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Abstract: Autonomous decision support is desired to enable navigation with a temporally
unattended bridge or to have the vessel navigated remotely. In order to have safe navigation, it
is crucial to correctly interpret the current situation given any scenario. Proper perception of
the surrounding environment is essential for good situational awareness. This paper suggests a
method for tracking objects that have been detected by a neural network. The method utilises
features that have been computed during the detection step, thereby ensuring good features
that are representative for the given objects while saving the time it would take to compute new
features. The suggested method is evaluated on data acquired in Danish near-coastal waters.
Evaluation shows that the tracking method is able to track the detections well with few switches
of object identity. The method is shown to outperform a similar tracking algorithm, while keeping
the speed needed for real-time applications.
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1. INTRODUCTION

Autonomous marine transport has gained significant at-
tention in recent years. Different levels of autonomy in
ships can provide services ranging from on-board decision
support to ships navigated by a remotely located navigator
or by an algorithm. The cornerstone of such services is
situation awareness, which has three main elements, per-
ception, understanding of the environment and anticipa-
tion of the development. Evidence of the crucial role of
situation awareness for autonomous shipping is reflected
by the multiple research resources attributed to the topic
internationally (Blanke et al., 2019), (Porathe et al., 2014).
When perception and understanding is supposed to be
implemented as computer algorithms, ability to reliably
track individual objects is crucial in order gain insight in
other objects’ possible future behaviour.

Tracking can be achieved by means of detection of presence
using radar, by received automatic identification system
(AIS) messages from larger vessels, or by tracking objects
using cameras and other electro-optical sensors. Only some
fleet vessels are obliged to send out AIS messages, and
several categories of leisure crafts do not have radar reflec-
tors. This paper therefore addresses the problem of using
solely visual input to track objects at sea, an illustration
of which is shown in Figure 1. We argue that the latest ad-
vancements in neural networks (NN) can provide both the
means for reliable object detection, and visual appearance
descriptions that make robust tracking possible. To this
end, this paper suggests a method for tracking based on
object features that have already been found by the neural
network as part of the object detection. This paper shows

Fig. 1. Vision-based tracking in marine environment.

that, by reusing features, our approach ensures robust
and discriminative representations of objects. This method
will save computation time by avoiding extraction of new
features.

The suggested approach is meant to be deployed in ma-
rine environments, thus this work features a number of
appealing characteristics. First, it is implemented to run
in real-time and thus with high execution speed (FPS ),
which is mainly due to the dual use of extracted features.
In addition, we only need to train a single NN, which
makes training and deployment of our approach easy and
fast. The suggested method is evaluated on data that
were acquired in Danish near-coastal waters and the paper
shows the method’s efficacy in such environments. The
evaluation results obtained show that our approach is able
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to detect relevant objects and track them over long periods
of time with few switches of object identity. Finally, in
some cases where the tracking of an object is lost for any
given reason, our method is shown able to resume tracking
of lost target and reassign the appropriate object ID. The
contribution of this paper is hence twofold: (i) we propose
a real-time tracking algorithm for marine environments
and (ii) we show that the features extracted for object
detection can be reused also for tracking, thus removing
the need for a second feature extraction step.

Table 1. Abbreviations and Acronyms

acronym explanation

NN Neural Network
DL Deep Learning
FPS Frames per Second
IoU Intersection over Union
MOTP Multiple Object Tracking Precision
MOTA Multiple Object Tracking Accuracy

2. PROBLEM DEFINITION

Our purpose is to track multiple objects from a sequence of
images, using detections provided by a NN. The problem
is as follows:

Given: A list of predicted objects with the attributes:

• Pixel coordinates for upper left and lower right corner
of the bounding rectangle surrounding the object
(bounding box)
• A feature vector that describes the appearance of the

contents of the bounding box

Derive: An algorithm that can track each of the objects
contained in the bounding boxes over consecutive frames.

2.1 Problem breakdown

From corner coordinates of the bounding rectangle for
object i, we calculate its centre as [xic, y

i
c], the ratio ri

between height and width, the aspect ratio, and the area
of the rectangle, si. With velocity vector of the centre,
[ẋic, ẏ

i
c], and rate of change of area, ṡi, prediction of

bounding box motion in picture coordinates is governed by
a state space equation. Using x = [xic, y

i
c, s

i, ri, ẋic, ẏ
i
c, ṡ

i]T .
The following predictor assumes unknown centre velocity
and bounding box area. With k = 1, ... denoting discrete
time (frame number being processed) and tk the time
stamp, the predictor for motion of the bounding box for
object i is,

x̂i
k+1 = Ad(tk+1 − tk)x̂i

k + Ki
k

(
yi
k − ŷi

k

)
ŷi
k = Cdx̂

i
k (1)

Where the linear state space model {Ad,Cd} is the
discrete prediction model, mapping observations yi

k =
[xic, y

i
c, s

i, ri]Tk to the states xi
k and Ki

k being the predic-
tor gain matrix. The predictor gain is calculated using
a Kalman filter design (Lappe, 2015) with measurement
covariance Rd and process covariance Qd chosen to give
adequate tracking performance. With yi

k being calculated
for all bounding boxes of objects estimated in image frame
k, the predictor in Equation 1 is used to track development
in positions of detected objects in an image. The crucial

point is that i shall refer to the same object in consecutive
frames.

2.2 Proposed solution

Solving this allocation puzzle would answer the problem
formulated above. The paper shows how the combined al-
location and prediction challenge is resolved in a sequence
using four steps: in the first step, objects are detected
using a NN; in the second, the expected location of all
tracked objects is predicted for the new image; in the
third, the features derived during object detection are used
together with the predicted location of the tracked object
to determine which objects correspond to detections in the
new frame; in the fourth step, the bounding boxes found
by the NN are used as input to the predictor in Equation
1. The overall structure of the proposed tracking algorithm
is illustrated by the overall flowchart in Figure 2.

Fig. 2. Block diagram showing the structure of the tracking
algorithm

3. RELATED WORK

Algorithms based on Deep Learning (DL) have proven to
be very effective tools for visual object detection (Chatfield
et al., 2014), as also attested by the vast plethora of
relevant literature. The strength of DL algorithms orig-
inates from their inherent ability to learn and extract
robust and discriminative object features automatically
(Dara and Tumma, 2018), as opposed to human-crafted
feature extractors. The use of NN-generated features can
provide robust object detection results, even in challenging
environmental conditions, such as in marine environments,
which can be subsequently used for object tracking.

Object tracking for real applications often requires image
data processing. A real-time tracking implementation has
been proposed in the work of Bewley et al. (2016) that
uses image streams as input to the Faster R-CNN (Ren
et al., 2017) object detection network for real-time target
tracking. The proposed implementation is able to track
the bounding boxes of multiple objects in real-time using a
simple combination of a Kalman Filter and the Hungarian
algorithm with a simple association metric for inter-frame
data association. The paper shows that the dominant
factor influencing the tracking results is the accuracy and
robustness of object detection.

However, a weakness of the work of Bewley et al. (2016)
is that it results in a significant number of ID-switches
during multiple object tracking, as object appearance is
not included. To accommodate this, the work in Wojke
et al. (2017) extended the previous implementation to
include a new metric for inter-frame association, which
includes appearance cues. This implementation results in
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fewer ID-switches, while retaining its simplicity and real-
time operation. In principle, this work is similar to our
approach, but Wojke et al. (2017) resizes the detections
to a fixed size and applies a second NN to create a fea-
ture vector describing the objects. However, in a marine
environment, there is an abundance of very small objects
due to the large distances found at sea. Resizing small
objects for feature extraction might give rise to problems,
as local features become very sparse. Zou et al. (2019) use
a similar approach, where the appearance of two detections
is compared using a siamese network that decides whether
two detections are of the same object. while overcoming
the resizing problem, this approach will also affect com-
putational speed as a separate network is used to extract
features once more. The method presented in this paper
reuses the features extracted during detection; this is an
advantage, as the features for a given object must be
describing for the detection to occur. Thus, the overall
implementation is simpler and more efficient.

The algorithm of Henriques et al. (2015) is among the state
of the art, real-time performing tracking algorithms. This
algorithm relies on human-crafted features and focuses on
detection of objects in consecutive frames. In contrast, the
algorithm proposed in this paper uses a NN to automati-
cally learn relevant features for each case. Furthermore, the
work of Henriques et al. (2015) requires an initial bounding
box indicating the object to be tracked, while our approach
employs automatic detection and then tracking of objects
detected.

Tracking multiple objects in a tracking-by-detection man-
ner, as introduced by Wojke et al. (2017), was recently
extended and adapted for use in various specific applica-
tions. Vehicle tracking and re-identification was addressed
in the works of Tang et al. (2019) and Hou et al. (2019),
where an additional low confidence track filtering step
was incorporated. Furthermore, tracking of objects from
drone-mounted cameras was the focus of Kapania et al.
(2020) and Jadhav et al. (2020), providing reliable tracking
solutions for specific application scenarios.

The analysis of related work indicates a literature gap
with respect to efficient and reliable visual tracking im-
plementations in challenging environmental conditions, in
marine environments. All the above mentioned algorithms
focus on very different application or test scenarios that do
not suffer from problematic environment conditions to the
same degree as the vessel navigation scenario considered
in this paper.

4. METHOD

As described in the problem statement in Sec. 2, the
algorithm proposed in this paper is used to perform
tracking of objects detected by a NN. Following the
findings in (Schöller et al., 2019), an appropriate neural
network for object detection in a marine environment is
RetinaNet (Lin et al., 2017). In short, RetinaNet works by
extracting features from an image and shaping these into
four so called feature maps, each containing features of
different scales, by using a convolutional neural network
in conjunction with a bounding box regression network,
and a classification network. This means that large, more
global, features will be present in one feature map, while

the more local features of smaller objects will be present
in another. Each feature map is divided into a set of areas
denoted anchors. The anchors are sent to the classification
and regression network where the content of the anchor
is classified. If the classification network determines that
an object is present within the anchor area, a detection
is made. The classification network classifies the content
of the anchor box into a set of labels, e.g. ship or buoy,
while the regression network optimises the fit of the anchor
box to the contained object. The output of RetinaNet is
therefore the coordinates of the bounding boxes containing
the found objects together with their respective labels.

In order to have an algorithm providing situation aware-
ness of the motion of surrounding objects, these need to
be tracked and identified correctly from frame to frame
after the objects in each frame are identified. The predic-
tion step has to be incorporated such that the tracking
algorithm is able to estimate the position of an object in
case the NN does not find a previously tracked object due
to e.g. occlusion.

The first step of the tracking algorithm is to match the
detections in a newly acquired image with those already
tracked from previous frames. A cost function for objects
i and j is defined as,

Ji,j = αdsi,j + βdpi,j
+ γ(1− IoUi,j) (2)

where dsi,j is a similarity distance (see below), dpi,j
is

the Euclidean distance in image coordinates, normalised
with relation to object diagonal and IoUi,j is the IoU
between object i and j. The α, β and γ terms are weighs
of the three. The cost is only computed between objects
of the same class, i.e. a ship does not suddenly become a
buoy and vice versa. A new detection is matched with a
previously tracked object by minimizing this cost function.
If no match is found for a given detection, it is considered
a new object, and is added to a list of tracked objects.

The similarity between two objects is found using feature
matching. In this paper, the similarity between two objects
is computed by comparing feature maps from the object
detector. As the area obtained by the two objects in the
feature maps seldom is the same, the feature maps of each
object are converted to a fixed size before matching. The
reshaped feature map is denoted the feature vector of the
object.

The feature vector of an object is extracted by first
locating an object in each of four feature maps, illustrated
in Figure 3.

The four feature maps are illustrated in Figure 3. The
width of each feature map is given as a fraction of the input
image width, such that the widths of the four feature maps
are 1

16 , 1
32 , 1

63 and 1
120 of the input image. Each feature

map can be thought of as a 256 channel image, with each
channel corresponding to the activation of a convolutional
filter in the NN. The feature vector of a certain object
is constructed by finding the average intensity of each
channel in the feature maps, in the area corresponding
to where the object is present, and then concatenating
these into a vector, using global average pooling and
concatenating. This action is described by Equation 3.
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Fig. 3. Image of a ship along with the respective feature maps. The ship position in each feature map is highlighted by
a green box

fi,j,k =
1

Ni,j

dxi1
FMjwe∑

bxi0
FMjwc

dyi1
FMjhe∑

byi0
FMjhc

FMj,k,xy (3)

fi,j = [fi,j,1, fi,j,2 . . . fi,j,K ] (4)

fi = [fi,1,fi,2,fi,3,fi,4] (5)

where fi,j,k is the average feature of object i from feature
map j in depth k, (xi0 , yi0) is the upper left corner of
the bounding box of object i indexed by fraction of image
width and height respectively, (xi1 , yi1) is the lower right
corner of the bounding box of object i indexed by fraction
of image width and height respectively, FMjw is the pixel
width of feature map j, FMjh if the pixel height of feature
map j, Ni,j = (dxi1FMjwe − bxi0FMjwc)(dyi1FMjhe −
byi0FMjhc) is the pixels occupied by object i in feature
map j, FMj,k,xy is the feature value of feature map j
at depth k in position (x, y). fi,j is the feature vector
of object i composed from the features of feature map j
up until the maximum depth K. fi is the general feature
vector of object i composed from all feature maps.

The similarity between two objects a and b with feature
vectors a and b is expressed by the scalar product between
unit vectors in directions of the two feature vectors. In
Equation 6, dsa,b

is often referred to as the cosine distance,
although it is not a measure of distance, it does not meet
the triangle inequality for example, but is a measure of
similarity in direction of the two feature vectors.

dsa,b
= 1− fa · fb

||fa|| ||fb||
(6)

A measure dpi,j is found using the Euclidean distance in
image plane between centre of a detected object and the
predicted centre position of a tracked object. In order to
calculate this, we need to predict the position of all tracked
objects in the next image to come. This is done using
the predictor presented in Equation 1. The K matrix is
implemented as a conventional linear Kalman filter. The
implementation adopted in this work is that of (Bewley
et al., 2016). This predictor estimates the bounding box

velocity allowing the bounding box velocity to change as
an object changes distance to the viewpoint, in this case
own vessel.

Finally, a measure (1− IoUi,j) is calculated from the IoU
between objects i and j. This means that if the bounding
box of objects i and j has overlap, this measure contributes
with a low cost to the matching.

If a detection is matched with a tracked object, the
detected bounding box is used to update the Kalman filter.
If no detection is matched with an object, the Kalman
filter will keep predicting the position of the object for a
set number of frames before it is deleted from the list of
objects in view.

After the cost is computed for each set of tracked objects
and detections, the matching pairs are found by solving
the linear assignment problem.

5. RESULTS

This section presents an evaluation of the proposed track-
ing algorithm. The method will be evaluated against the
SORT tracker of Bewley et al. (2016), as the Kalman
filter used in the proposed method is based on the SORT
tracker.

The suggested tracker will be evaluated using the metrics
MOTA and MOTP (Bernardin and Stiefelhagen, 2008),
number of ID switches, precision and recall.

MOTA is defined as follows:

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

(7)

where mt is the number of missed objects at time t, fpt is
the false positives at time t, mmet is the number of missed
detections at time t and gt is the number of ground truth
objects at time t. MOTA is a general measure of how able a
tracker is at keeping accurate trajectories, independent of
its ability to estimate object position compared to ground
truth.
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Fig. 4. Cropped example of an annotated image from the data set. Objects are far away and are therefore rather small
in most images.

Fig. 5. The cosine distance between feature vectors in four consecutive images.

MOTP is defined as:

MOTP =

∑
i,t di,t∑
t ct

(8)

where di,t is the distance between the object oi and its
match and ct is the number of matches at time t. MOTP
is therefore the total positioning error averaged by the
number of matches. MOTP describes a trackers ability to
estimate the position of an object regardless of trajectory
accuracy.

Finally, precision and recall are defined as:

precision =
∑
t

ct
ct + fpt

recall =
∑
t

ct
ct +mmet

,
(9)

Precision describes the ratio between true predictions and
all predictions, while recall describes the probability to
detect an object.

The suggested method is evaluated on a sequence of self-
annotated images acquired on-board a ferry in the South
Funen archipelago in Denmark. The sequence consists of
337 images with a resolution of 1440× 1080px , containing
2208 instances of objects. The sequence also includes
multiple occlusions, e.g. a ship being occluded by another
ship for 9 frames. The NN used for object detection was
trained on similar data, with the testing sequence not

being included in the training. An example image from
the sequence is shown in Figure 4.

A predicted tracking is determined to be true if the IoU
between the predicted object and a ground truth box
is above 0.2. The relatively low threshold is set as such
because of the abundance of small objects in the evaluation
sequence due to objects being far away. During evaluation,
the proposed method will use a weighting of α = 0.2, β = 1
and γ = 0.4 for the cost function presented in Eq. 2.

Table 2. Results for (Bewley et al., 2016)
(SORT ), a features-only variant (Features)
and the full proposed algorithm (Proposed).

MOTA MOTP Switch P R FPS

SORT 0.58 0.36 48 0.79 0.81 14.3

Features 0.62 0.37 39 0.804 0.85 13.7

Proposed 0.70 0.37 35 0.83 0.89 13.7

Table 2 shows that the proposed method outperforms
the SORT tracker in all measures but speed and MOTP,
however the method proposed in this paper is only slightly
slower. Using only feature matching, i.e setting α = 1, β =
0 and γ = 0 in Equation 2, the algorithm still outperforms
the SORT tracker, in terms of MOTA, number of ID-
switches, precision and recall. This indicates that feature
matching alone is a relatively good matching scheme for
tracking.

In the above table, FPS is calculated after the object
detection step, thereby only measuring the time taken for
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tracking. Note that there is only a slight drop in FPS
when including feature matching. This is a result of the
features already being computed from the object detec-
tion. Therefore, it is only necessary to form the feature
vector, which was found to take 0.49 ms. This method is
significantly faster than other methods utilizing feature
matching for tracking, e.g. the deepSORT tracker in which
feature extracting takes 30 ms on a Nvidia GeForce GTX
1050 GPU Wojke et al. (2017).

It is furthermore relevant to look into the percentage of
lifetime, i.e. an objects appearance in the data set, that
was successfully tracked by the proposed algorithm. Such
an analysis elucidates the tracker’s ability to keep long
tracks. Table 3 shows, for 12 indicative objects, that most
of them are tracked for more than 80% of their lifetime,
and few objects are tracked for less than 20%. The lost
objects are mostly very distant vessels in the sequence
which are only within view for a short period of time.

Table 3. Percentage of lifetime tracked by the
proposed algorithm.

TOTAL >80% 20-80% <20%

# Objects 12 8 2 2

Another relevant measure is the number of fragmentations.
This is the amount of times a track is lost. For the
proposed method, the number of fragmentations is 44. As
it was found that the number of ID-switches was 35, the
percentage of lost tracks that are picked up again with the
right ID is 20%.

The similarity distance between all objects in one image
and the next are illustrated in Figure 5, where it is seen
that feature matching indeed contributes to the tracking,
as a low cosine distance is apparent diagonally. The figure
also illustrate the need for a Kalman filter to utilise
position, as some objects have a low similarity distance
to more than one other object.

One advantage of a tracking algorithm is that when
looking at a sequence of images, the backbone object
detection network might miss a target that the tracker
is still able to follow, thereby increasing the recall for
a sequence. To assess this increase, the object detection
network is evaluated on the sequence, disabling tracking.
This yields a recall of r = 0.821 or a missed detection
probability of 17.9%. With the proposed tracking method,
this is reduced to 11% missed detections.

Finally, it is noted that tracking results depend heavily
on the quality of the object detection step. Evaluating
tracking using a detection network that was trained on
data, which include the tracking sequence, yields the
results presented in Table 4.

Table 4. Results using a network that has been
trained on the evaluation sequence

MOTA MOTP Switch P R FPS

SORT 0.9 0.29 16 0.93 0.98 14.3

Features 0.9 0.29 10 0.92 0.98 13.7

Proposed 0.93 0.28 5 0.94 0.99 13.7

6. CONCLUSIONS

This paper proposed a novel method for tracking of objects
that have been detected by a convolutional neural network.
Using feature matching together with a Kalman filter
predictor, the method showed promising results. This was
due to the reuse of the features computed during the
detection step of the NN, thereby increasing throughput
compared to other methods, which compute new features
during tracking. Evaluating the tracking method in a
marine environment showed that the proposed method
performed as desired with a low number of ID-switches
and a high frame rate.
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