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Abstract: While motion planning under temporal logic specifications has been addressed in
several state-of-the-art works, spatial aspects have been so far largely neglected. In this work, we
enrich the semantics of robot motion specifications by including preferences on spatial relations
between its trajectory and various elements in its environment. The spatial preferences are given
in a fragment of Signal Temporal Logic (STL) on top of complex missions in syntactically co-
safe Linear Temporal Logic (scLTL). We propose a cost function with user-specified parameters,
which determines the compromise between efficiency and spatial robustness of a trajectory.
The proposed modification of the incremental sampling-based RRT? driven by this cost
function guarantees that the motion plan (if found) simultaneously satisfies the mission and
asymptotically minimize the cost. The paper includes several case studies showcasing the effects
of the user-adjustable parameters on the resulting trajectories.
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1. INTRODUCTION

Motion planning is at the heart of many autonomous
systems, from drones and self-driving cars to automated
vacuum cleaners. Traditionally, the motion planning prob-
lem is as follows: provided a dynamical system, an environ-
ment, an initial state and a goal state, find a sequence of
control inputs so as to drive the system from the initial
state to the goal state while fulfilling some constraint
dictated by the environment, e.g., avoiding obstacles. As
the robotic platforms became more and more advanced,
so did the tasks provided to them, and motion planning
problems have been associated with more complex goals.
For instance, sampling-based algorithms have been en-
hanced to tackle deterministic mu-calculus specifications
(Karaman and Frazzoli, 2009), or syntactically co-safe
Linear Temporal Logic (scLTL) formulas (Bhatia et al.,
2010).

In this work, we aim to enrich the class of tasks that can
be handled by motion planning algorithms even further,
moving from temporal logic specifications towards spatio-
temporal ones. As a motivation scenario, consider a mobile
robot that is requested to travel from A to B through
an environment with WiFi routers. The robot should stay
within a certain distance to the closest router at all times
in order to guarantee connectivity to the WiFi network. In
fact, it should stay as close to the routers as possible. At
the same time, it should reach point B as soon as possible.
As another example, consider a mobile robot tasked with
navigating through a corridor with tight doorways. In
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order to stay as safe as possible, the robot should pass
each door right though the middle and reach its final
destination as soon as possible. Such types of tasks feature
both temporal and spatial aspects. Our aim is to provide
a means to express a variety of spatial preferences and
a universal way to integrate them in a motion planning
algorithm. However, temporal efficiency and obeying the
spatial preferences do not necessarily go hand-in-hand; the
fastest trajectory may be quite far from satisfying the
spatial preferences and vice versa. Thus, we also allow a
user to express the relative importance of the two so that
a desired compromise is achieved.

When treating tasks including complex spatial preferences,
approaches such as obstacle inflation do not work. For in-
stance, when navigating through a corridor with doorways,
obstacle inflation would either block the doors, keeping
very narrow passages difficult to handle by motion plan-
ning algorithms, or keep too wide passage space, so that
the robot would not be guaranteed to go in through the
middle. In this particular case, the Vector Field Rapidly-
exploring Random Trees (VFRRT) would provide desired
trajectories (Ko et al., 2014). However, as opposed to our
approach, VFRRT does not provide optimal paths with
regard to different, potentially more complex, spatial and
temporal specifications.

Linear Temporal Logic (LTL) and its syntactically co-safe
fragment (scLTL) have been used as tools to specify time-
sensitive missions to robots. In Ulusoy et al. (2013) a group
of mobile robots is requested to satisfy a common LTL
specification while optimizing the time interval between
visits to certain locations. However, LTL and scLTL are
traditionally interpreted over discrete sequences. Signal
Temporal Logic (STL) was first proposed by Maler and
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Nickovic (2004) as an extension to Metric Interval Tempo-
ral Logic (MITL) (Alur et al., 1996) to handle continuous
signals. The concept of space and time robustness, along-
side its combined version as well as quantitative semantics,
is introduced in Donzé and Maler (2010). STL and its
space robustness have been used with Model Predictive
Controllers (MPC) for robust motion planning; Raman
et al. (2014) encode STL specifications in Mixed Integer
Linear Program (MILP) to formulate the MPC, while Lin-
demann and Dimarogonas (2017) treat a fragment of STL
and propose the use of a Linear Program (LP) instead,
creating a new robustness metric, called discrete average
space robustness.

The asymptotically optimal counterpart of the RRT
sampling-based algorithm, RRT? (Karaman and Frazzoli,
2011), has been used for trajectory generation going side-
by-side with temporal logics task specifications and ad-
ditional optimization criteria. Minimum-Violation RRT?

has been introduced by Castro et al. (2013) and is capable
of generating a control law for an autonomous vehicle
that minimizes the level of unsafety with respect to a
set of finite LTL formulas, while ensuring that a goal
region is reached. Vasile et al. (2017b) propose a reced-
ing horizon solution for automated route generation for
vehicles operating in road networks subject to road rules.
Therein, ideas of least-violating planning in networks from
Tumova et al. (2016) are employed alongside an RRT?-
based algorithm, allowing a vehicle with limited sensing
to achieve guaranteed performance.

The work by Vasile et al. (2017a) is, to our best knowledge,
the one most closely related to ours. The authors present
a sampling-based method for synthesizing control policies
that maximize the spatial robustness of STL specifications.
In contrast, our work aims to balance between spatial
robustness and time robustness. Another related work,
Haghighi et al. (2016) focus on control of robot swarms
under spatio-temporal properties given in Spatio Temporal
Logic (SpaTeL). SpaTeL formulas (Haghighi et al., 2015)
are, however, interpreted over quad trees in contrast to
trajectories, and are suitable for describing complex spatial
patterns rather than spatial relations between a trajectory
and elements in an environment. Lastly, Barbosa et al.
(2019) presents a similar, but simpler, version of the
approach introduced in this paper. Our work introduces
a user-defined weight structure and demonstrates the
integration with complex task assignments.

Our contribution can be summarized as follows: we de-
sign an extension to the RRT? that allows for specifying
complex missions in scLTL and spatial preferences in a
fragment of STL. Our approach measures the cost of a
motion plan in terms of a newly developed combined space-
time robustness that includes user-adjustable parameters.
These can be used to tune the prioritization of temporal vs.
spatial aspects of the specification. The motion planning
algorithm preserves the important properties of RRT?, in-
cluding asymptotic optimality; furthermore, it guarantees
that, if a trajectory that satisfies the scLTL mission exists,
it will be found in the asymptotic limit. The user can
specify a spatial preference, such as “keep at least 0.5 m
away from any wall”, but when satisfying the preference
is impossible, it is at least followed as closely as possi-
ble. Thanks to the user-adjustable parameters, the same

framework can provide many different types of trajectories
based on the user’s preference. In one case, a detour could
be preferable over a risky, but more efficient route (e.g., in
an autonomous driving scenario). In another, a trajectory
that violates the preference might be better, as long as the
mission is completed quickly (e.g., in the case of a robotic
vacuum cleaner). Our approach provides functionality sim-
ilarly to what can be found using penalty methods in
constrained optimization, without the risk of numerical ill-
conditioning. We present examples that illustrate different
compromises between temporal and spatial aspects based
on different user-given priorities.

2. PRELIMINARIES

A dynamical system S is a tuple S = (f,X,U,W, xinit),
where X ⊂ Rm, U ⊂ Rn are the state and control spaces
of the system and W ⊂ R2 its bounded workspace. The
dynamics are given by:

ẋ = f(x, u), x(0) = xinit (1)

where xinit is the initial state at time t = 0, and f : X ×
U → X is Lipschitz continuous. Let x1 and x2 refer to the
coordinates of state x in the workspace W .

The workspace W is partitioned into k regions, denoted
by Π = {π1, π2, . . . , πk}. Let Wobs ⊂ W denote the
set of obstacles. Without loss of generality, assume that
Wobs ⊆

⋃
i∈I πi, i ∈ {1, ..., k}. We consider a set of atomic

propositions p, denoted by Σ. Each region is associated
with a subset of Σ by the labeling function L : Π → 2Σ.
L(πi) is the set of atomic propositions that are true in
region πi.

We denote by x the trajectory of the system. The tra-
jectory is associated with a possibly infinite sequence,
p = π1π2 . . . of regions in Π that are visited along the
trajectory. We denote the word corresponding to a given
sequence, p, by ω(p) = ω1, ω2, . . . = L(π1)L(π2) . . .. For
convenience we write, where the context is clear, the word
for a path as ω.

A syntactically co-safe Linear Temporal Logic formula
(scLTL) over a set of atomic propositions Σ is defined
through the following grammar:

ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Fϕ | ϕ1Uϕ2 (2)

where F (eventually) and U (until) are temporal operators.
The formula ϕ is satisfied by a trajectory x of the dynam-
ical system in (1) if the resulting word ω(p) satisfies ϕ, in
other words, ω(p) |= ϕ.

Each trajectory that satisfies an scLTL formula ϕ contains
a so-called satisfying prefix and any trajectory that begins
with this satisfying prefix satisfies ϕ, too. The duration of
the satisfying prefix is the mission completion time, which
we denote Tϕ. As a consequence, any scLTL formula can be
translated into a language-equivalent deterministic finite
automaton. A deterministic finite automaton is a tuple
A = (Q, qinit,Σ, δ, F ) where Q is a set of states, qinit is
the initial state, Σ is a finite alphabet, δ = Q× Σ→ Q is
a transition relation and F ⊆ Q is a set of final states.

3. PROBLEM FORMULATION AND APPROACH

In this work, we aim to find a motion plan, i.e. a trajectory,
for a robot that compromises between fulfilling a complex
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mission in scLTL as quickly as possible, while ensuring
that given spatial preferences are violated minimally. In-
tuitively, a spatial preference gives the desired bounds on
the (minimal or maximal) distance of the robot to other
features in the workspace, in our case the regions. For
instance, consider that a robot’s mission is to follow an
optimal trajectory through a set of regions in a particular
order, and the spatial preference is to keep a certain mini-
mal distance to all obstacles. While the optimal trajectory
might not satisfy the spatial preference, the trajectories
satisfying the spatial preference might be far from optimal.
We aim to formalize and solve the problem of compro-
mising between these two aspects based on user-defined
priorities.

We consider a mobile robot modeled as a dynamical
system in (1), whose mission is expressed in scLTL over
the atomic propositions Σ that label the regions of the
workspace as described in Sec. 2. Spatial preferences are
expressed in a fragment of Signal Temporal Logic (STL)
with alternative semantics: Let a predicate µ be defined as
follows.

µ =

{
> ⇐⇒ g(x(t)) ≥ 0

⊥ ⇐⇒ g(x(t)) < 0,

where g(x(t)) is a real-valued evaluation function, that
provides an abstraction of the continuous signal x(t),
such that g(x(t)) : Rm → R. A spatial preference over
a set of predicates {µ1, . . . , µ`} is defined as a formula

Ψ ≡ Ĝ[0,Tϕ]ψ, where

ψ ::= µ | ¬µ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 (3)

The Ĝ operator expresses that ψ should hold at all times
and in that sense it is similar to the G operator from STL.

However, the quantitative semantics of Ĝ is in this work
defined differently and tailored to the specific purpose of
evaluating the degree of satisfaction of a spatial preference
on a trajectory. Full details will be given in Sec. 4.

Example 1. Consider a mobile robot represented by a sin-
gle integrator with a bounded input ||u(t)|| ≤ umax de-
ployed in a 2D workspaceW =

{
(x1, x2) ∈ R2 | 0 < x1 < 6

and 0 < x2 < 6} illustrated in Fig. 1. There are four re-
gions Π = {π1, π2, π3, π4} respectively labeled with atomic
propositions Σ = {EmptySpace,Obstacle1,Obstacle2,
Goal}. Let the function dist(x) be the distance from the
point (x1, x2) to the closest obstacle.

Let us consider a very simple mission in this case, namely
to reach the goal region, ϕ = FGoal. The spatial prefer-
ence Ψ is to stay at least 0.5 units away from any obstacle
during the mission,

Ψ = Ĝ[0,Tϕ]ψ = Ĝ[0,Tϕ](dist(x(t))− 0.5),

in which g(x(t)) = dist(x(t)) − 0.5 is the evaluation
function.

From Fig. 1 we see that there are two possible classes
of trajectories: i) going through the passage between
Obstacle1 and Obstacle2, or ii) taking the “detour” above
Obstacle2. If the spatial preference is of a very high
importance, the robot should take the detour, where they
can be fully met at the cost of the suboptimality of the
mission completion time Tϕ. On the other hand, if the
spatial preference is only of mild importance in comparison
to efficiency of achieving the mission, the robot should

Fig. 1. a) Workspace defined in Ex. 1. It has two obstacles
and one goal region; the rest is empty space, b) The
0.5 spatial preference is presented as a dashed line
around the obstacles. A trivial trajectory from A to
B is used to illustrate the left time robustness.

compromise by going through the narrow passage in a
sufficient distance from the obstacles, slightly disobeying
the spatial preference.

Given a dynamical system S operating in a labeled
workspace W , a mission ϕ, a spatial preference Ψ, the
problem we address is to:

(i) define a suitable cost function J that assigns a cost
to each trajectory x and takes into consideration
i) the mission completion time Tϕ, ii) the degree of
satisfaction of the spatial preference Ψ, and iii) the
priority of satisfying the spatial preference Ψ; and

(ii) given the function J , find a state trajectory x of S
that satisfies ϕ, and minimizes J .

4. SPATIO-TEMPORAL RRT?

In this section, we suggest a cost function J , incorporate
this function into RRT?, and analyze the solution.

4.1 Cost function J

We propose to define the cost function J as follows:

J(x) = Jϕ(x) + JΨ(x), (4)

where Jϕ(x) is the time duration of trajectory x. Note that
if x satisfies ϕ then Jϕ(x) is the mission completion time,
TϕJΨ(x), which we define below, represents the (weighted)
degree to which the spatial preference Ψ is satisfied.

The definition of JΨ(x) is based on STL robustness (see,
e.g., Donzé and Maler (2010) for full details). It is possible
to measure how robust an STL formula is in two ways: in
terms of spatial and time robustness. Loosely speaking,
the former evaluates to which extent a trajectory (a

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15748



signal in STL) deviates from the desired values, while the
latter shows for how long this has been happening. Here,
we present only the parts relevant for treating our STL
fragment. The spatial robustness ρ of a preference ψ on a
trajectory x at time t is defined as

ρ(µ,x, t) = g(x(t))

ρ(¬ψ,x, t) = −ρ(ψ,x, t)

ρ(ψ1 ∧ ψ2,x, t) = min(ρ(ψ1,x, t), ρ(ψ2,x, t))

ρ(ψ1 ∨ ψ2,x, t) = max(ρ(ψ1,x, t), ρ(ψ2,x, t))

and the left time robustness θ− of a formula ψ on a
trajectory x at time t as

θ−(ψ,x, t) = X (ψ,x, t) ·max{d ≥ 0 | ∀t′ ∈ [t− d, t]
X (ψ,x, t′) = X (ψ,x, t)},

where X (ψ,x, t) = sign(ρ(ψ,x, t)). For a predicate µ, the
spatial robustness is negative if the predicate is violated
on trajectory x at time t. Time robustness at time t is then
also negative and it indicates the time duration leading up
to t for which µ has been violated. The lower the value of
the spatial robustness, the more severe the violation of µ.
The lower the value of the time robustness, the longer the
violation of µ. Similarly, the spatial robustness is positive
if the predicate is satisfied on trajectory x at time t. The
time robustness is then positive and indicates the duration
for which µ has been satisfied.

Example 2. Fig. 1 (top) gives an example of a trajectory x
leading from A to B that is subject to a spatial preference
ψ = (dist(x(t))−0.5). Fig. 1 (bottom) shows the evolution
of the left time robustness θ−(ψ,x, t) for the trajectory
over time. The trajectory keeps at least 0.5 unit away
from any obstacle for all t ∈ [0, 1), as desired by the spatial
preference, thus its left time robustness is growing positive.
As soon as the trajectory gets closer to the obstacle than
what is specified in the spatial preference, the left time
robustness becomes zero and starts growing negative, as
seen for t ∈ [1, 4). The left time robustness value becomes
zero and grows positively again as the trajectory gets
farther than 0.5 from any obstacle, as for t ∈ [4, 5].

We define the cost JΨ(x), from (4), which can be also
viewed as a quantitative semantics of the alternative

always operator Ĝ as:

JΨ(x) = −
∫ Tϕ

0

θ?(ψ,x, t) · w(ρ(ψ,x, t))dt, (5)

where θ? is a modified version of left time robustness as
defined below in (6) and w is a positive function defined
by (7) that weighs the spatial robustness.

Modified left time robustness θ?(ψ,x, t) is defined as

θ?(ψ,x, t) = min(θ−(ψ,x, t), 0) (6)

This definition guarantees that the cost function Jψ is
monotone and hence J is also monotone. This property
will become important later on when we incorporate J
into RRT? as we will discuss in Sec. 4.3.

Lemma 3. Given θ?(ψ,x, t) in (6) and a positive weight
function w, JΨ(x) in (5) is monotonically increasing.

Proof. The proof follows directly from the fact that
θ?(ψ,x, t) ≤ 0 and w(ρ(ψ,x, t)) ≥ 0, and therefore their
product is always upper-bounded by zero.

Fig. 2. The proposed weight function

Weight function w(ρ(ψ,x, t)) is a positive function that
can feature user-defined parameters. It allows the user to
express the compromise between a time-efficient trajectory
and a spatially-preferred one. We propose a function that
takes into consideration two parameters, i) a lowest spatial
robustness bound α, which signifies the lowest acceptable
spatial robustness. For instance, in our running example, α
could be set to dr, the radius of the robot; ii) a parameter
A indicating the pace at which the trajectory is penalized
as it approaches the desired bounds. It can be viewed as
the relative weighting between violating trajectories and
in a way, it provides a measure of flexibility of the spatial
preference. The proposed function w(α,A, ρ(ψ,x, t)) is
depicted in Fig. 2 and formalized as follows:

w(α,A, ρ(ψ,x, t)) =


∞, ⇐⇒ ρ(ψ,x, t) < −α
0, ⇐⇒ ρ(ψ,x, t) > 0
−A
α
ρ(ψ,x, t) ⇐⇒ otherwise.

(7)

The proposed weight function splits points on a trajectory
into three types: i) The points on the trajectory that
violate the minimum requirements of the user (as specified
by α), ii) the points that satisfy the spatial preference, and
iii) the points that violate the spatial preference, but not so
much as to violate the minimum threshold as defined by α.
We put an infinite weight on the type i) to signify that the
violation of the spatial preferences is unacceptable in those
points; in fact, α = 0 can be used to set hard constraints.
We put zero weight on type ii) to signify that the spatial
preferences are fully satisfied there, and therefore should
not be penalized.

Altogether, the weight function w contributes to the
cost function JΨ in a way that puts a very high weight
on trajectories that violate the minimum requirements,
differentiates trajectories that violate the specification,
based on how much and how long they do so, and adds
no additional weight on segments of a trajectory that do
not violate the safety specifications.

Example 4. If a low α is chosen in the scenario from Ex. 1,
there is a large region around the obstacles that the system
should not enter, even if the mission will be delayed. α can
be viewed as a minimum tolerance bound on the level of
violation of the spatial aspect of the cost J . Parameter A
specifies how quickly the cost increases as we move closer
to obstacles. If A is high, the trajectory is likely to be
longer.
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4.2 Spatio-temporal RRT?

Given the definition of the cost function, we address the
motion planning problem via an extension to RRT ? that
was originally designed for asymptotically optimal A-to-
B motion planning (Karaman and Frazzoli, 2011). Two
modifications to RRT ? are needed: i) in order to find a
trajectory satisfying ϕ, the vertices of the tree are elements
of the space defined by the cartesian product between the
system state space and the finite automaton capturing the
mission ϕ, and ii) in order to return the trajectories that
minimizes the violation of the spatial preference, the cost
function triggering the updates to the edges of the tree is
now J as defined in (4).

The main algorithm is outlined in Alg. 1. Each iteration
starts by drawing a sample xrand from X using the func-
tion sample(X, q), where q is a state of the mission specifi-
cation automaton. The algorithm continues by attempting
to connect the drawn sample using the near , steer , and
update procedures. The main idea of RRT? is to rewire
the states of the grown graph based on a cost function.

The basic procedures used in Alg. 1-2 are as follows:

• sample: A sample (xrand, qrand) is drawn by the sample
procedure from a uniform distribution over the state
space X and the automaton states.

• near: The near(x, q) returns the set of nodes within the

ball B with radius r = γ( logn
n )1/d (γ a constant, n = |V |

and d is the dimension of the state-space) from x that
are on the automaton state q.

• steer: The steer(x′, x) procedure computes the trajec-
tory from x′ to x and returns a state xnew that is the
farthest state within radius r from x′ in the direction of
the trajectory from x′ to x.

• obstacle free: The obstacle free procedure returns whether
a candidate connection between two states in X enters
Wobs or not.

• update: The update procedure is outlined in Alg. 2. First,
the mission specification automaton state is set (line 2).
Second, the cost of the new candidate connection is
computed and compared with the best current cost.
Here, J(x′, xnew) denotes the cost of the trajectory
from x′ to xnew obtained by steer, which is computed
according to (4). cost(x′) and cost(xnew) denote the
best cost of a trajectory from xinit to x′ and xnew
computed so far. If a connection from the new candidate
parent offers an improvement, reconnection is performed
(lines 3-12).

4.3 Analysis

In this section, the optimality and complexity of the modi-
fied RRT? are considered and analyzed briefly. We discuss
the mission satisfaction and comment on the asymptotic
optimality of our algorithm.

Theorem 5. (Mission satisfaction): Any trajectory x found
by the modified RRT? guarantees the satisfaction of the
mission ϕ.

Proof. The vertices of the tree G are elements of the
space defined by the cartesian product (X ×Q). Suppose
that the search for optimal path in G from (xinit , qinit) to
(x, qf ), where x ∈ X and qf ∈ F is successful. This path

Algorithm 1 Spatio-temporal RRT ?

Input: S - system model, W - workspace, ϕ -
mission given in the form of an automaton
A = (Q, qinit,Σ, δ, F ), ψ - spatial preference, N -
number of iterations

Output: x - trajectory
1: V ← {(xinit, qinit)}; E ← ∅; i← 0
2: while i < N do
3: G← (V,E);
4: (xrand, qrand)← sample(X,Q); i← i+ 1;
5: for (x′, q′) ∈ near(xrand, qrand) do
6: if xnew ← steer(x′, xrand) then
7: update((x′, q′), xnew)
8: end if
9: end for

10: if (xnew, q) ∈ V then
11: for (x′, q′) ∈ near(xnew, q) do
12: if x′ = steer(xnew, x

′) then
13: update((xnew, q), x

′)
14: end if
15: end for
16: end if
17: end while
18: if x ← optimal trajectory corresponding to the path

connecting (xinit, qinit) to a state (x, qf ), where x ∈ X
and qf ∈ F then

19: return x
20: else
21: return Fail
22: end if

Algorithm 2 update((x′, q′), xnew)

1: if obstacle free(x′, xnew) then
2: q ← δ(q′, L(xnew))
3: C ← J(x′, xnew)
4: if C + cost(x′) < cost(xnew) then
5: if (xnew, q) /∈ V then
6: V ← {V ∪ (xnew, q)}
7: else
8: E ← E \ {(parent(xnew, q), (xnew, q))}
9: end if

10: E ← E ∪ {((x′, q′), (xnew, q))}
11: parent(xnew, q)← (x′, q′)
12: end if
13: end if

corresponds to a trajectory of the robot in the workspace,
which is associated with a sequence of regions in Π, visited
along this trajectory. This sequence of regions corresponds
to a word, the sequence of sets of atomic propositions that
hold true in the respective regions and this word is by
construction accepted by A. Hence, the trajectory satisfies
the scLTL formula ϕ.

Given the fact that the solution is generated by RRT? with
an alternative optimality criterion, the returned trajectory
is indeed optimal with respect to this criterion.

The complexity of our algorithm depends heavily on the
evaluation of the cost function (which can be arbitrarily
expensive). Assuming the cost function proposed in this
paper, the complexity is equal to that of the base RRT?.
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Finally, let us remark that similarly as RRT?, our algo-
rithm is an anytime incremental algorithm.

5. CASE STUDIES

This section demonstrates the viability of the proposed
approach in three illustrative case studies, each of which
was designed to show a particular aspect of the algorithm.
We have implemented the solution in Python 2.7. All
examples were run on an Intel Core i7 computer and 16GB
RAM under Ubuntu 16.04.

5.1 Running Example

In the first case study we investigate the running example
used in Sections 3 and 4. The objective here is to reach the
goal region on the lower-right corner of the environment,
starting from the lower-left corner, while maintaining 0.5
distance to the two obstacles present.

Fig. 3a shows that a larger value for A results in a safer
path, while a zero-valued A results in a trajectory that
tangents the safety limit set by α.

5.2 Office Environment

The second case study deals with a large and obstacle-filled
office depicted in Fig. 3b. It has tables, walls, a corridor
and four doors; three regular sized and one smaller, barely
the size of the robot. The mission and spatial preference
are:

ϕ = FG1 ∧ FG2

Ψ = Ĝ[0,Tϕ](dist(x(t))− 0.5),

where G1, G2 corresponds to the first and second goal
regions, respectively (dark gray regions in Fig. 3b).

The resulting trajectories can be seen for different values of
A in Fig. 3b. Besides different parameter values, the case
also provides trajectories using vanilla RRT? and RRT?

with obstacles inflated by the robot size, 0.3.

5.3 Motion Planning with Wireless Network Constraints

The third case study considers wireless network con-
straints in an extension of the previous case, where the
robot also has to remain within Wifi range throughout
the mission.

The mission ϕ is the same as in the previous case and the
spatial preference is:

Ψ = Ĝ[0,Tϕ]

(
(dist(x(t))− 0.5) ∧

(
(4− dist(x(t), r1))

∨(3.5− dist(x(t), r2)) ∨ (2− dist(x(t), r3))
))
,

with dist(x(t), ri) the distance to the ith router at time t.

The resulting trajectories are in Fig. 3c. As can be seen,
the longer path have been effectively filtered out from
consideration due to the router range specification.

5.4 Discussion

We presented three examples of increasing mission com-
plexity to demonstrate the effectiveness of our approach.
We use this section to discuss the results depicted in Fig. 3.

The running example, Fig. 3a, was designed to showcase
the influence of the user-defined value of A to be used in
the cost function. One can note that setting A = 0 means
that the weight function (7) will set either an infinite or
no weight to the trajectory, not differentiating the ones
that satisfy the spatial preference from those that slightly
violate it, i.e. ρ(ψ,x, t) > −α. Fig. 3a can be interpreted as
follows: vanilla RRT? finds the shortest path that satisfies
the mission; our approach with A = 0 finds the shortest
path with α = 0.3 clearance, while A = 1 finds a trajectory
that goes right in the center of the corridor between the
obstacles; lastly, A = 10 sets such a high weight for
violating the spatial preference that the approach returns a
path that takes a detour beyond the upper obstacle, never
violating Ψ.

The second case study, Fig. 3b, shows how a higher value
of A enforces a longer, but safer trajectory, when compared
to lower A values and vanilla RRT?. Note that, in several
parts of the trajectories, they pass right in the middle of
the clearances in-between the obstacles and doors, such
that the distance to the closest obstacle is maximized and,
therefore, evaluating the cost function to a lower value.
This allows our approach to find trajectories that would
not be traversable if incorporation obstacle inflation to
RRT?.

The third and last case, Fig. 3c, enriches the previous
environment with connectivity limits, requiring not only
that the mission is accomplished, but that the connectivity
is not lost at any point. This case highlights the flexibility
of our approach, and how the trajectories change according
to the spatial preference. Note that, on the right-half part
of the environment, in order to ensure connectivity, the
trajectories moved from being on the safer part to being
among several smaller obstacles. On the other half of the
environment, the trajectories in respect to A = 1 and
A = 10 are very similar to the ones presented in the
previous case, since they were already inside the region
to be covered by the WiFi; however, the one with A = 100
does not take the longest detour anymore, since that part
is not covered by the WiFi, and goes right in the middle of
the small passageway at the top. Constraining RRT? with
inflated obstacles in a similar fashion makes it impossible
to complete the task. Using our approach, the robot will
be able to complete the task even though the path through
the small door is suboptimal with regard to safety alone.

6. CONCLUSION

We have proposed a systematic way to enhance traditional
motion planning with complex missions in scLTL and
spatial preferences. A new cost reflecting spatio-temporal
robustness quantification has been introduced. Unlike the
standard STL semantics, it accounts for both spatial and
temporal robustness at once. A modification of RRT?

considering this cost maintains the important properties,
including the asymptotic optimality (under certain as-
sumptions), and anytime and incremental nature of the al-
gorithm. We have provided an illustrative case study with
scenarios of varying degree of complexity that illustrates
the validity and flexibility of the proposed approach.

Future work includes expanding the procedure towards
multi-agent systems,both for realistic traffic scenarios as
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(a) Running example with four trajectories;
one generated by the vanilla RRT? and three
with a choice of α = 0.3 and varying choice
of A.

(b) Office environment, with five trajectories;
one generated by the vanilla RRT?, one by
RRT? with inflated obstacles and three with
α = 0.3 and varying choice of A.

(c) Scenario with wireless network con-
straints, with three trajectories with α = 0.3
and varying choice of A.

Fig. 3. Case study results using different values of parameter A.

well as mobile robots. The main focus of this extension
will be semantics that support measurement of robustness
for time shifts in the future, which is a necessary compo-
nent when considering multiple agents and/or stochastic
behaviour in an environment. Future work will also focus
on how to express the mutual priorities of the time and
spatial aspects in one mission statement while maintaining
the expressiveness of the current approach.

We also aim to expand the case studies in an experimental
testbed, for both the single-agent case presented here and
the multi-agent under development.
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