
Nonlinear Model Predictive Control applied
to Concentrated Solar Power Plants ?

Ramon Jesuino Dettmer ∗ Paulo Renato da Costa Mendes ∗∗

Júlio Elias Normey-Rico ∗

∗ Automation and Systems Department, Federal University of Santa
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Abstract: This papers presents a nonlinear model predictive controller (NMPC) for tempera-
ture control in solar collector fields. The proposed NMPC uses feedback linearization for handling
the systems nonlinearities in a mixed integer quadratic programming (MIQP) formulation that
makes the constraints convex in the new coordinates, making the controller solution an optimal
one. Several simulations are shown with real data and a validated model of solar field to illustrate
the advantages of the proposed strategy over other general-purpose NMPC methods, showing
great improvement in constraint satisfaction.
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1. INTRODUCTION

Renewable energies have gathered great momentum in the
last years due to the need for increasing demand and re-
ducing the environmental impact caused by nonrenewable
energy sources like oil or coal (Camacho et al., 2012).
The power grids along the world are expanding and helio-
thermic power plants appear like a good and sustainable
alternative, as only part of the energy provided by the sun
is enough to supply the current planet demands (Camacho
et al., 2012).

In Concentrated Solar Power (CSP) Plants, a collector
system is used to concentrate the solar irradiance into
an absorber where a heat transfer fluid (HTF) passes
through acquiring energy to feed a Rankine cycle that
generates electricity. In this case, the temperature has to
be precisely controlled to improve the energy conversion
efficiency and provide an optimized operation in the power
unit (Roca et al., 2008a), and the same can be said to other
applications as heating of furnaces (Beschi et al., 2012) and
air-conditioning as in (Zambrano et al., 2008).

Although solar energy looks promising, it is not always
available due to its intermittency caused by cloudy or rainy
days, turning it difficult to meet the power demand and
challenging the energy management systems. Currently,
the research community is focused on improving the energy
storage unit efficiency and operation to account for this
problem (Camacho et al., 2012), along with the develop-
ment of better control techniques to make solar energy
more efficient and reliable.
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This paper proposes a solution for the control problem of a
CSP field, where the solar irradiance acts as a disturbance
since the energy source depends on the weather and
can not be manipulated by the control system. This
particularity of CSP plants makes the long term energy
planning harder than traditional power units. On top
of that, these solar fields present nonlinear dynamics
and dead-time behavior, thus, nonlinear advanced control
technique could benefit the CSP operation.

From the plant complexity and the solar intermittency
a good choice for the control framework would be the
Model Predictive Control (MPC), that take advantage of
using the disturbances predictions to generate an optimal
planning for the HTF flow. Several works in the literature
have proposed MPC controllers for different solar plants:
in (Martins Lima et al., 2015) a linear Filtered Dynamic
Matrix Control (FDMC) was proposed for the AQUASOL
desalination solar plant; in (Gálvez-Carrillo et al., 2009) a
nonlinear general-purpose MPC approach known as Non-
linear EPSAC (NEPSAC) was proposed for the control of
the ACCUREX solar plant; (Santos et al., 2011) proposed
a nonlinear robust predictive controller using a Dead-
Time Compensator (DTC) with Generalized Predictive
Controller (GPC) and feedback linearization for handling
the system dynamics, applying it in the AQUASOL plant
(Roca et al., 2008a); (de Andrade et al., 2013) uses a
general-purpose nonlinear MPC method named Practical
Nonlinear MPC (PNMPC) (Plucenio et al., 2007) for the
ACCUREX plant; finally, (Elias et al., 2018) formulates
an PNMPC using Mixed Logical Dynamical (MLD) (Be-
mporad and Morari, 1999) in order to reduce the energy
dissipated through the field in cloudy situations by deac-
tivating parts of it.

This work proposes a hybrid nonlinear MPC that uses
feedback linearization to handle nonlinearities and can
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activate/deactive parts of the solar field to avoid energy
dissipation as side effect of passing clouds. The main
difference of the proposed approach lies in the prediction
model and the way that the feedback linearization is
handled together with the constraints, arriving to the
optimal solution helped by mixed integer programming.

This work gets even more important as technology for solar
irradiance forecasting evolves (Alzahrani et al., 2017), such
that the controller can use long term knowledge about
the solar energy onto the field for better planning. In
this scenario, general-purpose nonlinear MPC techniques,
such as PNMPC and NEPSAC, might not be sufficient
since their prediction is not exactly the nonlinear one,
leading to prediction errors in the MPC such that its lat-
est predictions may worsen the controller’s performance.
With a controller that can accurately optimize its actions
according to the knowledge of the future disturbances and
with the help of a good model, the irradiance forecasting
advances may be able to enhance the plant efficiency and
energy generation.

To show the enhancing capabilities, the authors show
here the results, under real disturbance data and model
parameters. The nonlinear models used in this work are
well known in the literature, being validated in (Roca
et al., 2008b). The results shown for the proposed method
are compared with other general-purpose nonlinear MPC
to display the quality of the proposed controller. The
simulations are held in different scenarios, in which the
MPC knows the future of the solar irradiance and can
make the best decisions.

The paper is organized as follows: section 2 describes the
solar field proposed for study and its mathematical model.
In section 3 the proposed constraints for the controller are
shown. Section 4 describes the proposed MPC formulation.
Results under simulation scenarios are shown in section
5 for different strategies. Finally, section 6 concludes the
paper.

2. PLANT DESCRIPTION

The proposed plant of study is described in this section
along with a description of its nonlinearities. The main
focus of the present work is the exploitation of the model
to formulate a mixed integer quadratic programming prob-
lem. Although there are more complex models, the model
used here bases itself in solid arguments and thermody-
namics principles, and was shown to perform well in the
literature as can be seen in (Roca et al., 2008b) (Gálvez-
Carrillo et al., 2009).

The main idea of the proposed solar plant is to have the
HTF passing across the field and acquiring internal energy,
coming from a cold storage tank and going to another
storage tank, which can then be used for the main stage
of the plant. Fig. (1) shows an schematic of the proposed
configuration.

Equation (1) presents the dynamics of the solar field.
This model is known as lumped parameters model (Elias
et al., 2018). The derivation of this model can be seen in
(Roca et al., 2008b). Table (1) presents the values of the
parameters of the model, and are the same as the ones used
in (Dietrich et al., 2016). In (1), Tout represents the output

Fig. 1. Solar collector field schematic

temperature of the HTF, I is the direct solar irradiance
onto the collectors, Ta is the ambient temperature at the
fields place, Tin is the temperature of the HTF as it enters
the field, ṁ is the mass flow of HTF and T stands for the
average temperature in the field, given by the mean of the
HTF input and output temperatures.

symbol description value

ρ HTF density 975 kg/m3

cp HTF specific heat 4190 J/kgK

A collector straight section 1.7453e−4 m2

β model irradiance 0.1024 m

H thermal losses 4 J/sK

Leq equivalent collector lenght 5.67 m

neq process parameter 588

dc transport delay 50 s

Table 1. Solar plant parameters (Dietrich et al.,
2016)

This plant uses water as its heat transfer fluid. This makes
it necessary that we guarantee that there is no phase
change in the working fluid, in order to make the proposed
model valid.

ρcpAṪout(t) = βI(t)− H

Leq
(T (t)− Ta(t))

− cp
neqLeq

(Tout(t)− Tin(t))ṁ(t− dc)
(1)

A state space model of equation (1) can be computed
considering x = Tout be the state which in this case is
the process output y = x, u = ṁ is the control input
and w = [I Ta Tin]T are the disturbances. Moreover,
taking A = −H

2LeqρcpA
, Bux

= −1
neqLeqρA

, Buw
= 1

neqLeqρA
,

Bw = [βI
H

LeqρcpA
− H

2LeqρcpA
] and C = 1, the final

formulation can be observed in equation (2), where it can
be seen that the system is almost linear, taking out the
bilinearity given between the control input and state and
disturbances.

ẋ = f(x, u, w) = Ax+ (Bux
x−Buw

w)u+Bww

y = h(x) = Cx
(2)

A discrete representation of the system can be obtained
using the Euler discretization, as presented in equation (3),
where k is a timestamp and Ts is the discretization sample
time. Since the sampling times used in this will work be
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large ones, with the least value being of three minutes,
while the transport delay of the plant is fifty seconds, the
dead time of the solar field model is neglected without
losing too much performance, while greatly simplyfing the
controller’s design.

ẋ ' x[k + 1]− x[k]

Ts
= f(x[k], u[k], w[k])

x[k + 1] = x[k] + Tsf(x[k], u[k], w[k]) =

x[k + 1] = (1 + TsA)x[k] + Ts(Buxx[k]−Buww[k])u[k]

+ TsBww[k]
(3)

3. CONSTRAINTS

Although the model is one of the most important things for
a MPC controller, its ability to handle multiple constraints
is what makes it such a powerful tool. In this section,
the constraints imposed by the solar field or designed to
increase its performance are proposed.

The first constraint that the controller should take into
account is the control input allowed intervals, since these
are performed by a pump flow. In order to maintain an
hydronamic equilibrium, making the model in equation (1)
more valid, and avoid the pump cavitation (Dietrich et al.,
2016), the control action calculated should be in the inter-
vals shown in equation (4), unless the field is shutdown,
when in this case the value should be zero.

u = 1.2 kg/s ≤ u ≤ 4.8 kg/s = u (4)

Other two important constraints are presented in equa-
tions (5) and (6). The first one is used to avoid stress in
the absorber tubes material (Roca et al., 2009). As for the
second one, its purpose is to limit the water to not get to
a ninety degree celsius, making it more likely to be in the
fluid state instead of vapor (Roca et al., 2009).

5 oC ≤ x− w(3) ≤ 25 oC (5)

x ≤ 90 oC (6)

The last constraint to be presented in this section is
related to the energy generation. The difference in internal
energy obtained by the fluid after passing through the
field is given by equation (7). Looking at the equation
and knowing that the mass flow and the specific heat
are greater or equal to zero, the only possibility for the
HTF losing energy after passing through the solar field
is when the fluid’s input temperature is greater than the
output temperature. In this case, the plant is dissipating
the fluid’s energy. Since this is not desirable, the controller,
in an ideal case, should be able to shutdown the supply of
HTF to the field in the event of this scenario. This can be
handled with the support of integer variables, as shown in
equation (8). It follows the same idea as in (Elias et al.,
2018) but done in a more simplified way.

dU = ṁicp(x− w(3))dt (7)

The proposed constraint (8) work as follows. Assume that
M is big enough, like if it tends to infinity for the following
derivation. The variable z represents the state of the solar
field, where z = 1 when the pump is turned on and z = 0
otherwise, assuming only two possible values. Following
from these equations, it can be verified that when z = 1,
the equations yields to equation (4), only if the difference
between output and input temperatures is greater than
zero, because then M(1− 1) = 0 ≤ x− w(3) ≤ M . When
z = 0, the only control input allowed is zero, meaning that
the pump is turned off and that the difference of output
and input temperature is less or equal to zero, assuming,
as said, a M that tends to infinity. So, with a large
enough M , the proposed equations with the hypoteshis
that z ∈ {0, 1} makes for a constraint that does not allow
energy dissipation.

uz ≤ u ≤ uz
M(z − 1) ≤ x− w(3) ≤Mz

z ∈ {0, 1}
(8)

4. NONLINEAR CONTROLLER DESIGN

The main contribution of this paper resides on a MPC
formulation that takes into account the exact prediction
model as the one presented in equation (3), making the
controller’s solution much more accurate when compared
to the true optimal control solution. This is achieved by
a sort of change of variable, in a similar way to the
common nonlinear control technique known as feedback
linearization. Although change of variables are a common
technique for other closed-loop control formulations, it
usually yields to problems when used together with a MPC
due to the model transformation, making the constraints
non-convex in the new coordinates.

The method proposed here is made such that the con-
straints, in the new representation, stay convex, leading
to a optimal solution. To start the derivation, we use
the prediction model in equation (3), merely changing the
bilinearity in it by an optimization variable v, which will
be called virtual input. The new equation is shown in
equation (9). In the equation, Bv = Bux

and v = (x −
w(3))u.

x[k + 1] = (1 + Ts)Ax[k] + TsBvv[k] + TsBww[k] (9)

With the change of equation there could be two choices
to handle it. Either write all constraints and the objective
function in terms of the virtual input v, or use the original
ones but make a new constraint that correlates v and the
control input u, which would be the bond v = (x−w(3))u.
Since this is a non-convex constraint an easier option
would be to use the first idea, which is how it’ll be handled.

Looking at the previous constraints, the only one that
needs to be changed is equation (4), since its the only one
that explicitly have the control input u on it. Afterwards a
new objective function could be chosen, taking in account
only x and v. The control input bounds can be rewritten
as presented in equation (10), assuming (x− w(3)) ≥ 0.
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u ≤ u ≤ u
u(x− w(3)) ≤ u(x− w(3)) ≤ u(x− w(3))

u(x− w(3)) ≤ v ≤ u(x− w(3))

(10)

The last equation has a problem, created from the fact
that the output temperature was assumed greater or equal
to the input one. From that, and assuming now that the
output temperature is lower than the input temperature,
the set of possible values for v becomes unfeasible. For
example, if x−w(3) = −1, the constraints in equation (10)
which lead to −1.2 ≤ v ≤ −4.8, which is impossible to
happen. To handle this a solution with binary variables
is proposed again such that, when the field starts loosing
energy, the value of v should be zero, leading to a zero
control input. Equation (11) shows how to acomplish this,
again using M as a big number.

u(x− w(3)) ≤ v ≤ u(x− w(3)) +M(1− z)
−Mz ≤ v ≤Mz

z ∈ {0, 1}
(11)

With that, the optimization problem will take into account
the initial constraints proposed in the last section, along
with using the nonlinear model for prediction. The reason
for this can be seen when analyzing each of the possible
scenarios for z, which again represents if the field is turned
on or not. When z = 1, constraint (11) yields to u(x −
w(3)) ≤ v ≤ u(x− w(3)) and −M ≤ v ≤ M , but since M
is a big value, only the first constraint ends up mattering.
Analyzing it for z = 0 leads to u(x − w(3)) ≤ v ≤ u(x −
w(3)) + M ' M and 0 ≤ v ≤ 0, since u(x − w(3)) ≤ 0 in
this case because the solar field is turned off (z = 0), the
constraints now lead to v = 0 as desired.

Other point that has to be taken into account before using
the constraints proposed is the feasibility. Constrains such
as equation (4), which are written over the control input
optimization variable, always allow the optimization prob-
lem to find a solution. On the other hand, the ones related
to system’s outputs may not be achievable. As an example,
in a cloudy day, the field may not be able to generate
any energy, which will make the output temperature lower
than the input one. This would lead the optimization step
of the controller not being able to find a solution that
maintains the temperature inside constraint (5), leading
to an unfeasible situation in the optimization problem. In
order to fix this, these constraints use an additional slack
variable, as presented in equations (12) and (13). These
slack variables, written as sj in the equations, are decision
variables, put in there to account for overshoot and make
the optimization feasible. Since these are wanted, ideally,
to be always zero, they’ll receive a big weight when placed
inside the objective function in order to make them as low
as possible.

5 oC ≤ x− w(3) + s1 ≤ 25 oC (12)

x+ s2 ≤ 90 oC (13)

Next step is to propose the objective function, which
is presented in equation (14). The costs chosen for the
function are the slack variables, weighted over Q1 and Q2,

Fig. 2. Solar Irradiances

and the increments of v represented as ∆v weighted with
R. The last term is −v, weighted with ρ, which is directly
proportional to the internal energy gained after passing
through the field, so that the controller tries to maximize
the energy production.

J =

N−1∑
i=0

||s1[i]||2Q1
+ ||s2[i]||2Q2

+ ||∆v[i]||2R−ρv[k+ i] (14)

Thus, the optmization problem to be solved by the MPC
is:

minimize
s1,s2,v,x

J

subject to: (9), (11), (12) and (13)
(15)

5. RESULTS

The PNMPC followed the same philosophy of last sections
related to the objective function and constraints when
designed. The results of the application of both controllers
are shown in Fig. (4) for the HTF output temperature
and in Fig. (5) for the control actions. In the figures, solid
and dashed lines are respectively used for the proposed
method, called NMPC, and the PNMPC. The dotted lines
represent the limits at each time sample for the constraint
(5). The initial output temperature is set to 20 oC such
that the solar field should be deactivated.

Looking at Fig. (4), it can be seen a significative im-
provement with the proposed technique. Firstly, the pure
nonlinear formulation does not violate the constraints as
much as the PNMPC. This is due to its prediction model
which takes into account the system in its nonlinear form.
As an example, around 9 hours of simulation, the NMPC
starts lowering the HTF mass flow to the field, yielding
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Fig. 3. HTF Input and Ambient Temperature

Fig. 4. Solar Field Output Temperature

to an increase of output temperature. This action pays off
later, when the irradiance suddenly drops due to clouds, so
that the time during which the HTF output temperature
stays inside the dotted boundary and inside constraint (5)
is maximized, while in constrast the PNMPC does not
take this into account, leading to more violation. From
Fig. (4), both techniques acomplish constraint (6). Keep
in mind that the violations are to be expected since this a
solar plant and the disturbance, solar irradiance, is what
drives the output temperature, such that in cloudy days
there might be no way to acomplish the soft constraints
(6).

Aside from their performance, both controllers achieve
what is desirable in terms of energy maximization. As the
output temperature is close to the lower bound of (5),
the temperature is as close as possible to the ambient
temperature, leading to less heat losses to the ambient,
which is the only one possible in the model (1). So

Fig. 5. Control Action

the choice of making the output temperature as low as
possible is within the design of the controllers, as long
as it makes the constraints achiveble. But one important
point to be taken is that, due to PNMPC having a bad
prediction model for seeing further into the future, it
ends up making more bad control choices and violating
the lower bound more often, leading to more energy
generation. This behaviour shows that analyzing only
energy produced is not enough to compare performance,
since the NMPC generates less energy by doing a better
job at fullfiling all constraints.

Lastly, looking at the control inputs in Fig. (5), it can be
seen that both controllers achieve the deactivation when
the output temperature is lower than the input one. This
can be seen at the beggining of the simulation since the
initial output temperature is 20 oC. Even though both
controllers respect the constraints, the proposed controller
makes it more smoothly, while the PNMPC has to change
between its minimum and maximum control bounds more
constantly to account for its poor predictions.

Table (2) shows more details about the performance of
each controller. The energy and violation are shown for
each irradiance scenario as in Fig. (2). Analyzing the per-
formance, the violation of the constraint (5), represented
as minutes of violation in the table, shows vastly improve-
ments with the proposed technique, especially since there
are times, like when the sun is clouded, that there’s no way
to maintain the system inside the constraints, thus making
for an uncontrollable scenario. The energy gained by the
HTF for the PNMPC is greater than the NMPC, which
could be seen as a bad thing, but, as discussed before, the
PNMPC having a better result in this metric is actually
expected due to its poor performance when compared to
the NMPC. Also, looking at the differences, the gain in

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12932



Indexes NMPC PNMPC difference

scenario 1

constraint violation 32 min 43 min 25.6 %

energy generated 73.0 MJ 73.5 MJ 0.7 %

scenario 2

constraint violation 38 min 50 min 24.0 %

energy generated 75.7 MJ 76.4 MJ 0.9 %

scenario 3

constraint violation 36 min 53 min 32.1 %

energy generated 75.5 MJ 76.6 MJ 1.4 %

Table 2. Controllers performances

constraint violation far outperform the increase in energy
generation, making the plant more safe and long lasting.

6. CONCLUSIONS

This work proposed an alternative way to control simple
solar fields making the use of its nonlinear model for
better predictions when used with the MPC framework.
It also developed a simple set of constraints for handling
an optimal deactivation for the solar field, such that
the plant waste less energy. The results were compared
with a general-purpose nonlinear controller in order to
demonstrate the capabilites of the method described here,
showing promissor results for long term energy generation
planning in these types of plants when a well forecasting
about the future disturbances can be made.

As a future work the authors intend to generalize the
formulation here presented, such that it can be used in
other solar field configurations, and also try to increase
its robustness by adding some sort of filtering to the
predictions, as is done in the DTC-MPC method.
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