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Abstract: Production systems that adhere the Industry 4.0 vision require new ways of control
and integration of individual components, such as robots, transportation system shuttles or
mobile platforms. This paper proposes a new production system control concept based on
closing a feedback loop between a production planning system and a digital twin of the physical
production system. The digital twin keeps up-to-date information about the current state of the
physical production system and it is combined with the production planner utilizing artificial
intelligence methods. Production recipes and concrete process instantiations are planned for
each production order on-the-fly, based on the production system state retrieved form the digital
twin. This approach provides a high flexibility in terms of ability to add and to remove products
as well as production resources. It also enables error recovery by re-planning the production if
some failure happens. The proposed approach is tested and evaluated on an internally hosted
Industry 4.0 testbed, which confirms its efficiency and flexibility.

Keywords: Production Planning and Control, Intelligent Manufacturing Systems, Flexible and
Reconfigurable Manufacturing Systems, Digital Twin

1. INTRODUCTION

Industry 4.0 is an abstract, yet focused, vision preparing
for a high degree of flexibility in various aspects, including
(mass-)customized products, smart production processes,
virtualization, and data transparency. Constructing such
a manufacturing system is a complex effort comprising a
plethora of tasks involving a great variety of engineering
disciplines—it is realized through many iterations during
the engineering phase of the system. While it is hard to
objectively assess the importance of each single discipline,
it can be argued that a key role is played by the engineering
of the automation and control system that has to support
the flexibility of the production system during runtime.

Typical manufacturing lines, which are geared towards
mass production nowadays, have fixed production recipes
designed. They are tested and fully maintained by human
engineers. With the shift towards Industry 4.0, it is re-
quired that emerging manufacturing lines are able to deal
with more complex products and recipes, and they usually
contain more components being able to cooperate with one
another. Such new manufacturing lines are ready for pro-
ducing a wide variety of goods according to dynamically
changing customer demands and production goals.

This paper introduces a compact concept of how digital
twins can be perceived and utilized for controlling and
planning of flexible, goal-oriented, and reactive Indus-
try 4.0 ready production systems. The proposed usage of
such a digital twin reveals the following benefits:

• On-the-fly production planning
• Automated error recovery
• Readiness for formal verification on the level of pro-

duction plans
• Faster and more energy-efficient by finding optimal

recipes and eliminating initial setups

The remainder of the paper is structured as follows.
The related work is summarized in Sec. 2. The main
contribution of this paper, the smart production planning
with a digital twin, is discussed in Sec. 3. The proposed
approach is shown on a practical use-case described in
Sec. 4. Finally, Sec. 5 concludes and specifies future work.

2. RELATED WORK

2.1 Digital Twins

A digital twin is a common term used for a digital replica
of a physical system. We are sticking to this term in this
paper, even though we believe that it is highly misleading
in many cases: in a real life, a twin is a 1:1 copy of
the other twin, but only at time t0. From then on, the
two twins are autonomous entities that might stay closely
connected, but that might diverge from each other in a
way that an external viewer would not be able to call them
“twins” anymore. In general, we believe that a term such
as “digital shadow” would better reflect the characteristics
of a digital twin (Dong et al. (2009)) in the Industry
4.0 context. Nevertheless, the first concept of a digital
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twin was proposed by Dr. Michael Grieves in 2002 1 , and
since that time, the concept has been massively in use in
the context of Industry 4.0, where the term is however
frequently mistaken for the term simulation.

A distinction between simulations and digital twins is
made in Kritzinger et al. (2018). According to the level
of integration, digital system approximations are classified
into three categories: (i) digital models running either
independently on the physical objects or just with a man-
ual data exchange, (ii) digital shadows equipped within
automatic data flow from physical object to the digital
object, and (iii) digital twins featured by both-directional
data flow between physical and digital objects. The paper
also includes literature review on known approaches to
digitization and just a minority of them are categorized
as digital twins according to the proposed distinction.
The approach proposed in our paper uses bi-directional
data flows and thus it belongs to the category digital twin
specified in Kritzinger et al. (2018). It means that we are
not misusing this term in our paper.

Digital twins create living digital models that update and
change as their physical counterparts change. To do so,
digital twins continuously learn and update themselves
from multiple sources to represent their near real-time
states, working conditions or positions. In this paper, a
digital twin is not only automatic duplication of the actual
state of the physical production system, but also a basis
for automated production planning. In other words, the
system operation strongly relies on the digital twin.

2.2 AI Planning and Scheduling with PDDL

Artificial intelligence (AI) planning (Ghallab et al. (2016))
is a branch of AI that solves a problem of transforming
an initial system state into an envisioned goal state by
finding a plan. Such a plan is a sequence of actions or
action graphs (typically for execution by smart control
systems, robots, or various connected devices/autonomous
agents) for a given domain, where allowed actions and
related constraints are formally specified.

In fully specified environments with complete domain
models available, planning can be done off-line. Plans can
be found and evaluated prior to their execution. In dy-
namic environments (such as industrial production lines),
the plans may have to be revised at runtime. The process
of planning is usually realized with iterative trial and
path finding/branching, as it is commonly seen in artificial
intelligence methods. AI planning incorporates techniques
such as machine learning, dynamic programming, and
combinatorial optimization. Although planning itself is not
brand new and it has been investigated for more than fifty
years, the recent advances in AI and planning algorithms
make this approach feasible for industrial-scaled systems.

Planning refers to establishing a plan of actions, whereas
scheduling (sometimes called capacity planning) is less
concerned with what is being done and why, but more with
when and where. A plan may (e.g., temporal planning) or
may not (e.g., classical planning) incorporate times and

1 cf. https://research.fit.edu/media/site-specific/

researchfitedu/camid/documents/Origin-and-Types-of-the-

Digital-Twin.pdf

dates associated to it, whereas a schedule most certainly
will. Scheduling is concerned with mathematical formula-
tions and solution methods of problems of optimal ordering
and coordination in time of certain operations. Scheduling
includes questions on the development of optimal sched-
ules (Gantt charts, graphs) for performing finite (or repet-
itive) sets of operations, frequently related to capacities
and long-term requirements. The problems that scheduling
deals with can be formulated as optimization problems for
processing a finite set of actions/jobs in a system with
limited/constrained resources. In scheduling, the time of
arrival for each action into the system is specified. Within
the system, each action has to pass several processing
stages, depending on the conditions of the problem. For
each stage, feasible sets of resources are given, as well as
processing times depending on the resources used. Con-
straints on the processing sequence and actions are usually
described by transitive anti-reflexive binary relations.

Given a description of the initial state of the system, a
description of the goal state, and a formal specification of
a set of possible actions, the planning task is to synthesize
a plan that is guaranteed to generate a state, which at the
end satisfies all postulated goal conditions.

For specifying planning tasks, several languages have
been developed. Planning Domain Definition Language
(PDDL) is supported by most of the state-of-art planners
and we are using it also in this paper. In PDDL, the
planning task is explicitly split into two files:

(1) Domain description
The planning domain specification defines all al-
lowed actions, which potentially change the state
space along with their input parameters, precondi-
tions (condition that must hold before the action
starts) and effects (description of changes on state-
space immediately after the action is finished).

(2) Problem description
The specific planning problem instance holding infor-
mation about the initial state as well as the required
goal-state conditions.

A solution for a PDDL problem (specified by its domain
and problem description) is a plan, a sequence of actions
that are to be sequentially applied starting from the initial
state of the problem. After application of all actions, the
goal-state conditions of the problem are satisfied.

The latest version of the language is PDDL 3.1 (Kovacs
(2011)), but there exist numerous variants/extensions that
support various features like ontologies, probabilistic ef-
fects, numbers and goal-achieved fluents, durative actions
(temporal/parallel planning), explicit problem decomposi-
tion (multi-agent planning) and others.

A selection of the suitable PDDL extension including the
explanation of techniques in successful solvers is provided
in Sousa and Tavares (2013). A collection of simple pro-
totypical industrial problems with their formalization in
PDDL is presented in Rogalla et al. (2018). Compared
to Rogalla et al. (2018), the approach proposed in this
paper is much more oriented to a real system of industrial
scale, and we are using PDDL not only for isolated plan-
ning but tightly integrated with a digital twin (cf. Sec. 3)
as one smart production planning and execution system.
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A first attempt to goal-oriented manufacturing execution
system (MES) based on PDDL planning is discussed
in Novák et al. (2019). It already includes an idea of
integrating a digital twin, however, this concept is not
described there in details.

A closer coupling of production system models and PDDL
has been realized in Wally et al. (2019a), where a rule
set for the conversion of production system features into
planning domain and problem entities has been provided.
Initial experiments have shown that fully automated pro-
duction (re-)planning from reasonably detailed production
system models is feasible. This approach was making use of
formal abstractions using methods, techniques and tooling
taken from model-driven software engineering. In Wally
et al. (2019b), this approach has been further extended
by utilizing more advanced and computationally expensive
features of PDDL, most notably durative actions. While
the time and memory demands for finding production
plans have sky-rocketed, the computed solutions (if they
were found) have been of excellent quality, as they in-
herently take into account possible parallelism of multiple
manufacturing tasks. We are building our integrated sys-
tem that is presented in this paper on top of the findings
gathered in these previous works and build a prototypical
MES that includes production-system-to-PDDL-coupling
just as one aspect of its architecture.

3. PRODUCTION PLANNING WITH
A DIGITAL TWIN

A production line’s digital twin holds the required knowl-
edge about the current state of the entire production line,
which in this context includes (excerpt):

• Involved components and their states: ready, running,
under maintenance, or out of order.
• Positions of robotic arms including the information

what is held by their tools/grippers.
• Positions/states of all components (such as auto-

mated guided vehicles (AGVs) or pallets) in trans-
portation system and what content is carried.
• Information about quantities and locations of mate-

rial in warehouses and buffers.
• Information from various sensors attached (e.g., tem-

perature, humidity, distance, location).
• States of human-machine interfaces for interactions

(control panels, buttons, visual indicators).

From the planning domain point of view, such a digital
twin needs to accommodate the following properties and
requirements (streamlined towards PDDL in our use case):

• External control signals need to be translated into
PDDL actions that can be processed only under well
specified conditions (PDDL preconditions) and that
can have some effects on the internal state of the
digital twin (PDDL effect on state-space).
• Interactions among digital twin components can be

simulated by PDDL actions as well.
• The current PDDL state-space can access relevant

sensor signals from digital twin sensors and received
values from digital twin components.

The major problem with creation of a digital twin, accord-
ing to the previous points, is to translate such external con-

trol signals into PDDL actions (or vice versa). Sometimes
PDDL actions need more information (as arguments) than
the provided external control signals contain. The digital
twin then have to check all the preconditions of all actions
that are continuously sent to it. In case of any action
inconsistency, the digital twin does not apply the effect
on such action and it reports an error back to MES.

Such a PDDL-enhanced digital twin can be used for the
following application scenarios:

• Recomputation of a new plan from the current state
of the production line in case of failure or in case of
any modification of the production line.

• Visualization of the current state of the line.
• Global overview that can support centralized, consis-

tent, and formalized (computer readable) data source
for further processing in related systems (e.g. ERP,
predictive maintenance, etc.)

The proposed way of integration of the digital twin
with the rest of the automation system is depicted in
Fig. 1. Both twins are controlled by the MES, which
executes PDDL actions. The physical twin is controlled via
OPC UA standard protocol (onto which the utilized PDDL
actions are mapped), whereas the digital twin is updated
via PDDL actions at the same time when these actions are
sent via OPC UA to the physical twin. Orders are coming
from the enterprise resource planning (ERP) system (on
top) and it is the MES which is responsible for invoking
the production planning and scheduling. For each order, a
technology/production plan is automatically planned by a
PDDL solver and it is returned back to the MES. In other
words, the MES works in a 2-step manner, first processing
an order by requesting planning of the production process,
and second by interpreting it in a form of a LispPlan 2 and
executing all actions.

A continuously running digital twin is a key enabler for
production re-planning in case of failures. Any produc-
tion operation such as robotic manipulation or transport
shuttle movement can result into a failure in the physical
system, e.g., due to a collision or loosing/destroying a
component. Since the digital twin is keeping the up-to-date
information about the started and finished PDDL actions,
i.e., successful and unfinished production operations, the
planner can use this state information as a basis for re-
planning the production process to achieve the produc-
tion goals with limited resources. After identification and
isolation of the failure and modifying the PDDL problem
description, a new production plan will be found if the
remaining available resources can substitute the original
failed ones. This continuous support for planning and re-
planning is not supported by other available tools and we
call this MES feature “reactivity”.

3.1 Integration of PDDL and MES

The production planner & scheduler subsystem needs to
blend into the overall production control system in order
to provide up-to-date information that can be used to
create control statements for the MES system. The three
main components of this subsystem fulfill specific tasks, as
explained below.
2 LispPlan is explained in details later in Sec. 3.1
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Fig. 1. Production planning with a PDDL-enhanced digital twin.

The problem generator module (cf. Fig. 1) executes its
task based on the following inputs:

• Current state of the production line captured in the
digital twin module
• Production goals from the MES module
• Capabilities of the production line (what operations

are available)

The output of the problem generator module is a standard
PDDL domain and problem specification, which is ready
to be used by the PDDL solver module (currently realized
by using the Fast Downward planner 3 ). The output of
the PDDL solver module is a sequence of actions, each
including a complete specification of its parameters.

The task of the scheduler module is to read the output
plan from the PDDL solver module, analyze it, and finally
create a more detailed and tailor-made schedule for the
MES module. For that purpose, we have developed a
special format called LispPlan with the following features:

LISP-like syntax that is human and computer readable.
It can be quickly enriched with new features or
translated into another format, such as XML.

Task and sub-task definitions – tasks can be recursively
divided into sub-tasks.

Locations – description of the location of the required
resources for each task.

Actions – description of target operations in a PDDL-
compatible format.

Requirements – description of dependencies among tasks
(tasks can be executed in parallel).

3 cf. http://www.fast-downward.org/ with the following heuristics
search switch on: --search "lazy wastar([ff(),blind(),hmax()],

bound=100, boost=0)"

The goal of a LispPlan interpreter (in our use case the
MES) is to complete all tasks that are specified by respec-
tive task definitions.

• A task is completed if its action or all of its sub-tasks
are completed.

• Some task X can start being processed if (i) its
parent task has already been started (or task X
does not have any parent task) and (ii) all tasks
that are specified in the requirements section of task
X have already been completed (or task X has no
requirements).

Because of recursive nature of task and sub-task spec-
ifications, LispPlan differentiates between two types of
identifiers:

• Absolute: identifier starts with “@”
• Local: identifier does not start with “@” and the

real name (that is used in LispPlan interpretation)
is composed by sequence of local identifiers joined
by “.” from the nearest higher absolute identifier (in
definition hierarchy) or from the root local identifier
(in case there is no nearest higher absolute identifier
used). The order is similar to that of the Internet
domain name system: the most local identifier is the
first one and the root identifier is the last one.

Absolute and relative naming can be used in requirements
as well. The same absolute and relative identification holds
for locations.

The current implementation of the scheduler module does
not support scheduling tasks for concrete times and dates.
As of now, only the accessing of resources is analyzed, in
order to produce constraints on the processing sequence
of actions. Finally, a directed acyclic graph in the LISP
format represented as LispPlan is produced.
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Fig. 2. Industry 4.0 testbed located at the Czech Technical
University in Prague, CIIRC.

4. USE CASE: SMART PRODUCTION IN THE
INDUSTRY 4.0 TESTBED

The Industry 4.0 testbed (cf. Fig. 2) is a laboratory-
scale system for educatory and testing purposes located
at the Czech Technical University in Prague, CIIRC 4 .
It is equipped with modern infrastructure to test and
verify innovative automation and control approaches for
final assembly of products. Although the testbed is rather
a small-scale environment, the distributed nature of its
control system together with the use of standardized
industrial components assure that evaluation results can
be extrapolated to industrial production line scales.

4.1 Physical Layout of the Production System

The core part of the Industry 4.0 testbed is depicted in
Fig. 2. It comprises four industrial robots of two types that
are logistically connected via a transportation system from
montratec GmbH 5 . This transportation system consists of
a monorail track that is assembled from straight segments,
curves, and switches, as well as shuttles that move on this
track and positioning units that assure exact positioning
of these shuttles in certain locations, such as work cells.
The layout of the Industry 4.0 testbed including identifiers
of key elements is depicted in Fig. 3. It is important to
note that the work cell positioning units are each shared
between two robots—this setup welcomes cooperation
between robots.

The Industry 4.0 testbed is equipped with the following
industrial robots:

• 3x KUKA KR Agilus: Fast industrial 6-axis robots,
programmed with KUKA Robot Language (KRL)
• 1x KUKA LBR iiwa: Cooperative 7-axis robot, pro-

grammed with Java

The Industry 4.0 testbed provides an environment to be
able to find answers for the following issues coming from
cooperation with industrial partners:

• How to combine production of goods of different
nature in parallel?
• How to recover from errors if a certain resource or

a set of resources is not able to finish a production

4 cf. https://www.ciirc.cvut.cz/
5 cf. https://www.montratec.de/

operation (e.g., a specific route of the transportation
system is blocked, or a robot becomes unavailable
after a collision)?

• How to systematically add and remove production
resources at runtime (e.g., adding a new shuttle, or
removing a robot)?

For all of the aforementioned problems at the border be-
tween research and industrial practice, we found out that
the concept of production planning based on digital twin
is a suitable and efficient paradigm. The main reason is
the declarative nature of the digital twin and of PDDL for
planning, as it is possible to declare new pieces of prod-
ucts and resources without the need for re-programming
the machinery, which would not be feasible at runtime.
Moreover, we can unambiguously analyze and update the
state of the production line by means of the digital twin.

4.2 Production of Small Trucks

To test and evaluate the digital twin concept in the
Industry 4.0 testbed, we used a set of components for
a small truck printed on 3D printers, whose shapes are
depicted in Fig. 4. Each such truck can consist of a chassis
(only black color and one type), a cabin (4 colors, same
shape), and a body (4 colors, 4 shapes). The production
goal is to produce an ordered truck and transport it to the
station S200 designed for handing over finished goods.

At the very beginning of the truck assembly, the produc-
tion line and the digital twin have to be in a pre-defined
initial state. But after producing a first truck, the line does
not need to be returned back to such a pre-defined state,
but the last state retrieved from the digital twin can be
used for specifying the problem description.

To illustrate the production, we have ordered a truck
having a yellow cabin and a blue stakebed body, see
Fig. 5. The formal specification of this goal is depicted
in Fig. 6. The planner found a solution expressed in
Fig. 7. The digital twin keeps the information that body
position at robot R2 warehouse is occupied by a silver
tank when the order comes. The first step is to move
this component to SHUTTLE2 (see tasks 0 and 1), then
to swap shuttles 2 and 4, and afterwards to get rid of a
yellow dumper body from SHUTTLE4. The yellow cabin
is already on SHUTTLE4, it is not moved and thus not
mentioned in the LispPlan. Finally, the blue stakebed is
moved from SHUTTLE3 to SHUTTLE4 and the ordered
truck is transported to the final positioning unit.

4.3 Tests and benchmarks

The proposed approach has been thoroughly tested in the
Industry 4.0 testbed for more than 3 months including
several hundreds continuous runs. All runs were logged
into the XES standard format 6 . The utilization of XES fa-
cilitates further analysis of grabbed data, including process
mining tools such as ProM 7 . Based on these analyses, we
found out that the time period needed for getting produc-
tion order from the ERP system, retrieving the production
6 XES format is standardized as IEEE 1849-2016 and it is available
online: http://www.xes-standard.org/
7 Process Mining Workbench (ProM) is available online: http://
www.promtools.org/
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Fig. 3. Topology of the Industry 4.0 testbed including annotations for the key components: robots and positioning units.

Fig. 4. All truck spare part shapes: chassis, cabin, and a
variety of bodies.

Fig. 5. Small truck consisting of three components (chassis,
cabin, and body) as an exemplary product.

Fig. 6. Example of a declarative specification of a goal in
PDDL. This goal specifies the following target state
of the production line: At the position unit S200 is
some shuttle that contains a part-wise specified truck
(see Fig. 5).

system state from the digital twin, planning production
process up to starting this process in the MES does not
exceed 8 seconds. Whereas the planning based on digital
twin itself took less than 1 second. For such experiments,
we used one computation node from our experimental in-
dustrial cluster that is equipped with Intel® Xeon® CPU
E5-2630 v2 @ 2.6 GHz, 4 cores, 16 GB RAM, 100 GB SSD
storage, and Ubuntu Linux 18.04.2 LTS. We proved that
the proposed approach provides enough performance and
reliability for continuous run in the system of the testbed
size. We have not indicated any problems related to digital
twin, production planning system nor MES system. But,
for curiosity, instead of solving any problem with our
software prototype, we had to fix several hardware related
problems namely with one industrial electrical gripper 8

and two robots 9 . Due to the replanning function of the
proposed solution all the hardware problems did not affect
the goals of the entire production (as the production was
re-deployed to other available resources).

8 Schunk EGP 50-N-N-B
9 KUKA Agilus (type: KR 10 R1100 sixx) and KUKA LBR iiwa
(type: 14 R820)
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Fig. 7. Example of an automatically generated production
plan (LispPlan) for a truck as it is depicted in Fig. 5.

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel approach for
industrial production system control based on tightly
integrated digital twin and automated AI planning. This
way of integration leads to more flexible, efficient, and
goal-oriented manufacturing execution processes.

We successfully validated this approach on the Industry
4.0 testbed use-case. The simplicity of adding and remov-
ing resources or products makes this approach suitable for
flexible production sites oriented on small lots as well as
production sites equipped with multiple redundant tech-
nologies/components. In small lots, it is possible to auto-
matically find a plan that is compliant with the current
capability of the production line. In larger lots, efficiency
of the production can be improved compared to fixed
resource assignments done by humans, as the utilization
of resources/assets is balanced.

In future work, we would like to validate the proposed
approach on medium- and large-scale industrial produc-
tion lines. We trust that this approach can be efficiently
used for smart grid and microgrid control, and we are
going to validate this hypothesis on laboratory-scaled DC
microgrid systems. We would like to connect our digital
twin to an industrial simulation system (such as Siemens
Process Simulate) for more precise validation in terms of
energy, cost, and time efficiency.
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Novák, P., Vyskočil, J., and Kadera, P. (2019). Plan ex-
ecutor MES: Manufacturing execution system combined
with a planner for Industry 4.0 production systems. In
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