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Abstract: In this paper, we are interested in the robustness analysis of an elementary logistic
system having a fixed loss factor on the inventory level and uncertainties on the production delay.
The problem is treated in control theory domain, where the model is considered as an input time
delay system characterized by positivity and saturation constraints, and an external disturbance.
Indeed, we apply a prediction state feedback control strategy using an affine control law, where
the prediction of the future inventory level is based on a delay estimation of the delay uncertainty.
Hence, the objective of the study is to quantify the impact of the uncertainty induced by
this estimation on the performance of the controlled system. First, we use a frequency-domain
technique to identify the robust stability condition in the set of parameters. In particular, we
specify the range of the delay deviation such that the closed-loop system stability is guaranteed.
Then, we move on to define the input-output flow variations that allows to check the system
constraints, based on the invariance properties. Finally, a comparative simulation is provided
to highlight the advantages of this study.

Keywords: Input-delay system, inventory control, predictor-feedback structure, delay
uncertainty, robust study, system constraints, input-output flow variations.

1. INTRODUCTION

The dynamic behavior of many engineering processes, es-
pecially supply chains and production systems, contains
time delays that are linked directly to the flow movements.
In the past years, great attention has been paid to stabil-
ity and robustness of time delay systems. Indeed, several
studies have been done introducing the notions of input-
output stability, as well as the stability by state estimation
or state prediction for systems with uncertain time delay
as Moon, Y.S. et al. (2001), Chiasson, J. and Loiseau J.J.
(2007), Tarbouriech, S. et al. (2011), Sipahi, R. et al.

(2011) and Wang, X. et al. (2012).
In this paper, we are interested on the inventory regu-
lation problem for an elementary logistic system, that is
composed of a production unit and a storage unit. The pro-
duction system is characterized by the presence of a pro-
duction delay that is defined with uncertainty. Moreover,
the storage unit presents losses on the inventory level due
to the manufacturing of perishable products. Furthermore,
positivity and saturation constraints are imposed due to
the specifications on the production and storage capacities.
The main goal is to compromise between low storage level
deterioration and high customer demands satisfaction.
Such problems can be treated using different frameworks.
In our study, we deal with a control theory approach
where the system is considered as an input time-delayed
system, with delay uncertainties. Simon, H.A. (1952) was
the first to study the dynamics of logistics systems by a
Servomechanism approach. Through the years, different

studies were based on differential equations and feedback
structures, to model and control production systems, see
Ignaciuk P., and Bartoszewicz, A. (2011), Abbou et al.
(2015) and Bou Farraa, B. et al. (2018).
The first contribution of this work provides a robust
control law which guarantee the stability of the closed-
loop system, using a feedback-predictor control structure.
Different studies have treated the robustness with respect
to delay uncertainty. Sufficient conditions for system sta-
bility with an input delay are obtained in Mondié, S. et
al. (2001), and similar conditions are also obtained in
Gu, K. et al (2005), for the stability crossing curves for
systems with two delays. While in our study, necessary and
sufficient conditions for the existence of a robust control
are defined and expressed in terms of the delay deviation.
The second contribution remains in specifying the input-
output flow variations, in order to find the conditions that
verify the system constraints. The main advantage in this
study, is to apply the invariance principle introduced in
Blanchini, F. (1990) and recently used in Bou Farraa, B.
et al. (2018), on the exact prediction of the inventory level
and in the presence of delay uncertainty.
The paper is organized as follows. Section 2 introduces
the problem formulation. In Section 3, we recall some
preliminary results. Then, the inventory control structure
is described in Section 4. Section 5 is dedicated for the
robust study in frequency domain. After, we identify the
dynamics of the constrained input-output flow variables,
in Section 6. Finally, we end the study by a simulation
example in Section 7 and a brief summary in Section 8.
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2. PROBLEM FORMULATION

2.1 Model description

In this study, we consider a logistic system composed of a
production unit and a storage unit. The production unit
is characterized by the incoming flow of production orders
denoted by uptq, and by a constant lead time θ which
corresponds to a specified duration of the production task.
Moreover, the function ϕptq corresponds to the production
work in progress in the initial phase. The storage unit
is characterized by the inventory level denoted by yptq,
whose outgoing flow satisfy the customers demand and
sales made denoted by dptq. The generic model for the
inventory level dynamics is described by the following first
order delayed differential equations:

9yptq “

"

´σyptq ` upt ´ θq ´ dptq , for t ě θ,
´σyptq ` ϕptq ´ dptq , for 0 ď t ă θ.

(1)

In our case of study, we are interested in the inventory
dynamics of perishable products, so that the losses are
modeled by a fixed expiration rate noted σ. This latter
is a particular case of interest of the function σptq with
0 ď σ ă 1. Indeed, the elementary logistic system is
considered as an input time-delay system, where uptq is
the control input, dptq is the perturbation, and yptq is the
system output.

2.2 Constraints and objective

Since the production unit and the storage unit are limited
resources, the system is subject to positivity and satura-
tion constraints that are defined as follows.

0 ď ymin ď yptq ď ymax, (2)
and

0 ď umin ď uptq ď umax. (3)
The customer demand dptq is supposed to be unknown but
bounded by a minimum and a maximum demand rates,
such that

0 ď dmin ď dptq ď dmax. (4)
The problematic is to find a robust control strategy using
a predictor state feedback structure, so that the operating
constraints, (2) and (3), are satisfied for any customer
demand verifying (4).

3. BACKGROUNDS AND PRELIMINARY RESULTS

3.1 Convolution systems

Given the input-output systems of the form yptq “ ph ˚

uqptq “
şt

0
hpt ´ τqupτqdτ , an important family of causal

systems is characterized by convolution kernels of the form

hptq “ haptq `

8
ÿ

i“0

hi.δpt ´ tiq, for t ě 0. (5)

This set of kernels is denoted by A which forms a commu-
tative Banach algebra with a norm verifying

||h||A “ ||ha||L1
`

8
ÿ

i“0

|hi| ă 8 (6)

Such systems are known to belong to the Callier-Desoer
class, introduced in Desoer, C.A. and Vidyasagar, M.

(1975), which covers finite dimensional systems and in-
finite dimensional ones as well, such as time delayed sys-
tems. The authors showed that the following equality holds

sup
u‰0

||y||8

||u||8
“ ||h||A. (7)

Hence, every system with kernel defined on A is said to be
Bounded Input Bounded Output (BIBO)-stable. It means
that for every bounded input to the system, results a
bounded output for t ě t0.
Moreover, for a convolution system ph1 ˚ h2qptq with only
one positive kernel, the following property holds true:

||h1 ˚ h2||A ď ||h1||A.||h2||A. (8)
These properties are powerful tools to identify the BIBO
stability conditions for input-output systems, as presented
in the sequel.

3.2 D-invariance properties

In our work, we are interested in the invariance and D-
invariance principles, in the context of solving constrained
control problems for logistic systems. Indeed, we formulate
the explicit conditions for closed intervals D-invariance in
the case of single-variable systems studied in Blanchini, F.
(1990), in the following theorem.

Theorem 1. We consider a system defined by 9xptq “

fpxptqq´dptq where xp0q P Ω with Ω “ rα, βs, and dptq P D
with D “ rγ, δs. The interval Ω is said to be D-invariant
for this system if and only if the following conditions are
fulfilled.

fpαq ě δ, and fpβq ď γ. (9)
This result is very basic in control theory. It answers
as well to the issues of existence of feasible controllers
for constrained systems. Hence, it is very useful in our
study for reachable bounds identification and constraints
meeting is such delayed systems.

4. INVENTORY CONTROL STRUCTURE

In this paper, the proposed approach to control the inven-
tory dynamics for the logistic system (1) having an input
delay, is based on a prediction state feedback structure
that was first studied by Olbrot, A.W. (1978). The basic
issue is to compensate the time delay by generating a
control law that uses directly the corresponding delay-free
system, as developed in Bou Farraa, B. et al. (2018) and
Abbou et al. (2015). However, the system delay presents
some uncertainties that are expressed by the following
range:

θ P rθmin, θmaxs, (10)
where θmin and θmax are positive values. Hence, the future
state of the inventory level is predicted according to an
estimated delay that we note θ0. Thus, the predictive
control structure is defined by an affine control law uptq
and a prediction zptq, based on the delay estimation θ0
such that

uptq “ Kpz0 ´ zptqq, (11)
and

zptq “ e´σθ0yptq `

ż t

t´θ0

e´σpt´τqupτqdτ , for t ě θ0. (12)

The static gain K adjusts the production rate, and z0
is the reference value for the estimated storage level. In
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addition, due to the uncertainty of the delay, zptq is no
longer an exact prediction but an estimation of the future
storage level. Furthermore, the dynamics of the prediction
zptq can be expressed as follows:
9zptq “ ´σzptq`uptq´e´σθ0dptq`e´σθ0pupt´θq´upt´θ0qq.

(13)
The dynamics of the controlled system being defined by
the above delayed differential equation, that depends on
two non commensurable delays θ and θ0, we can move to
the robust stability analysis in the following section.

5. ROBUST STUDY IN FREQUENCY DOMAIN

The objective of the robustness study is to quantify the
impact of the delay uncertainty on the performance of the
inventory controlled system. The study consists of finding
the conditions on the control parameters K and z0 as well
as θ0, so that the closed loop system is stable. Indeed, we
start by the closed-loop stability analysis.

5.1 Stability analysis of the closed loop transfer

In the frequency domain, the system output and the
control law are described respectively by ps ` σqŷpsq “

e´sθûpsq ´ d̂psq, and ûpsq “ ĈpsqpKz0 ´ Ke´σθ0 ŷpsqq,
where Ĉpsq “ 1

1`Kp 1´e´ps`σqθ0
s`σ q

.

Fig. 1. Structure of the closed-loop system

We identify in the following proposition, the closed loop
characteristic quasi-polynomial when the system delay θ
is different from the design delay θ0.

Proposition 1. Given the system (1) with a control design
(11 - 12) based on a delay estimation θ0, the closed loop
characteristic quasi polynomial is equal to

1

ĝpsq
“ s ` σ ` K ´ Ke´σθ0pe´sθ0 ´ e´sθq. (14)

The proof is well-known in the control theory domain.
Looking at the expression of ĝpsq, we notice that the
transfer depends explicitly on the gain parameter K and
the two delays θ and θ0. Indeed, a robust study in terms
of the delay deviation between θ and θ0 allows us to find
the stability condition of the closed loop system. Thus, we
express ĝpsq as a product of two transfers, in the following
form

ĝpsq “ ĝ1psqĝ2psq. (15)
The first transfer ĝ1psq “ 1

s`σ`K , corresponds in the time
domain to the Kernel g1ptq “ e´pσ`Kqt, whose norm is
equal to ||g1||A “ 1

σ`K . The second transfer is ĝ2psq “

1
1´ε̂psq

, with ε̂psq “ K e´σθ0 pe´sθ0´e´sθq

s`σ`K . The function εptq

is equal to zero for θ “ θ0. Following this analysis, we will
introduce the stability condition of the transfer ĝpsq, in
terms of the BIBO stability.

Proposition 2. Considering the following factorization,

ĝpsq “
1

s ` σ ` K

1

1 ´ ε̂psq
,

the transfer ĝpsq is stable if and only if 1
1´ε̂psq

is stable.

Proof. We first remark that ĝ1psq is BIBO-stable. As
consequence, if ĝ2psq is also stable, we obtain

||g||A ď ||g1||A .||g2||A.

This shows the sufficiency of Proposition 2. Reversely,
we can write ĝ2psq “ 1 ` ĝ3psq.ĝpsq, with ĝ3psq “

Ke´σθ0pe´sθ0 ´ e´sθq. Int the time domain, the kernel
associated with the transfer ĝ3psq is g3ptq “ Ke´σθ0pδpt ´

θ0q ´ δpt ´ θqq, and that of ĝ2psq is
g2ptq “ δptq ` Ke´σθ0pgpt ´ θ0q ´ gpt ´ θqq.

The latter is integrable if gptq is also integrable, which
completes the proof. �

In the following, we will introduce a basic result that was
introduced in Hille, E. and Phillips, R.S. (1957), and then
developped in Desoer, C.A. and Vidyasagar, M. (1975)
on the transfer stability, in order to identify the necessary
and sufficient condition for the closed loop BIBO stability.

Lemma 1. Having an element α of A, the complex function
1

1´α̂ is an element of Â if and only if the following condition
is satisfied

infRepsqą0 | 1 ´ α̂psq | ą 0.

The application of this lemma allows to formulate the
following condition on the robust stability of the transfer
ĝpsq.

Proposition 3. The transfer ĝpsq is stable if and only if

supwPR

˜

2Ke´σθ0

a

w2 ` pσ ` Kq2

ˇ

ˇ

ˇ

ˇ

sinwpθ ´ θ0q

2

ˇ

ˇ

ˇ

ˇ

¸

ă 1. (16)

Proof. This result is deduced from Proposition 2 and
Lemma 1. The condition in Lemma 1 reaches its maximum
on the imaginary axis for s “ jw, and is equivalent to

supwPR

ˇ

ˇ

ˇ

ˇ

Ke´σθ0e´jwθ0

jw ` pσ ` Kq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
p1 ´ e´jwpθ0´θqq

ˇ

ˇ

ˇ
ă 1.

The proof is achieved having that
ˇ

ˇ

ˇ

Ke´σθ0e´jwθ0

jw`pσ`Kq

ˇ

ˇ

ˇ
“

Ke´σθ0?
w2`pσ`Kq2

, and
ˇ

ˇp1 ´ e´jwpθ0´θqq
ˇ

ˇ “ 2
ˇ

ˇ

ˇ
sin wpθ´θ0q

2

ˇ

ˇ

ˇ
. �

We notice that when the delay is known exactly, for θ “ θ0,
sinwpθ´θ0q

2 “ 0 and the closed loop spectrum is equal to
1

ĝpsq
“ s ` σ ` K. Hence, the condition (16) is checked for

every w P r0, π
pθ´θ0q

s, and the closed-loop system is stable.
Following the result of Proposition 3, we identify in the fol-
lowing theorem the conditions that guarantee the robust-
ness of the controlled system against the delay uncertainty.

Theorem 2. Given a system of the form (1), the feedback
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control structure (11 - 12) is robust stabilizing with respect
to the delay uncertainty, for

$

’

’

&

’

’

%

θ ě 0 , if e´σθ0 ď
1

2

σ ` K

K
,

θ Psmaxp0, θ0 ´ ∆q, θ0 ` ∆r , if e´σθ0 ą
1

2

σ ` K

K
,

(17)
where ∆ “ π

2K
?

pe´σθ0 q2´p 1
2

σ`K
K q2

.

Proof. Using the condition (16) of Proposition 3, we
notice that 2Ke´σθ0?

w2`pσ`Kq2
is a decreasing function, and that

ˇ

ˇ

ˇ
sinwpθ´θ0q

2

ˇ

ˇ

ˇ
ď minp

wpθ´θ0q

2 , 1q and it is satisfied at least if
w P r0, π

pθ´θ0q
s. We can therefore deduce the upper bound

for the condition (16), which is equal to 2Ke´σθ0?
w2

0`pσ`Kq2
. The

condition (16) is therefore expressed by
2Ke´σθ0

a

w2
0 ` pσ ` Kq2

ă 1.

It is checked for any positive value of w0 if e´σθ0 ď 1
2
σ`K
K ,

which implies in particular that the gain K must be bigger
enough. Hence, the system is stable for any value of θ ě 0.
On the contrary, for e´σθ0 ą 1

2
σ`K
K , the upper bound of

the condition (16) is obtained for w0 “ π
pθ´θ0q

. So, the
transfer ĝpsq is stable if and only if

|θ ´ θ0|

b

4K2e´2σθ0 ´ pσ ` Kq2 ă π.

Indeed, the size of the delay deviation can be defined by
∆ such that |θ ´ θ0| ă ∆ with θ ě 0, which leads to the
stability conditions of Theorem 2. �

The necessary and sufficient conditions that are obtained
in Theorem 2, allow to quantify the range of the delay
deviation such that closed-loop system is stable. Indeed,
we will move to specify in the following section the choice
of the control parameters pK, θ0q, for which the control
structure is robust and the condition (17) is verified.

5.2 Choice of the control parameters

The conditions of Theorem 2, depend on the set of pa-
rameters pK,σ, θ0q, where σ is an intrinsic parameter, and
pK, θ0q are the control parameters. The reference value
z0 does not appears in the stability analysis of the closed
loop. In this section, we will identify the choice of the set of
parameters pK, θ0q, for which the conditions of the robust
stability are always satisfied. Indeed, the conditions on K
are specified as follows.

Proposition 4. Given the closed-loop system of the form (1
- 11 - 12), the robust stability conditions (17) are verified
for σ ą 0, by choosing the control parameter K as follows:
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

K ě 0 , for e´σθ0 ď
1

2
,

K P r0,
σ

2e´σθ0 ´ 1
s , for 1

2
ă e´σθ0 ď

1

2

σ ` K

K
,

K Ps
σ

2e´σθ0 ´ 1
,

σ

2e´σθ0 ´ 1
αr , for e´σθ0 ą

1

2

σ ` K

K
,

where α “

¨

˝

1`

c

4e´2σθ0`p4e´2σθ0´1q π2

σ2pθ´θ0q2

2e´σθ0`1

˛

‚.

Proof. Using the results of Theorem 2 to solve first the
most complex case, the system is stable for θ Psmaxp0, θ0´

∆q, θ0`∆r, which implies a choice of the control parameter
K verifying

p4e´2σθ0 ´ 1qK2 ´ 2σK ´ pσ2 `
π2

pθ ´ θ0q2
q ă 0.

This inequality is satisfied only if e´σθ0 ą 1
2 , for a choice

of K Ps σ
2e´σθ0´1

, σ
2e´σθ0´1

αr. In addition, for 1
2 ă e´σθ0 ď

1
2
σ`K
K , the system is stable @θ ě 0 verifying K ď σ

2e´σθ0´1
.

Following this analysis, we deduce one more case, for
e´σθ0 ď 1

2 , where the system is stable @θ ě 0 and K ě 0.�

We introduce in the following corollary the choice of the
delay estimation θ0, that allows to satisfy the conditions
(17) given the interval of the delay variation (10).

Corollary 1. Given the system delay θ P rθmin, θmaxs, the
choice of the delay estimation θ0 that satisfy the stability
conditions (17) for ∆ as defined in Theorem 2, is given by:

$

’

’

’

’

&

’

’

’

’

%

θ0 ě
1

σ
log 2 , for K ě 0,

θ0 ă
1

σ
log 2 , for K ď

σ

2e´σθ0 ´ 1
,

∆ ą M , for K P r
σ

2e´σθ0 ´ 1
,

σ

2e´σθ0 ´ 1
βr,

where M “ maxpθmax ´ θ0, θ0 ´ θminq,

and β “

˜

1`

b

1`p4e´2σθ0´1qp1` π2

σ2M2 q

2e´σθ0`1

¸

.

Proof. The first case on the choice of θ0 is deduced
from Proposition 4 for e´σθ0 ď 1

2 . Moreover, the sec-
ond case is obtained from proposition 3, using that 1

2 ă

e´σθ0 ď 1
2
σ`K
K . Thus, the interval of variation of the

system delay rθmin, θmaxs, is a stabilizing solution in the
two previous cases, for eσθ0 ď 1

2
σ`K
K . In the third case,

for e´σθ0 ą 1
2
σ`K
K , the closed-loop is stable if and only if

θ P rθmin, θmaxs Ăsmaxp0, θ0 ´ ∆q, θ0 ` ∆r, which implies
that ∆ ą M . Hence, this condition is guaranteed for
K ě σ

2e´σθ0´1
and bounded by σ

2e´σθ0´1
β. �

This section gives the conditions for which the control
strategy is robustly stable in the presence of a delay
uncertainty. However, the issue of the controller is to keep
the production order and the inventory level, as far as
possible within their limits, in order to forbid any overruns
of the system constraints. So, the design of an admissible
control law returns to define the conditions for which the
closed-loop system would meet the system constraints in
the presence of delay uncertainty. Hence, we will study the
variation of the flow variables in the following section.

6. CONSTRAINED INPUT-OUTPUT SYSTEM

This section is dedicated for the study of the input-
output variations using the predictive control structure,
in order to satisfy the system constraints. As we have seen
previously, the dynamics of the predictive control structure

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4436



(13) corresponds to a delayed differential equation that
depends on two different delays θ and θ0. So, let us consider
in this section, the exact prediction pptq of the storage
level, given by

pptq “ e´σθyptq `

ż t

t´θ

e´σpt´τqupτqdτ, for t ě θ. (18)

Using the definitions of pptq and zptq, and the properties
of Artstein reduction as developped in Artstein, Z. (1982),
we introduce the following proposition.

Proposition 5. For zptq and pptq being defined by (12) and
(18) respectively, the following properties hold true.

piq pptq “ ypt ` θq `

ż t`θ

t

e´σpt`θ´τqdpτqdτ,

piiq pptq “ e´σpθ´θ0qzptq ` eptq,

piiiq 9pptq “ Kz0 ´ pσ ` Ke´σpθ0´θqqpptq

`Ke´σpθ0´θqeptq ´ e´σθdptq,

where
eptq “ p1 ´ e´σpθ´θ0qq

ż t

t´θ0

e´σpt´τqupτqdτ `

ż t´θ0

t´θ

e´σpt´τqupτqdτ.

Proof. The assertion piq is obtained using the definition of
pptq between t and t`θ, and the system dynamics (1). The
second assertion is deduced from the definitions (18) and
(12) of pptq and zptq respectively. Finally, the assertion
piiiq is obtained based on the Artstein reduction of (18),
9pptq “ ´σpptq ` uptq ´ e´σθdptq, and using assertion piiq
and the definition of uptq (11). �

Referring to the assertion piiq of Proposition 5, the amount
eptq allows to quantify the error on the prediction that is
introduced by the delay uncertainty. In fact, when θ0 “ θ,
we obtain eptq “ 0 and zptq “ pptq as consequence. More-
over, knowing that uptq is bounded by umin and umax,
and that θ P rθmin, θmaxs, we can find the exact bounds
e1 and e2 of the variation of eptq. Hence, the error of the
prediction eptq P re1, e2s, where

e1 “

ˆ

1 ´ e´σθmin

σ
` e´σθmaxp

1 ´ eσθ0

σ
q

˙

umin,

e2 “

ˆ

1 ´ e´σθmax

σ
` e´σθminp

1 ´ eσθ0

σ
q

˙

umax.

(19)

In the following, we use the D-invariance properties in
order to find the variation of the prediction pptq, and then
to define properly the interval of variations of uptq and yptq.

Theorem 3. Given the system (1) with a disturbance dptq
verifying (4), subject to a control strategy (11 - 12) with
a delay uncertainty verifying (10), the following invariant
sets of the input-output flow variables are satisfied.

uptq P ru1, u2s, yptq P ry1, y2s, (20)

where u1, u2, y1, and y2 are defined by the following
identities:

u1 “
K

σ ` Ke´σpθ0´θmaxq
pσz0 ` e´σθmaxdmin ` σe1

´Ke´σpθ0´θmaxqpe2 ´ e1qq,

u2 “
K

σ ` Ke´σpθ0´θminq
pσz0 ` e´σθmindmax ` σe2

´Ke´σpθ0´θminqpe1 ´ e2qq,

y1 “
1

σ ` Ke´σpθ0´θminq
pKz0 ´ e´σθmindmax

`Ke´σpθ0´θminqe1q ´
1 ´ e´σθmax

σ
dmax,

y2 “
1

σ ` Ke´σpθ0´θmaxq
pKz0 ´ e´σθmaxdmin

`Ke´σpθ0´θmaxqe2q ´
1 ´ e´σθmin

σ
dmin.

As consequence, the system constraints (2) and (3) are met
if and only if u1, u2, y1, and y2 are so that

ru1, u2s Ă rumin, umaxs, ry1, y2s Ă rymin, ymaxs. (21)

Proof. First, we apply the D-invariance principle to
the Artstein reduction expressed in assertion piiiq of
Proposition 5. Using that 9ppdmax, θminq ě 0 and that
9ppdmin, θmaxq ď 0, we find the D-invariant interval of the
prediction pptq, such that pptq P rp1, p2s, where the bounds
are given by

p1 “
Kz0 ´ e´σθmindmax

σ ` Ke´σpθ0´θminq
`

Ke´σpθ0´θminqe1
σ ` Ke´σpθ0´θminq

,

p2 “
Kz0 ´ e´σθmaxdmin

σ ` Ke´σpθ0´θmaxq
`

Ke´σpθ0´θmaxqe2
σ ` Ke´σpθ0´θmaxq

.

Using the above bounds of pptq and the assertion piiq of
Proposition 5, we find the bounds of variation of zptq.
As consequence, we deduce the bounds u1 and u2 of
uptq that is already defined by (11). In addition, one can
check that for θ and dptq verifying (10) and (4) respec-
tively, the integral

şt`θ

t
e´σpt`θ´τqdpτqdτ evolves between

1´e´σθmin

σ dmin, and 1´e´σθmax

σ dmax. Therefore, we can
find easily the exact bounds y1 and y2 of yptq by replacing
both p1, p2 and

şt`θ

t
e´σpt`θ´τqdpτqdτ by their expressions

of evolution in the assertion piq of Proposition 5. �

In the end of this paper, we have found the exact and
reachable bounds for both the input uptq and the out-
put yptq. These intervals allow to satisfy the system con-
straints, (2) and (3), given a customer demand verifying
(4) and a delay uncertainty verifying (10).

7. SIMULATION EXAMPLE

This simulation illustrates the system response and high-
lights the effects of the delay uncertainties on the system
stability and constraints verification. A co-design method-
ology is used to identify both system and control param-
eters. Indeed, for dmin “ umin “ ymin “ 0 and σ “ 0.02,
the control parameters are K “ 0.4468 and z0 “ 2800. In
addition, the system initialization is given by yp0q “ 2400
and ϕptq “ 70. The results for either delay uncertainty or
not, are given in the figures (2) and (3) for a rectangular
signal of dptq limited by dmax “ 240. We can notice
that when dptq “ 0, the controlled structure makes it
possible to replenish the storage level in order to reach the
reference value z0. Otherwise, the control input follows the
variation of the demand, so that it is completely satisfied,
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and the storage level does not undergo a shortage. Hence,
the system constraints are checked for both yptq and uptq
verifying (20) and (21). In addition, the system responses
when θ “ θ0 “ 6 are very smooth, while they show
some fluctuations and small variations when we introduce
an delay uncertainty with θ0 “ 7. Moreover, the robust
stability conditions (17) are guaranteed for ∆ “ 5.06, such
that θ P rθ0 ´ 5.06, θ0 ` 5.06s, and K P r0.0271, 2.2187r.

Fig. 2. Temporal evolution of uptq limited by umax “ 300

Fig. 3. Temporal evolution of yptq, limited by ymax “ 3000

8. CONCLUSION

Our work deals with the problem of inventory level man-
agement of an elementary logistic system, subject to a
constant loss factor and a lead time uncertainty. The main
advantage remains in the study of the robust stabilization
using a predictive and affine feedback control structure.
Indeed, necessary and sufficient conditions for which the
robust stability of the controlled system is guaranteed, are
given in terms of the size of delay deviation. In addition,
we have identified the bounds of input-output variations,
so that the system constraints are verified for any cus-
tomer demand. In the continuity, different topics have
worth future investigation. First, the robust analysis can
be developed for variable input delays, and uncertain loss

factor. Moreover, the losses can be modeled using a date
of expiry instead of a preemption factor. Finally, it would
be interesting to extend this study for distributed systems,
that present real applications for logistic networks.
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