Keller and Darouach, 1997); 2)
the TSKF is used considering a multiplicative gain in
the actuation, which has been successfully applied in a
FDIS for detecting engine failures in a multirotor aircraft
(Amoozgar et al., 2013).
• The Feed-Forward Differential (FFD) to improve the

failure isolation process. This simple approach is de-
signed to create persistent excitation in the filters with-
out interfering with the aircraft dynamics.
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The complementary information of the two filters is an-
alyzed by a Supervisory Loop (SL) which provides the
diagnosis of the aircraft actuators. The technique is im-
plemented and tested using a Boeing 747 benchmark sim-
ulator (Smaili et al., 2010).

The sequence of the paper is presented as follows: Section
2 details the proposed FDIS; Section 3 presents the TSKF
formulation and its application as bias and gain estima-
tors; Section 4 proposes the FFD to isolate the faulty
actuator; Section 5 describes the diagnosis algorithm of the
SL. Section 6 shows results obtained with the FDIS applied
to a Boeing 747 simulator; finally, Section 7 presents the
conclusions of the authors.

2. DETECTION PROCEDURE

In this work, two TSKFs are used to detect the failure.
A Supervisory Loop (SL) interprets the TSKFs output in
order to isolate the failure. If the data is inconclusive to
isolate the failure, the SL may demand an additional Feed-
Forward Differential (FFD) to assist the detection process.
Fig. 1 illustrates the proposed FDIS.

Flight Control
System

Aircraft

Bias
TSKF

Gain
TSKF

Supervisory Loop

Demanded
Manoeuvre

Control 
Input

Measurements

Two-Stage Kalman Filter Estimators

Failure Diagnostics 

F
e

ed- F
orw

a rd D
iff ere

nti a
l

+

Fig. 1. Diagram of the failure diagnosis process.

When an actuator fails, the dynamics of the Degrees-Of-
Freedom (DOF) corresponding to the faulty actuator will
act abnormally. A standard approach to detect unexpected
behaviors is using estimators to compare measurements
with the expected response obtained from mathematical
models. Here, the estimators are obtained using the TSKF
strategy (Friedland, 1969; Keller and Darouach, 1997).
Two TSKFs are used to estimate incongruities in the
aircraft actuation. The first considers that the unexpected
behavior is generated due to unknown bias in the input
(Bias TSKF), while the other considers the error as con-
sequence of an unknown gain in the input (Gain TSKF).

Estimators obtain better results when they are persistently
excited. For aircraft, a standard approach consists on de-
manding extra maneuvers to create excitation in the actua-
tion (Ignatyev et al., 2019). However, the extra maneuvers
are constrained by safety and comfort requirements. Here,
the FFD input injection is proposed, focusing on exciting
the estimators without modifying the aircraft movement.

The results of the TSKFs provide complementary infor-
mation, but may have ambiguities. Thus, a decision mak-

ing system is required to interpret the data and provide
diagnosis of the actuators status. A Supervisory Loop is
implemented combining statistics and heuristics aiming
to: a) analyze the response of the filters; b) isolate the
most probable faulty actuators; c) decide if the FFD must
be applied to isolate the failure; and d) provide online
diagnosis of the actuators status.

3. TWO-STAGE KALMAN FILTER

The Two-Stage Kalman Filter (Friedland, 1969; Keller
and Darouach, 1997) is a technique to estimate uncertain
constant parameters in the system, considered as biases.
When compared to the Augmented Kalman Filters, the
TSKF has to invert two smaller matrices instead of an
augmented one, which may provide greater robustness to
numerical errors with lower computational burden.

Fig. 2 shows a TSKF diagram: a first KF estimates the
states disregarding bias; then, with the bias-free predicted
state, the bias is estimated by a second KF; and finally,
the estimated state is corrected using the estimated bias.
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Fig. 2. Two-Stage Kalman Filter estimation diagram.

Let us consider the following discrete linear system: xk+1 = Axk + Buk + Fσk + nxk
σk+1 = σk + nσk
y
k

= Cxk + Duk + Gσk + nyk

, (1)

where x, u, and y are state, input and output vectors;
A, B, and F are the dynamic, input and bias matrices;
and C, D, and G are the output, observation input and
observation bias matrices.

The state, output, and bias noises – nxk, nyk, and nσk
– are assumed to be uncorrelated white noises, which
covariances are defined by the covariance matrices Qx, Qy

and Qσ respectively.

Given (1), the TSKF assumes the following structure
(Keller and Darouach, 1997):

a) State and bias prediction (nominal model):

xk+1|k = Axk|k + Buk + Fσk|k ; (2)

Px
k+1|k = APx

k|kAT + Qx ; (3)

σk+1|k = σk|k ; (4)

Pσ
k+1|k = Pσ

k|k + Qσ . (5)

b) Bias-free state estimation:

Tk = AZk|k + F ; (6)

Zk+1|k = TkPσ
k|k

(
Pσ

k+1|k

)−1
; (7)
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x̃k+1|k = xk+1|k − Zk+1|kσk+1|k ; (8)

P̃x
k+1|k = AP̃x

k|kA
T

+ Qx + TkPσ
k|kTT

k

− Zk+1|kPσ
k+1|kZTk+1|k ;

(9)

η̃
k

= y
k
− Cx̃k+1|k − Duk ; (10)

Kx
k = P̃x

k|kCT
(
CP̃x

k+1|kCT + Qy
)−1

; (11)

x̃k+1|k+1 = x̃k+1|k + Kx
kη̃k ; (12)

P̃x
k+1|k+1 = (I − Kx

kC) P̃x
k+1|k . (13)

c) Bias Estimation:

Hk = G + CZk+1|k ; (14)

Zk+1|k+1 = Zk+1|k − Kx
kHk ; (15)

ζ
k

= y
k
– Cxk+1|k − Duk ; (16)

Kσ
k = Pσ

k+1|kHT
k

(
HkPσ

k|kHT
k + CP̃x

k+1|kCT + Qy
)−1

; (17)

σk+1|k+1 = σk+1|k + Kσ
k ζk ; (18)

Pσ
k+1|k+1 = (I − Kσ

kHk) Pσ
k+1|k . (19)

d) State correction:

xk+1|k+1 = x̃k+1|k+1 + Zk+1|k+1σk+1|k+1 ; (20)

Px
k+1|k+1 = P̃x

k+1|k+1 + Zk+1|k+1Pσ
k+1|k+1ZTk+1|k+1 . (21)

In the algorithm equations, Px and Pσ are the covariance
matrices of the state and bias respectively, Kx

k and Kσ
k are

the Kalman gain matrices for the bias-free state estimator
and the bias estimator, respectively, and Z is a coupling
matrix between the estimators to generate an optimal
estimation for random bias.

Two different strategies are proposed to estimate the error
due to actuation failure: 1) Bias TSKF, for additive error;
2) Gain TSKF, for multiplicative error.

3.1 Bias TSKF

In this approach, the TSKF standard formulation is ap-
plied. Let us consider the input vector of the aircraft as:

uk = uck + σk , (22)

where u is the actuation vector and uc is the commanded
input.

Thus, from (1) and (22) we can derive the model used for
the Bias TSKF as: xk+1 = Axk + Buck + Bσk + nxk

σk+1 = σk + nσk
y
k

= Cxk + Duck + Dσk + nyk

. (23)

Note that to apply the TSKF algorithm, we have F = B
and G = D.

3.2 Gain TSKF

The Gain TSKF (Amoozgar et al., 2013) focuses on
estimating the level of effectiveness of the actuator. With
this approach, a gain γ is defined to diagnose the actuators,
where 0 means the actuator is fully working and 1 means
it is not working at all.

In this approach, the considered input vector is:

uk = Uck

(
1 − γ

k

)
= uck − Uckγk , (24)

where 1 is a vector with all elements equal to 1 and Uck is
a diagonal matrix in which the main diagonal corresponds
to the elements of the commanded input vector uc. Thus,
the linearized discrete system is given as:

xk+1 = Axk + Buck − BUckγk + nxk
γ
k+1

= γ
k

+ nγk
y
k

= Cxk + Duck − DUckγk + nyk

. (25)

Therefore, to use the TSKF in the gain approach, the
algorithm considers Fk = −BUck and Gk = −DUck,
and replaces σk by the bias gain γ

k
.

4. FEED-FORWARD DIFFERENTIAL

The FDIS relies on the input-output relationship to diag-
nose the faulty actuator. However, this task is even harder
when we have multiple inputs with similar effect on the
output.

For example, the roll movement of the aircraft is produced
by a pair of ailerons. An aileron angle δA produces a lift
force ZA in the left aileron and −ZA in the right aileron.
Therefore, both ailerons produce the exact same angular
moment LA. If an atypical roll movement is sensed by the
TSKF, the estimators cannot define which aileron is the
faulty one since they produce the same effect in the roll
dynamics.

To isolate the faulty actuator, the Feed-Forward Differ-
ential (FFD) is proposed. The main idea of using the
FFD is to add commands with opposite signs in redundant
actuators. Let us go back to the aircraft example. If the
ailerons are healthy, adding a command d with opposite
signs in each aileron produces no additional roll moment
(see Fig. 3a). However, if there is a failure where one of
the ailerons is stuck, the FFD will be executed only by the
healthy actuator. Since d is small and has different signs
for each aileron, the FFD will slightly decrease the roll
moment if the healthy aileron is the right one (Fig. 3b), or
increase it if the left one is healthy (Fig. 3c).

5. SUPERVISORY LOOP

The data provided by the Bias and Gain TSKFs have
different information and both can be used to assess the
failures. In some occasions, these data may have conflicting
information in defining the faulty actuation and the offset
level. For such, a Supervisory Loop (SL) using simple
heuristics is proposed as a solution to analyze the data.

The SL receives the data from the filters and provides a
diagnosis of the actuators failure within some confidence
level:

• If the confidence is high, the failure is assumed as
true;

• If an intermediary confidence level is achieved, the
SL demands a further investigation which includes
the addition of the FFD in the control signal of some
actuators.

• If the confidence is low, the failure is assumed false
and no further action is necessary.
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Fig. 3. FFD applied for the roll dynamics of an aircraft:
(a) healthy ailerons; (b) stuck left aileron; (c) stuck
right aileron.

The SL diagnosis uses metrics obtained with the data
accumulated during a short time interval (time window).
The considered metrics (calculated for each k-th time
window) are:

• The mean value of the estimated bias/gain:

µσk = mean (σk) ; µγ
k

= mean
(
γ
k

)
.

• A normalized mean value of the estimated bias/gain:

ησk =

∣∣∣µσk∣∣∣
max

(∣∣∣µσk∣∣∣) ; ηγ
k

=
µγ

k

max
(
µγ

k

) .

• The signal-noise ratio of the estimated bias/gain:

νσk =
µσk

std (σ1)
; νγ

k
=

µγ
k

std
(
γ
1

) .

The metrics are used to diagnose the aircraft surfaces. The
proposed algorithm runs in fixed time-windows and has
four steps, described in the sequence:

STEP 1: Verify if there are possible faulty actuators.

An actuator is considered as “in possible fault” if the three
following conditions are true:

• The signal-noise ratio is high;
• The mean estimated bias is high;
• The mean estimated gain is high.

STEP 2: Identify the faulty actuator

To identify the most probable faulty actuator, the actua-
tors are sorted according to their normalized gain estima-
tion, from higher to lower. The first of the list (which has

normalized gain equal to 1) is considered the most proba-
ble faulty actuator. This result is considered questionable
if the second in the list has a high normalized gain as well.

STEP 3: Apply differential injection if the identified
faulty surface is questionable.

If Step 2 returns a questionable fault in two consecu-
tive time windows, the SL adds a differential injection
to the control input to aid the identification process.
The differential is applied using a normal random noise.
The intensity level of the differential goes from 1 to 5
(different values of covariances) and increases after each
time window. The differential injection is turned off if the
identification is no longer questionable for two consecutive
time windows.

STEP 4: Define the position of the faulty surface.

Knowing the most probable faulty actuator, the SL esti-
mates the actual position of the possible faulty actuator.

6. RESULTS

The proposed FDIS is used to evaluate actuation failures
in a fixed-wing aircraft. Here, the strategy is applied to
identify aileron failures in a Boeing 747 (B747) simu-
lator using MATLAB/Simulink. The B747 GARTEUR
RECOVER benchmark simulator, developed by TU Delft
(Smaili et al., 2010), is used with modifications included by
the Institute of Flight System Dynamics - Technische Uni-
versität München (FSD-TUM), namely, the customization
of the failure simulation and the trim and linearization
procedures.

The B747 is a large and heavy transportation airplane. The
main actuation of the B747 consists of two pairs of ailerons;
two pairs of elevators; two rudders; and four engines.

To evaluate the TSKF strategy, let us consider the lin-
earized lateral motion of the aircraft as follows:

xk+1 = Alatxk + Blatuk
x = [β p r φ]

T

u = [δA11 δA12 δR1 δR2 δT 21 δT 11 δT 12 δT 22]
T

. (26)

where β is the sideslip angle; p and r are, respectively,
the roll and yaw rates; φ is the roll angle; δAij are the
aileron inputs; δR1 and δR2 are upper and lower rudders;
and δT ij are the engine throttle inputs. The sub-index i
corresponds to inner (i = 1) or outer (i = 2) actuators, and
the sub-index j corresponds to left (j = 1) or right (j = 2).
Note that the pair of outer ailerons are disregarded since
the outer ailerons of the B747 are only used if flaps are
required, and the flaps are turned off in the simulation.

All states are assumed measured, and the dynamics and
input matrices (Alat and Blat respectively) are obtained
from the numerical linearization of the simulator at a trim
condition. The trim condition corresponds to the aircraft
in a straight-and-level flight with 340 knots of true airspeed
and 5000 feet of altitude.

The aircraft attitude is controlled using the Incremental
Backstepping strategy (Cordeiro et al., 2019). The simu-
lation starts at the trim condition; the states are assumed
measured with noise. At t = 5s, a bank maneuver of
5 degrees is demanded, going back to straight-and-level
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flight at t=50s. At t = 20s the inner-left aileron detaches
from its mechanism, becoming loose (floating failure), and
at t = 80s the failure is fixed.

The lateral model (26) is used to synthesize both Bias and
Gain TSKF, and the SL is running in a 5s time window.
Fig. 4 presents the aircraft roll angle during the maneu-
ver and the obtained bias and gain estimations. In the
figure, vertical lines indicate the start (dashed) and finish
(dotted) time of the maneuver (green), failure (red) and
FFD usage (magenta). Table 1 provides the SL log entries,
which include: the possible faulty actuator (number of
the actuator position in vector u); the estimated position
of the possible faulty actuator; and the demanded FFD
intensity. If the result is considered questionable, the log
also indicates the actuator causing the doubt.

When the failure occurs, at t = 20s, both Bias and
Gain TSKFs report a possible failure. However, given the
redundant effect of the left and right aileron, the bias is
equally distributed between both actuators, while the gain
is set to one for both.

Given the filters results, the failure is detected by the SL,
which indicates it in the subsequent time window (t =
25s), as shown in Table 1. In the next time window (t =
30s), the SL is still not able to define the faulty actuator
and, therefore, the FFD is demanded. As consequence,
the estimated gains of the redundant actuator diverge,
increasing the value of the faulty one. Thus, after t = 35s
the SL establishes 1 (inner-left aileron) as the possible
faulty actuator.
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Fig. 4. Identification of the floating failure in the inner-left
aileron. (a) Roll angle during the simulation. (b) Bias
and Gain TSKFs output.

Table 1. SL log of the floating failure at the inner-left
aileron.

Time (s)
Possible
Faulty

Questionable
Faulty Real

Position
Differential
Intensity

0 0 0 0 0
...

...
...

...
...

20 0 0 0 0
25 2 1 0.18 0
30 2 1 -0.54 1
35 1 2 -0.58 2
40 1 2 -0.51 3
45 1 2 -0.63 4
50 1 0 -0.49 4
55 1 0 -0.63 0
...

...
...

...
...

90 1 0 -0.15 0
95 1 0 -0.02 0
100 0 0 0 0

...
...

...
...

...
120 0 0 0 0

Although the SL indicates the correct faulty actuator,
the difference is still not conclusive to indicate the other
aileron as healthy, and the SL starts to raise the differential
intensity. The extra intensity increases the divergence of
the gain estimation.

At t = 50s the divergence created by the FFD is enough
for the SL to confirm the inner-left aileron as the faulty
one. In addition, at the same time, the aircraft starts to
go back to straight-and-level flight. This maneuver uses
the ailerons, creating extra excitation in the roll dynamics
which increases even more the divergence of the estimated
gains, as shown in Fig. 4b.

The failure is fixed at t = 80s. Note that the Gain TSKF is
not able to correctly sense the end of the failure, however,
the Bias TSKF senses it immediately and goes back to
zero. Since the bias goes to zero, one condition of Step 1
is violated in the SL, indicating that there is no faulty
surface, which is indicated in the SL log at t = 100s.

Therefore, we can conclude that the Gain TSKF is an
important source to isolate the correct faulty actuator,
while the Bias TSKF is more accurate to detect the failure,
highlighting the complementary results of both filters.

The same simulation is repeated for hardover failure (the
aileron suddenly goes to its maximum deflection angle)
and stuck-in-position (the aileron get stuck in its last
position), using either left or right ailerons. Table 2 shows
the time needed to detect and correctly isolate the failure.
Note that stuck-in-position is only detected when the
aircraft goes back to straight-and-level flight. In fact, the
stuck fault occurs during a constant bank level, where the
aileron deflection is constant (near zero position). Thus,

Table 2. Required time after the fault occurs for detecting
and isolating different types of failures.

Floating Hardover StuckFaulty
Actuator Detect Isolate Detect Isolate Detect Isolate

δA11 5 s 30 s 5 s 35 s 35 s 45 s
δA12 5 s 35 s 5 s 35 s 35 s –
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Fig. 5. Estimated normalized position of the inner-left
aileron (floating failure).

the flight dynamics is not affected and no failure can
be sensed. After the aircraft is in a straight flight, no
aileron is needed again, and the TSKF cannot observe any
abnormality in the flight. Therefore, the failure can only
be sensed for a short period of time, which may not be
enough to isolate the failure (right aileron case).

The Bias TSKF can also be used to estimate the real
position of the faulty actuator. As indicated in (22), the
real position of the actuator can be obtained as the sum
of the control effort and the bias. However, given the
redundancies of the actuation, the bias is equally divided
by both surfaces (in Fig. 4b the bias estimation of left and
right ailerons are superimposed). Thus, the SL requires to
know which one is the faulty actuator in order to estimate
its real position. For example, the real position of the
inner-left aileron is given as:

δ̂A11 = δA11c + σA11 + σA12 . (27)

Figure 5 shows the estimated position of the inner-left
aileron in the floating case simulation, and compares it
with the real position of the surface. In the simulator
the surface position is normalized by its maximum dis-
placement, varying from −1 to 1. Note that when the
failure occurs, the real position decreases, and the aircraft
command increases (trying to compensate for the loss of
actuation). Nonetheless, the estimated position using the
bias is very similar to the real position of the surface.

Since the faulty actuator must be known, the position
value shown in Table 1 is the mean value of the position
calculated for the possible faulty surface.

7. CONCLUSION

A Failure Detection and Isolation System is proposed
by combining the results of Bias and Gain Two-Stage
Kalman Filters in order to diagnose actuators failures in
a fixed-wing aircraft. The filters results are interpreted
by a Supervisory Loop which provides a diagnosis of
the actuators condition. The SL may also demand an
additional Feed-Forward Differential to help the decision-
making algorithm.

Since the FDIS is based on the estimation of the real
position of the surfaces, the fault is characterized by
the offset level. In addition, the approach uses only two
model-based TSKFs, needing fewer models than classical
MMAE solutions. Nonetheless, as a linearized model-based
solution, a scheduling of the aircraft model in different
points of the flight envelope may be required.

The solution is applied for detecting single failures in a
Boeing 747 aircraft simulator. A case study is presented,
where a floating failure is considered in one aileron. The
failure is detected in a 5 seconds time-window, being
required more 30 seconds to isolate the faulty actuator.

The simulations demonstrate that the FFD helps the SL
to isolate the failure without interfering with the flight
performance.
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