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∗ Control and Automation Engineering, Istanbul Technical University,
Ayazaga Campus, Maslak, Istanbul TURKEY (e-mail:

canevi17@itu.edu.tr).
∗∗ Control and Automation Engineering, Istanbul Technical University,

Ayazaga Campus, Maslak, Istanbul TURKEY (e-mail:
soylemezm@itu.edu.tr).

Abstract: This paper focuses on the design of the so called sky-hook controller, which is
used to isolate vibrations on suspension systems. The design of the sky-hook controller is
posed as a single input-single output static output feedback control problem. The design of
the sky-hook controller is posed using the generalized plant with the sparse structure of the
sky-hook controller. It is shown that, the root-locus plot for visualization and some of the w4ell
known stability analysis methods can be utilized to acquire a stability interval for the sky-hook
controller. By gridding the stability interval, it has been shown that there may exist convex
sub intervals, and posing a BMI problem with the corresponding D region, it is possible to
solve the skyhook design problem, with regard to H2 or H∞ optimality. The sky-hook design is
simulated using two different suspension systems and an experiment is carried out on a system
for three different road profiles. It has been sown that using a sky-hook controller instead of an
LQR controller is plausible, since the number of required sensors is reduced, therefore the cost
is reduced and the performance is almost equal for both controllers.

Keywords: Disturbance rejection(linear case), Robust Control, Output feedback(linear case),
Sky-hook control, H2 optimal control, H∞ optimal control, Active suspension systems,
Quarter car model

1. INTRODUCTION

Many industrial applications benefit from the advantages
of robust control techniques, especially where sustaining
the performance of the control system is important under
disturbances and changes in physical parameters, due
to wearing, temperature changes, pressure changes, etc.
For linear robust control applications, a good benchmark
problem is the control of an active suspension system
using a quarter car model, where the aim is to minimize
the effect of the road disturbance to the passenger. This
benchmark problem is well studied in the literature, e.g.
with LQR control Choi et al. (1998), Sam et al. (2000),
with robust control Ma and Chen (2006), Guo and Zhang
(2012), Wang and Wilson (2001), with fuzzy logic Li et al.
(2012), Li et al. (2011), with PID control Erol and Delibaşı
(2018). Most robust control techniques provide full state
feedback controllers or high order controllers, but there
are also reduced order controller design approaches and
low level controller design methods. The complexity and
the realizability of the controller is important for a quarter
car model, since in the industrial application, for the full
car model, the cost of the design can grow fourfold. A good
candidate for a low cost and applicable control method is
the so called sky-hook strategy, which was published by
Karnopp et al. (1974). This approach proposes a single
gain feedback using the vertical velocity of the body
mass and aims to simulate an imaginary damping element

Karnopp (1995) which is connected between the body
mass and a ”hook in the sky”. This imaginary element is
used to isolate the body mass from the ground, aiming
to minimize the body acceleration and the suspension
travel. Some work related with the sky-hook approach is
as follows. A non jerk sky-hook controller is proposed by
Ahmadian et al. (2004), some sky-hook designs are studied
in Priyandoko et al. (2009), Li and Goodall (1999) and
Fallah et al. (2011), and a comparison of H∞ optimal
control and sky-hook control is given in Sammier et al.
(2003).

In general, the robust sky-hook control problem is a static
output feedback control problem, which is an open prob-
lem. Actually, it is not possible to define the optimization
problem using LMIs. In fact the constraints arise as Bilin-
ear Matrix Inequalities(BMIs). BMIs are NP hard prob-
lems to solve as mentioned in Van Antwerp and Braatz
(1999) and, in general, it is not possible to find the global
optimum.

In this paper, the existence of the sky-hook controller has
been examined and a gridding based sky-hook controller
design has been proposed. Due to the possibly large
feasible interval of the sky-hook controller and to design
an applicable sky-hook controller the design problem is
also stated using BMIs. A D region based convex interval
is used to design the sky-hook controller. It has been
shown that, a sky-hook controller designed using the BMI
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problem posed in this paper with the appropriate D region,
performs almost as good as the LQR controller. It has been
shown that the sky-hook controller produces a smaller
control signal and it is stated that the sky-hook controller
could be more cost efficient, since the sky-hook needs only
one sensor measurement to operate.

The rest of this paper is organized as follows: In the
following section, the mathematical model is provided. The
controller design approach is presented in section 3. Some
results of simulations and experiments are discussed in
sections 4 and 5, respectively. The conclusions and possible
further studies are given in the last section.

2. MODEL

The dynamics of a quarter car model has a state space
realization as follows,

ẋ1 = x2 − x4

ẋ2 = −Ks

Ms
x1 −

Bs

Ms
x2 +
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x4 +

1
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(1)

where x1 is the suspension travel, x2 is the body vertical
velocity, x3 is the tire deflection, x4 is the tire vertical
velocity, z is the suspension travel, ω is the road surface
velocity and u is the force applied by the controller.
The physical parameters K, B, and M represent the
suspension coefficient, the damper coefficient, and the
body mass of the quarter car model, respectively. The
subscripts s, and us are the abbreviations for sprung and
unsprung, respectively. The generalized plant for the full
state feedback control problem(LQR, H2, H∞) is defined
as follows, ẋz

y

 =

 A Bw Bu

Cz Dzw Dzu

I4x4 04x1 04x1

xw
u

 (2)

whereas the generalized plant is updated for static output
feedback(sky-hook controller) as follows,ẋz

y

 =

 A Bw Bu

Cz Dzw Dzu

[0 1 0 0] 0 0

xw
u

 (3)

The corresponding open loop transfer functions are defined
as follows,

Pzw(s) = Cz(sI −A)−1Bw +Dzw

Pzu(s) = Cz(sI −A)−1Bu +Dzu

Pyw(s) = Cy(sI −A)−1Bw

Pyu(s) = Cy(sI −A)−1Bu

and the closed loop transfer function between the exoge-
nous input and the exogenous output is defined as

Tzw(s) = Pzw + PzuK(I − PyuK)−1Pyw

and the input output transfer function is given as,

Tyu(s) = K(I − PyuK)−1

3. CONTROLLER DESIGN

3.1 Linear Quadratic Regulator

The Linear Quadratic Regulator(LQR) is designed via
solving the following Riccati equation,

PA+ATP +Q− PBuR
−1BT

u P = 0 P � 0

where P = PT ∈ Rn is to be solved and the controller is
obtained with K = −R−1BT

u P . The LQR design problem
minimizes the following objective,

J =

∫ ∞
0

(xTQx+ uTRu)dt Q � 0 R � 0

where the controller is u = Kx and hence the LQR design
can be interpreted as a special H2 optimal control problem
as stated in Boyd et al. (1994).

3.2 H2 Optimal state feedback controller

The H2 optimal state feedback controller design problem
as an LMI problem as stated in Boyd et al. (1994) is given
below,

min ρ

trace(Z) < ρ

AP + (AP )T +BuW + (BuW )T +BwB
T
w ≺ 0[

−Z CzP +DzuW
(CzP +DzuW )T −P

]
≺ 0

where the controller is calculated as K = WP−1 and the
closed loop transfer function satisfies ||Tzw||2 <

√
ρ. In

order to design an applicable H2 optimal state feedback
controller, the given design problem is converted into the
following using D stability as shown in Duan and Yu
(2013),

min ρ

trace(Z) < ρ

AP + (AP )T +BuW + (BuW )T +BwB
T
w ≺ 0[

−Z CzP +DzuW
(CzP +DzuW )T −P

]
≺ 0

L⊗ P +M ⊗ (AP +BuW ) +MT ⊗ (AP +BuW )T ≺ 0

where L and M define the LMI region for the D stability
and ⊗ represents the Kroenecker product.

3.3 H∞ Optimal state feedback controller

The H∞ optimal state feedback controller design problem
as an LMI problem with D stability as represented in Boyd
et al. (1994) is given below,

min γ

P � 0(AP +BuW )T + (AP +BuW ) ∗ ∗
BT

w −γI ∗
(CzP +DzuW ) Dzw −γI

 ≺ 0

L⊗ P +M ⊗ (AP +BuW ) +MT ⊗ (AP +BuW )T ≺ 0

where the controller is calculated as K = WP−1 and the
closed loop system satisfies ||Tzw||2 < γ.
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3.4 Sky-hook controller

The sky-hook controller for the active suspension system
is defined as the feedback of the body vertical velocity and
is expressed as follows,

u = Ksky x2 Ksky ∈ R (4)

The sky-hook controller can be viewed as a static output
feedback controller, such that u = Kskyy, where y = x2.
Therefore the first step is to check for the existence of a
stablizing sky-hook controller. Using the generalized plant
given in Eq 3, the characteristic polynomial for the transfer
function Tyu(s) is defined as follows,

pc(s,Ksky) = |sI −A−BuKskyCy|
pc(s,Ksky) = |sI −A−BuKsky [0 1 0 0] |

(5)

It is possible to use several methods for checking the
stability of the polynomial given in Eq 5, for instance,
Root locus, Routh table and Generalized Nyquist theorem
as stated in Söylemez et al. (2003), can be used for this
purpose. We will use a direct substitution method for nu-
merical interval calculation. For the numerical calculation
of the stability interval of the sky-hook controller, the
substitution s = jw into the characteristic polynomial
pc(s) is given in Eq 6.

pc(jw,Ksky) = |jwI −A−BuKsky [0 1 0 0] | (6)

Hence, the stability interval can acquired from Eq 7.

Re (|jwI −A−BuKsky [0 1 0 0] |) = 0

Im (|jwI −A−BuKsky [0 1 0 0] |) = 0
(7)

Since the controller is scalar, if an interval is acquired
being Ksky ∈ [k−, k+], it is possible to solve the following
problem via gridding and choosing a norm.

min ||Tzw||
Tzw = Pzw + PzuKsky(I − PyuKsky)−1Pyw

Ksky ∈ [k−, k+] (8)

For the solution of the problem Eq 8 with norm ∞ the
matlab function hinfstruct is also available Apkarian and
Noll (2006). As a result of this paper, it has been observed
that problems defined in Eq 9 and Eq 10 are suitable to
design sky-hook controllers.

An H2 optimal sky-hook controller can be designed via
solving the following BMI problem,

min ρ

trace(Z) < ρ

< AP +BuKskyCy P >S +BwB
T
w ≺ 0[

−Z ∗
(CzP +DzuKskyCyP )T −P

]
≺ 0

L⊗ P +M ⊗ (A+BKskyCy)P +MT ⊗ P ·
(A+BKskyCy)T ≺ 0 (9)

where< X >S, X+XT is used for compact notation. The
sky-hook controller design problem is not convex, due to
the term Ksky P , but the problem can be solved using BMI
solvers. With a similar approach the H∞ optimal state
feedback controller design problem is defined as follows,

min γ

P � 0< AP +BuKskyCyP >S ∗ ∗
BT

w −γI ∗
(CzP +DzuCyKskyP ) Dzw −γI

 ≺ 0

L⊗ P +M ⊗ (A+BKskyCy)P +MT ⊗ P ·
(A+BKskyCy)T ≺ 0 (10)

where the closed loop transfer function satisfies ||Tzw||∞ <
γ. Here, both BMI problems are solved with D stability,
which is important in designing practically applicable
controllers and it is important to get a feasible BMI
solution, since otherwise the BMI problems may give
inconsistent results or a guess for the initial point is
needed.

4. SIMULATION RESULTS

In this section all BMI problems are solved via PENBMI
by Kočvara and Stingl (2003), on a computer with 2.8 GHz
Intel core i7-7820HQ processor and 16 GB 2133Mhz ram.
As can be seen from Table 1, two models named Model
M1 and Model M2 are used for simulations.

Table 1. Model parameters

Symbol Quanser Jalili and Esmailzadeh (2001)
Model M1 Model M2

Ms 2.45 kg 972.2 kg
Mus 1 kg 113.6 kg
Ks 900N/m 42719.6N/m
Kus 1250N/m 101105N/m
Bs 7.5Nsec/m 1095Nsec/m
Bus 5Nsec/m 14.6Nsec/m

The LQR controller for Model M1 is given in Eq 11
Apkarian and Abdossalami (2013), where the closed loop
norm is determined as ||Tzw||2 = 0.2369.

K = [24.6621 47.6059 38.7426 4.5090] (11)

A circle with a radius 60 at s = −5 is chosen as the D
region for the BMI problems, so that the region includes
all the closed loop poles of the LQR design and is chosen so
that the control signal is limited for practical applicability.
The matrices for the D region are given in Eq 12.

L =

[
−60 −5
−5 −60

]
M =

[
0 1
0 0

]
(12)

Plugging in the model parameters for Model M1 into Eq 5
gives the characteristic equation given in Eq 13.

pc(s) =s4 + (15.56− 0.408Ksky)s3 + (2533− 2.04Ksky)s2

+ (5663.0− 510.2Ksky)s+ 459184
(13)

The stability interval is obtained as −∞ < Ksky < 6.02.
It took approximately 0.7 seconds to acquire the stability
interval. The solution of the gridding problem Eq 8 for the
2-norm and the ∞-norm results in Fig 1.

The solution of Eq 9 for Model M1 is given in Eq 14
and the solution of Eq 10 is given in Eq 15. Using Model
M1, it takes approximately 1.5 seconds to solve the BMI
problems.
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Fig. 1. ||Tzw||∞ and ||Tzw||2 norms against the sky-hook
parameter-Model M1

Fig. 2. Bode: A comparison of bode gain plots of Model
M1 for the BMI solutions given in Eq 14 or Eq 15
agains LQR

P =

 0.0496 ∗ ∗ ∗
−0.6452 16.6870 ∗ ∗
0.0070 0.1411 0.0314 ∗
−0.6366 6.2110 −0.5008 26.5571


Z = 0.0496 γ = 0.2228

Ksky = −30.4754 ||Tzw||2 = 0.2211
(14)

P =

 11.13 ∗ ∗ ∗
−149.8 2679.0 ∗ ∗
−2.05 45.35 1.911 ∗
−36.29 144.2 −2.711 1495.0


ρ = 733.5 γ = 27.08

Ksky = −30.4754 ||Tzw||∞ = 0.091
(15)

From Fig 1 it can be seen that, the∞-norm can be further
minimized, but the BMI solutions coincide at the H2-
optimal solution, due to the prescribed D region.

A comparison of the Bode gain plot of the closed loop
transfer function |Tjw| is shown in Figure 2, comparing
open-loop, LQR 11 and sky-hook obtained from the BMI
problem Eq 15 or Eq 14.

Using the parameters of Model M2, the stability interval
for the sky-hook controller is obtained as −∞ < Ksky <
763.6. It takes approximately 0.8 seconds to solve for the
stability interval. Gridding the sky-hook controller results
in Figure 3. The solution of Eq 9 for Model M2 is given in
Eq 16 and the solution of Eq 10 is given in Eq 17. Using

Fig. 3. ||Tzw||∞ and ||Tzw||2 norms against the sky-hook
parameter-Model M2

Fig. 4. Bode: A comparison of bode gain plots of Model
M2 for the BMI solutions given in Eq 16 or Eq 17

Model M2, It takes approximately 1.5 seconds to solve the
BMI problems.

P =

 0.1376 ∗ ∗ ∗
−0.5578 4.2430 ∗ ∗
0.0004 0.0578 0.0414 ∗
−0.5578 0.9295 −0.5000 28.9902


Z = 0.1376 γ = 0.37091

Ksky = −4760.91 ||Tzw||2 = 0.3709
(16)

P =

 0.1376 ∗ ∗ ∗
−0.5578 4.243 ∗ ∗

0.0004141 0.0578 0.04144 ∗
−0.5578 0.9295 −0.5 28.99


ρ = 0.1376 γ = 0.3709

Ksky = −4760.91 ||Tzw||∞ = 0.2445
(17)

A comparison of the Bode gain plot of the closed loop
transfer function |Tjw| is shown in Figure 4.
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5. EXPERIMENTAL RESULTS

The experiments are carried out on the QUANSER active
suspension set as described in Apkarian and Abdossalami
(2013), which is referred as Model M1 in the previous
section. Three types of road profiles are used during
the experiments namely, a square bump to analyze low
frequency performance, a half rectified sine wave at the
critical frequency and a random road profile to analyze the
high frequency performance of the control method. The
square bump road profile is defined in Eq 18 and the sine
wave road profile is defined in Eq 19.

zr(t) = Mu(t− t0)−Mu(−t+ τ + t0) (18)

The expression u(t) is the unit step function and the
critical frequency fcrit is chosen from Fig 2 as fcrit =
14Hz, where the amplitude is chosen as M = 0.002.

zr(t) = M |sin(2πfcritt)| (19)

The random road profile is chosen as a grade A random
road as described by Tyan et al. (2009), where the road
profile generation is defined in Eq 20 with ω(t) white noise
input.

żr(t) = −0.635zr(t) + ω(t) (20)

The results for the square bump road profile are given
in Table 2. It can be seen that, the sky-hook controller
uses smaller control signal, the maximum amplitude for
the suspension travel is smaller than the LQR controllers
maximum amplitude, and that the energy of the suspen-
sion travel has similar values for both control methods.

Table 2. Performance indication values for the
square bump.

Open loop LQR Sky-hook

||z||∞/||zr||∞ 0.9956 1.238 1.068
||z||2/||zr||2 0.3152 0.2396 0.2645
||u||∞/||zr||∞ 0 478.7 338.0
||u||2/||zr||2 0 89.77 60.37

Using the values from Table 3, it can be concluded that
the sky-hook controller uses smaller control signal and
performs almost as good as the LQR controller.

Table 3. Performance indication values for the
half sine wave.

Open loop LQR Sky-hook

||z||∞/||zr||∞ 0.7023 0.6729 0.933
||z||2/||zr||2 0.3931 0.6266 0.8192
||u||∞/||zr||∞ 0 697.7 496.9
||u||2/||zr||2 0 604.7 339.9

From the performance indication values given in Table 4, it
is obvious that the sky-hook controller uses smaller control
signal and has similar performance compared with the
LQR controller, where a slight improvement is observed
for the peak value of the suspension travel.

The square bump used during the experiments is depicted
in Figure 5.

A comparison of the suspension travel for the open loop,
closed loop with the LQR controller and the closed loop
with the sky-hook controller is shown in Figure 6. The

Fig. 5. Road profile

Fig. 6. Comparison: Suspension travel

control signals for the the same cases are given in Figure 7.

6. CONCLUSION

In this paper, the sky-hook control method, which is a
well known practical method for vibration isolation in
suspension systems, is posed as a BMI problem in the
framework of H2 and H∞ optimal control design. For
this purpose, methods for finding the stability interval
are proposed first. Then the problem is given as a BMI
problem. Since BMI problems are not convex, the design
of the sky-hook controller using BMIs is converted into a
D stability problem based on the LQR controller, which
is widely used for suspension systems. The proposed BMI
problem with D stability is used to design sky-hook con-
trollers for two different suspension systems. It has been
shown that the resulting sky-hook controllers, which use

Table 4. Performance indication values for the
random road profile.

Open loop LQR Sky-hook

||z||∞/||zr||∞ 0.6516 0.9447 0.8062
||z||2/||zr||2 0.6950 0.6156 0.6177
||u||∞/||zr||∞ 0 1128.0 430.7
||u||2/||zr||2 0 640.6 338.6
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Fig. 7. Comparison: Control Signal

only one sensor instead of 4 sensors by the with the LQR
controller performs almost as good as the LQR controller
and hence, is preferable over the LQR controller in terms
of performance and cost for serial manufacture.

It has also been shown that, using D regions can speed
up the solving time of BMIs used for the design of the
sky-hook controller. The time required to solve the BMIs
for the sky-hook controller design problem, takes almost
the same amount of time to calculate a stability interval
for the sky-hook controller. Therefore, the BMI method
is faster than calculating a stability interval for the sky-
hook controller and gridding the interval for a suitable
controller.
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