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Abstract: Rijke tube is a popular physical experiment demonstrating a spontaneous generation
of sound in an open vertical pipe with a heat source. This laboratory instance of thermoacoustic
instability has been researched due to its significance in practical thermoacoustic systems. We
revisit the experiment, focusing on the possible use of the Rijke tube as a musical instrument.
The novelty presented in this paper consists in shifting the goal from sound suppression to active
sound generation. This called for modifying the previously investigated methods for stabilization
of thermoacoustic oscillations into their excitation and control of their amplitude. On our way
towards this goal, we developed a time-domain mathematical model that considers the nonlinear
and time-varying aspects of the Rijke tube. The model extends the existing modeling and
analysis approaches, which are mainly based in frequency domain. We also present an extension
of the basic laboratory setup in the form of an array of Rijke tubes equipped with a single
speaker used to control multiple Rijke tubes with different natural frequencies simultaneously.

Keywords: Rijke tube, Rijke organ, System modeling, Thermoacoustic instability, Time-delay
systems

1. INTRODUCTION

Discovered in 1859 by a Dutch physicist Petrus Leonardus
Rijke, a static source of heat—as simple as a wire mesh
preheated with a burner—placed inside a vertically ori-
ented open pipe gives rise to a loud humming noise. The
sound goes away once the pipe is turned horizontally, but
it reappears as soon as it is turned upright again. As such,
the Rijke tube is an acoustically attractive experiment that
catches attention and is often used as a demonstration
during popular science lectures. As documented by Raun
et al. (1993), numerous configurations exist, but there have
not been many published attempts to exploit the under-
lying physical phenomenon other than by suppressing it.
In this paper, we propose using the Rijke tube as the base
principle for a musical instrument—Rijke organ.

Previous developments in understanding, modeling and
control of Rijke tube were predominantly motivated by
its close relation to practical systems that tend to develop
thermoacoustic oscillation: engines, furnaces, and various
combustion systems in general. The ultimate goal in a
vast majority of such applications is to suppress these
undesirable oscillations, that is, to stabilize the system.
Active control of thermoacoustic (combustion) instabilities
by means of a feedback was researched in 1980s. These
early developments were documented by McManus et al.
(1993) and Candel (1992). Heckl (1988) appears to be
one of the first to study feedback stabilization based
on frequency-domain analysis of the system. Later years
witnessed application of advanced control techniques such
as Campos-Delgado et al. (2003) who applied the H∞
disturbance rejection and loopshaping techniques. More
recently, Epperlein et al. (2015) used a similar setup to

further investigate and describe the problem and compare
experimental results with a system modal description.
Besides the active control approaches, passive stabilization
techniques have also been enjoying renewed interest of
researchers recently: Zalluhoglu and Olgac (2018) show the
possibility of passive stabilization by an acoustic resonator
mounted onto the Rijke tube.

For our application, we can also benefit from suppression
(e.g., for muting the tone), but more importantly, we need
to control the oscillations in terms of the rise time and
magnitude control. Such requirements do not allow us to
use the many simplifying assumptions that are proven
valid for simple suppression tasks. In particular, it is no
longer possible to restrict the analysis to the frequency
domain only. Many of the secondary phenomena in the
Rijke tube, such as the dynamics of the buoyancy-driven
air convection or the dynamics of the heat transfer and
dissipation, affect the performance significantly and they
have a nonlinear character. Therefore, we constructed
a time-domain model of the Rijke tube that captures
the main aspects of the nonlinear long-period dynamics
and allows for numerical simulations of the system. We
implemented the simulation models using Matlab and
Simulink.

2. MATHEMATICAL MODEL OF RIJKE TUBE
DYNAMICS

Our model considers a Rijke tube system portrayed in
the schematic drawing in Fig. 1a. An open glass tube
is equipped with a microphone, an electrically powered
wire heater element, and a loudspeaker. The former is
used as a sensor, the latter two are used to generate
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Fig. 1. Simplified time-delay based model of the Rijke tube with a microphone placed below the heater; (a) schematic
drawing with highlighted significant cross-sections, (b) block diagram representation

inputs to the system. The heater is explicitly placed close
to the lower quarter of the tube length to render the
system inherently unstable. The microphone is positioned
near the end of the tube, avoiding the position of the
acoustic node. We placed the microphone below the heater
as oppose to the placement near the farther end of the
tube, which appears to be used almost exclusively in
the related experiments. Our placement allows for more
compact design of the active elements in the tube and
also prevents the microphone from being exposed to hot
airstream. More on the the effects of this choice on the
system can be found in (Pučejdl, 2019).

The modelling assumptions are (i) a stable buoyancy-
driven mean upward airstream in the tube with the ve-
locity small compared to the speed of sound, (ii) one-
dimensional propagation of both the mean airflow and the
acoustic waves along the length of the tube, (iii) negligible
thickness of the heater zone, and (iv) no energy dissipation
other than the losses due to acoustic reflections at the open
ends of the tube, the key modeling concept is the general
form of d’Alembert solution of the linear wave equation
for acoustic pressure and velocity fluctuations p̃ and ũ:

p̃(x,t) = f (t− x/c̄) + g (t+ x/c̄) , (1)

ũ(x,t) =
f (t− x/c̄)− g (t+ x/c̄)

ρ̄c̄
, (2)

where ρ̄ and c̄ are the mean air density and speed of
sound. Acoustic pressure at each point along the length of
tube can be expressed as a combination of two opposing
traveling waves f and g. Neglecting losses, these travel-
ling waves evaluated in different positions along the tube
length are related through time delays; on the open tube
ends the waves reflect and travel back with the amplitude
and phase shift characterized by a reflection coefficient (a
reflection transfer function in the linear case). By evalu-
ating the travelling waves f and g at selected important
cross-sections of the tube and defining the respective time
delays between these sections, we can translate the spa-
tially distributed problem into a time-delay system. The
important sections are the heater zone, the microphone
zone, and both ends of the tube. Respective time delays
τi correspond to the travel times for the acoustic wave be-
tween significant cross-sections, hence τ1 = (xm − xu) /c̄,
τ2 = −xm/c̄ and τ3 = xd/c̄.

A block diagram corresponding to such a model in the
complex frequency domain is in Fig. 1b. The travelling
waves interacting with the heating zone are governed by
the heating zone transfer function H as

[
g3

f4

]
= H

[
f3

g4

]
, (3)
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and the incident and reflected waves at the tube ends are
related by the reflection transfer function. Both denoted
control loops regard the acoustic pressure as the control
variable. The acoustic control loop contains the controller
transfer function K and transfer function L characterizing
the microphone, the loudspeaker, and their respective
amplifiers. Proper description of the control input from the
heater controller C to the system is given in Section 2.1,
hence the dashed line in the diagram.

Under the assumptions of linearity and time-invariance
(LTI) of the heater, reflection and controller transfer func-
tions, this system fits the LTI time-delay system frame-
work, which allows for some methods of modal analysis as
shown by Zalluhoglu and Olgac (2018). Unfortunately, for
the purposes of this paper, these assumptions are unreal-
istic. We aim to use the heater power as the control input;
hence, H is altered artificially in time. Moreover, the heat
transfer depends on the heater temperature and airflow
velocity, none of which can be assumed constant during
experiments, and as we show in the following section, the
dependency is also nonlinear.

2.1 Nonlinear Heat Release Model

The linearized version of the heater transfer function can
be described as

H(s) =
1

s+ Z1 + Z2

[
Z1 s+ Z1

s+ 2Z1 + Z2 −Z1

]
, (4)

with the coefficients

Z1 =
a(γ − 1)

2Abc̄2ρ̄
and Z2 =

1

b
, (5)

where b is the time constant of the heat release dynamics,
a corresponds to its DC gain, A is the cross-sectional tube
area, and γ is the adiabatic ratio. Eq. (4) is borrowed from
Zalluhoglu and Olgac (2018) and the form of coefficients
in Eq. (5) is broadly accepted in other relevant sources.
The core elements to the heat transfer are the effective heat
gain represented by a and then first-order lag dynamics
based on the boundary-layer effect of thermal inertia
(Epperlein et al., 2015).

To obtain an equation for the heat transfer gain a we
consider the heat power transfer Q of a hot circular wire
in a colder fluid, which is approximately given by King’s
law

Q = f (uh) = lw

(
κ+ κu

√
|uh(t)|

)
(Tw − Tgas) , (6)

where lw is the length of the heater wire, κ is the fluid’s
thermal conductivity, κu is an empirically determined
constant and uh(t) is the velocity of the gas at the heater
cross section (Vessot and Turner, 1914). The velocity uh(t)

is given by acoustic velocity fluctuations ũ(x0,t) at the
heater cross section and the velocity ub(t) of the buoyancy-
induced convection flow, such that

uh(t) = ũ(x0,t) + ub(t) . (7)

Assuming ub(t) positive, yet small, we can write the linear
approximation of f (uh) w.r.t the fluctuating component as

g(uh) = f ′(ub(t))ũ(x0,t), (8)

and the slope of this function corresponds to the heat
transfer gain a, hence a ≈ f ′(ub(t)). Clearly, it is only when

we assume the wire temperature Tw and gas temperature
Tgas as well as the mean flow velocity to be constant and
velocity fluctuations small, that we can consider Q and a
respectively to be constant as well.

Such assumptions can no longer be held when we step out
of the frequency-domain and consider the evolution of the
Rijke tube behavior in time. Dropping the assumptions
results in a becoming a time-varying parameter a(t) as
a nonlinear function of the velocity and possibly also a
linear function of wire and gas temperature. Moreover, the
wire temperature Tw is also influenced by the velocity of
the gas, which further complicates the coupling between
the variables. We neglect the other possible dependencies
(such as the overall temperature increase over time as the
tube itself absorbs the heat) and consider the heat release
gain to be

a(t) = a(ub,∆Tw) ≈ C1

(
1 +

C2

2|ub(t)|3/2

)
∆Tw(t) , (9)

where C1 = lwκ and C2 = κu/κ are constants and
∆Tw(t) = Tw(t) − Tgas is relative temperature of the
wire w.r.t. the temperature of the surrounding gas and
environment, which we take as a constant reference point.
∆Tw(t) is proportional to the energy which is the integral
of the difference of electrical power supplied to the wire
and the heat power transferred to the flowing air, hence

∆Tw(t) ∝ Ew =

∫
R(∆Tw)i(t)2 −Q(uh,∆Tw)dt , (10)

with i(t) being electrical current flowing through the wire
and R(∆Tw) = R0 (1 + α∆Tw(t)) is the temperature de-
pendent electrical resistance of the Kanthal wire, with
α ≈ 5× 10−5 1/K. Next, using Eq. (9) in Eq. (10), adding
the proportionality constant C3 and differentiating the
result, we obtain an affine first order differential equation
for ∆Tw with nonlinear time-varying terms in i(t) and
u(t,x0)

∆Ṫw(t) =C3

{
R0i(t)

2 +
[
R0i(t)

2α

−C1

(
1 + C2

√
|uh(t)|

)]
∆Tw(t)

}
. (11)

The Equation (11) describes the dynamics of the wire
temperature with the heatercurrent i(t) being the control
input to the system. Fig. 2 shows the block diagram
implementation of this dynamics as it is later used in the
complete model.

α ×

R0 C3

∫
dt

C2

√
|u| C1 ×

1

i2
∆Ṫw ∆Tw

Q

i(t)

uh(t)

Fig. 2. Block diagram of the wire temperature model
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The acoustic velocity fluctuations are easy to obtain
from Eq. (2), given the knowledge of the functions f (t−x0/c̄)

and g(t−x0/c̄), which we can directly obtain from the sim-
ulation model based on the diagram in Fig. 1b.

Considering the dynamics of ub(t) is fundamental for cap-
turing the time-domain character of the system, including
the attack and decay of the acoustic instabilities. We ap-
proximate its behavior with a simple 2nd order system 1 ,
representing some virtual inertia m of the air column and
damping ζ caused by viscous friction in the tube and even
more so the damping effects at the tube ends.

C4Q(t) = mu̇b(t) + ζub(t) . (12)

The input to the system is the heat power Q(t), and it
is scaled by a constant C4. The virtual inertia is propor-
tional to the inner volume of the tube, and the damping
coefficient is assumed constant. Numerical values of all the
parameters are empirically determined based on model ex-
periments such that the system reaches reasonable steady-
state velocities (ub(t) ≈ 1ms−1) for given input current
and consequent heat release gain. Eq. (12) yields a simple
transfer function

Hb(s) =
C4

ms+ ζ
, (13)

which can be implemented in the model of the time-
varying heat gain model as shown in Fig. 3

The final form of the transfer function H remains identical
to the LTI model, only its parameter a(t) is now time-
varying and it is governed by the Equation 9. Simplified
block diagram of such a system in Fig. 3 portrays the
interesting looped coupling between the velocities and
heat release. Block T contains the nonlinear function
from Fig. 2 and block A contains Eq. (9).

T A H(a)

Hb

1

ρ̄c̄

f2 g2

f3 g3

Q

∆Tw

a

ũ

ub

uh

i

Fig. 3. Block diagram of the time-varying heat transfer

2.2 Acoustic Reflections

Acoustic reflections are critical to forming the standing
wave in the tube. The wavelength of the fundamental
acoustic mode of the open resonant pipe equals approx-
imately 2 to twice the length of the tube. This fundamen-
tal mode at the frequency f0 dominates over the higher
harmonic frequencies due to its lowest attenuation during
the acoustic reflections. According to the thorough study

1 1st order in velocity.
2 The actual wavelength needs to be adjusted with so-called end
correction, which is considered proportional to the pipe diameter.

by Levine and Schwinger (1948), the reflection behavior
corresponds to a linear phase filter that delays each fre-
quency component of the signal by the same fixed amount
commonly referred to as a group delay. We decided to
model the reflection by a DC gain −|Rr(f0)| ≈ −0.95
and a 1st order Low-Pass filter with a cutoff frequency
at 10f0. Such implementation does not feature a linear
phase response, yet the most important aspect concerning
the attenuation of the higher frequencies is included. More
in depth explanation of the modeling and obtaining the
specific coefficient values is given in (Pučejdl, 2019).

3. MODEL VERIFICATION AND EXPERIMENTS

To simulate the system we used a Simulink diagram that
corresponds to the model in Fig. 1b extended with the
nonlinear dynamics in Fig. 3. Most of the numerical pa-
rameters in the model relate to the physical properties of
the tube or known physical quantities, with the exception
of the parameters C3−4 and ζ, which we tuned empirically.
Due to the coupling effects of several different dynamical
models, and a lack of precise dynamical measurements of
the temperature and airflow, we were unable to conduct
more rigorous system identification. Fig. 4 shows the de-
velopment of the oscillations when a constant power is
supplied to the heater, and there is small initial condition
representing some movement of the air in the tube. Buoy-
ant airstream velocity and the temperature of the heater
develop and according to expectations.

Fig. 4. Tube model response to small initial sound pressure
disturbance

.

The FFT analyzed frequency spectrum of the sound pres-
sure signal plotted in Fig. 5 confirms that the system
oscillates at the frequency closely matching the expected
frequency f0 determined by the length l of the tube. The
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presence of lower gain higher harmonic components in the
spectrum also complies with the expectation. Fig. 6 shows
the comparison of the short segment of the oscillating
waveform obtained from the simulation and the real sound
pressure signal measured on the actual Rijke tube with
corresponding parameters.

Fig. 5. Frequency spectrum of the sound pressure signal
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Fig. 6. Close comparison of the simulated waveform and a
signal measured on real Rijke tube

4. HARDWARE AND CONTROL SYSTEM

For hardware development and testing the controllers,
we built a prototype platform based on a single Rijke
tube (see Fig. 8a). The design and construction of the
components—the heater element and the microphone in
particular—was subject to the general design intent of
building the full instrument, which brought several chal-
lenges and required custom solutions (i.e. the heater el-
ements and microphones). Upon this platform, we tested
and tuned two control strategies, which were previously de-
signed using the mathematical model. This section is just
a brief summary and reader is referred to Pučejdl (2019)
for more details about the fabrication of the components
and specifics of the control system implementation.

4.1 Control system

We specified two main control objectives for enhancing
the acoustic performance of the tube. First, we wanted to
accelerate the rise and the decay of the tone, which would
allow us to trigger the tones more precisely. Second, we
needed an amplitude control to be able to play a stable

tone and adjust its volume. We use both system inputs—
the acoustic input from the speaker and the heat power
input from the heater—in either feedback or feed-forward
mode. Acoustic feedback stabilization via the time-shifted
proportional controller is used for muting the tone and for
suppressing the spontaneous rise of the oscillations in the
tube, allowing the idle power to be provided by the heater.
As such, we maintain the buoyant airstream in the tube,
which significantly shortens the rise time for the tone.
For the tone to be triggered, a short, low-amplitude feed-
forward acoustic pulse is used to excite the oscillations,
and the heater control switches to the feedback mode to
reach and maintain the desired amplitude for the duration
of the tone. Observing the first plot in Fig. 7, we can see
that the system can track a sequence of 1 second long
pulses of varying amplitude. For comparison, an identical
tube with simple on-off heating takes several seconds to
develop the tone after the heating is turned on, and usually
even longer to decay. The tone is not completely muted
between the pulses, which is partially caused by the idle
current supplied in these time periods; hence, there is a
tradeoff between the rise and decay times. Better control
strategies could be developed using the offline control
input optimization when the reference signal is known
prior (e.g., playback music).

Fig. 7. Amplitude reference tracking using heater current
and speaker signal as control inputs

4.2 Rijke Organ

The design of the full Rijke organ was driven by the idea
of using a single loudspeaker as an input for multiple Rijke
tubes. LTI system with multiple modes can be stabilized
by single input if such is able to excite each unstable mode
sufficiently and if all of the unstable modes have different
natural frequencies. Applicability of this theoretical result
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on the nonlinear system consisting of multiple Rijke tubes
is not self-evident. The condition of different natural
frequencies is sufficed for different lengths of the tubes,
but the existence of actuation limits in terms of the
maximum power output of the loudspeaker, as well as
the nonlinear effects from the tube dynamics, threaten to
degrade tge performance. However, our simulations of the
mathematical model with two tubes suggested that such
an approach should be feasible, and we later confirmed
that by the experiments with the real instrument.

We decided to build the first iteration of Rijke organ with
11 borosilicate glass tubes covering tones ranging from
F3 (∼ 174 Hz) to C5 (∼ 523 Hz), rendering the tallest
tube approximately 1 m, and the shortest tube 30 cm tall.
The circular arrangement was chosen to utilize the single
speaker placed in the middle, approximately 5 cm below
the bottom ends of the tubes. The frame is built using
predominantly laser-cut plywood and 3D printed parts.
Function of the instrument is presented in video clip
available at youtu.be/J1u2lsf7p1Y.

(a) (b)

Fig. 8. (a) Prototype platform with single Rijke tube and
(b) full 11-tube Rijke organ instrument

5. CONCLUSION

We took an unusual perspective when dealing with the
physical phenomenon demonstrated by a popular labora-
tory experiment known as Rijke tube, taking it as a base
for a musical instrument. We first developed a mathemat-
ical model of the nonlinear dynamics, which features limit
cycle oscillations as well as the intertwined dynamics of
the buoyant airflow and the heat transfer. This model
allowed us to simulate the Rijke tube in time-domain,
which is essential for studying the rise and the decay of
the oscillations and longer-term effects of the airstream
velocity and temperature fluctuations. With this model

we tested several control architectures, utilizing both the
acoustic control through a loudspeaker placed near the
bottom end of the tube and the heat control through a
heater placed inside the tube. We built an experimental
platform (Rijke tube) and conducted some control exper-
iments. Finally, we extended the setup into a full Rijke
organ instrument, featuring 11 individually heated Rijke
tubes, all of which are acoustically controlled by a single
loudspeaker. We analysed the feasibility of this concept
with the simulation model and verified it using the physical
experimental setup. One drawback of this setup is the
limited power of the speaker. Due to its the placement,
a lot of the acoustic power is directed into the void in the
middle of the organ column. We also discovered during a
public presentation of the organ at Maker Faire Prague
2019 the sensitivity to the acoustic noise and echo in the
room, which is detrimental to the acoustic feedback. The
heater control, however, proved to work reliably even in
the compromised conditions. To conclude, the instrument
proves the concept and offers a solid foundation for con-
tinuing developments.
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