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Abstract: We present insights into the geometry of the ratio consensus algorithm that lead
to finite time distributed stopping criteria for the algorithm in higher dimension. In particular
we show that the polytopes of network states indexed by time form a nested sequence. This
monotonicity allows the construction of a distributed algorithm that terminates in finite time
when applied to consensus problems in any dimension and guarantees the convergence of the
consensus algorithm in norm, within any given tolerance. The practical utility of the algorithm
is illustrated through MATLAB simulations.
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1. INTRODUCTION

Monitoring and control of distributed physical environ-
ment warrants for the global information without the
complete knowledge of the system. This task of getting
the global information is mostly accomplished via a class
of algorithms called consensus algorithms. In a consensus
algorithm, agents iteratively and in a distributed manner
agree on a common state. The ideas of distributed consen-
sus algorithms can be traced back to the seminal works, see
DeGroot (1974); Tsitsiklis (1984). Recent works on consen-
sus algorithms are focused on designing protocols to drive
agents to the average of their initial states, see Kempe
et al. (2003); Hadjicostis and Charalambous (2013). These
protocols were designed for cases where the state of each
agent is a scalar value. However, the increasing storage
and computation capabilities of the modern day sensor
interfacing technologies have motivated large-scale appli-
cations, examples of which include distributed machine
learning, see Predd et al. (2009), multi-agent control and
co-ordination, see Fax and Murray (2002); Olfati-Saber
et al. (2007), distributed optimization problems, see Nedić
and Olshevsky (2014); Khatana et al. (2019), distributed
sensor localization, see Khan et al. (2009). In order to
meet the requirements of such applications there is need
of distributed consensus algorithms that allow for vector
states. Khan et al. (2010) presents such a higher dimen-
sional consensus protocol. The framework in Khan et al.
(2010) is based on a leader-follower architecture with the
agents being partitioned into anchors and sensors. Anchors
are agents with fixed states behaving as leaders in the
algorithm, while the sensors change their state by taking
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a convex combination of their state with the neighboring
nodes’ states. In such framework, algorithm converges to
the state of the anchors. Cyber physical systems such
as electrical power networks need to accommodate for
large number of states for crucial applications such as
state-estimations, optimal dispatch, demand response for
ancillary services, etc. Patel et al. (2017) formulates the
distributed apportioning problem using consensus proto-
cols where only a single state is shared for each protocol.
A similar situation involving higher dimensional states
arises in distributed resource allocation problems where
a fixed amount of resource, is required to be apportioned
among all participating agents in a network and a convex
cost associated with the each resource is to distributively
minimized. The method used to solve the above resource
allocation problem involves a higher dimensional consen-
sus protocol, see Nedic et al. (2010).

Termination of consensus algorithms in finite time pro-
vides an advantage of getting an approximate consensus
while saving the valuable computation and communication
resources. For the scalar average consensus protocols dis-
cussed earlier, the authors in Yadav and Salapaka (2007);
Prakash et al. (2018) have proposed a finite time stopping
criteria utilizing two additional states namely the global
maximum and global minimum over the network. This
allows each agent to distributively detect the convergence
to the (approximate) average and terminate further com-
putations. The works in Saraswat et al. (2019); Prakash
et al. (2019) generalize this result to the cases of dynamic
interconnection topology and communication delays. The
authors in Sundaram and Hadjicostis (2007) have also
presented a method based on the minimal polynomial
associated with the weight matrix in the state update
iterations to achieve the consensus value in a finite number
of iterations. However, to calculate the coefficients of the
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minimal polynomial each node has to run n (total number
of agents) different linear iterations each for at least n+1
time-steps.

In this article, we present a distributed stopping criteria
for the higher dimensional consensus problem. We present
the evolution of the convex hull of network states indexed
by time, and show that they form a nested sequence. Based
on this insight, we provide an algorithm which guarantees
the convergence of consensus algorithm in norm, within
any given tolerance.

The rest of the paper is organized as follows. In Section 2,
the basic definitions needed for subsequent developments
are presented. Further, we discuss the setup for the dis-
tributed average consensus in higher dimensions (called
the vector consensus problem) using ratio consensus. Sec-
tions 3 presents an analysis on the polytopes of the net-
work states generated in the ratio consensus algorithm.
Section 4 establishes a norm-based finite-time termination
criterion for the vector consensus problem. Theoretical
findings are validated with simulations presented in Sec-
tion 5 followed by conclusions in Section 6. Most proofs are
omitted for space considerations and brevity of exposition.
For a full discussion, the reader is directed to the journal
version Melbourne et al. (2020).

2. DEFINITIONS, AND PROBLEM STATEMENT

2.1 Definitions and Notations

In this section we present basic notions of graph theory
and linear algebra which are essential for the subsequent
developments. Detailed description of graph theory and
linear algebra notions are available in Diestel (2006); Horn
and Johnson (2012) respectively.
Definition 1. (Cardinality of a set) Let A be a set. The
cardinality of a set A denoted by |A| is the number of
elements of the set A.
Definition 2. (Directed Graph) A directed graph (denoted
as digraph) G is a pair (V, E) where V is a set of vertices or
nodes and E is a set of edges, which are ordered subsets of
two distinct elements of V. If an edge from j ∈ V to i ∈ V
exists then it is denoted as (i, j) ∈ E .
Definition 3. (Path) In a digraph, a directed path from
node i to j exists if there is a sequence of distinct directed
edges of G of the form (k1, i), (k2, k1), ..., (j, km). For the
rest of the article, a path refers to a directed path.
Definition 4. (Strongly Connected Graph) A digraph is
strongly connected if it has a path between each pair of
distinct nodes i and j.
Definition 5. (In-Neighborhood) Set of in-neighbors of
node i ∈ V is denoted by N−i = {j | (i, j) ∈ E}. In this
article, we assume (i, i) ∈ N−i for all i ∈ V.
Definition 6. (Diameter of a Graph) The diameter D of a
graph is the longest shortest path between any two nodes
in the network.
Definition 7. (Column Stochastic Matrix) A real n × n
matrix P = [pij ] is called a column stochastic matrix if
1 ≥ pij ≥ 0 for 1 ≤ i, j ≤ n and

∑n
i=1 pij = 1 for

1 ≤ j ≤ n.

Definition 8. (Irreducible Matrix) A N × N matrix A is
said to be irreducible if for any i, j ∈ {1, ..., N}, there exist

m ∈ N such that (Am)(i, j) > 0, that is, it is possible to
reach any state from any other state in a finite number of
hops.
Definition 9. (Primitive Matrix) A non negative matrix A
is primitive if it is irreducible and has only one eigenvalue
of maximum modulus.
Definition 10. (Convex hull) For a setW ⊆ Rd, the convex
hull of W is the smallest convex set containing E,

co(W ) =
⋂

{F convex :A⊆F}

F. (1)

Definition 11. We define the usual dot product between
two vectors x, y ∈ Rd by x · y =

∑d
i=1 xiyi where x =

(x1, . . . , xn) and y = (y1, . . . yn).

2.2 Vector Consensus framework

Here, we extend a key result from Kempe et al. (2003);
Dominguez-Garcia and Hadjicostis (2010) where a ratio
of two states was maintained to reach average consensus.
We consider the network topology to be represented by
a digraph G(V, E) containing n nodes and satisfies the
following assumptions:
Assumption 1. The digraph G(V, E) representing the agent
interconnections is strongly-connected.
Assumption 2. Let P = [Pij ] be a primitive column
stochastic matrix with digraph G(V, E) with pij > 0 if
and only if (i, j) ∈ E

Each node i ∈ V maintains three state estimates at time k,
denoted by xi(k) ∈ Rd (referred as numerator state of node
i), yi(k) ∈ R (referred as denominator state of node i) and
ri(k) ∈ Rd (referred as ratio state of node i). Here d (≥ 1)
is the dimension of each node’s state. Node i updates its
numerator and denominator states at the (k+1)th discrete
iteration according to the following update law:

xi(k + 1) =
∑

j∈N−
i

pjix
j(k), (2)

yi(k + 1) =
∑

j∈N−
i

pjiyj(k), (3)

where, N−i is the set of in-neighbors of node i. The initial
conditions for the numerator vector state and denominator
state for any node i ∈ V are:

xi(0) = [xi
1(0) x

i
2(0) . . . x

i
d(0)]

T , yi(0) = 1. (4)
Node i further updates its ratio state as:

ri(k + 1) =
1

yi(k + 1)
xi(k + 1). (5)

Under Assumptions 1, 2 and the initialization in (4), ratio
state in 5 is well defined. Next theorem establishes the
convergence of the ratio state.
Theorem 2.1. Let {xi(k)}, {yi(k)} and {ri(k)} be the se-
quences generated by (2), (3) and (5) respectively. Let
the initial conditions for the network states be as defined
in (4). Then, under Assumptions 1 and 2 the ratio state
ri(k) asymptotically converges to r := lim

k→∞
1

yi(k)
xi(k) =

1
n

n∑
j=1

xj(0) for all i ∈ {1, ..., n}.
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Proof. Let ris(k) and xi
s(k) be the s-th elements of ri(k)

and xi(k) respectively. Then the update equations (2) and
(5) can be written as

xi
s(k + 1) =

∑
j∈N−

i

pjix
j
s(k)

ris(k + 1) =
1

yi(k + 1)
xi
s(k + 1)

Then from Kempe et al. (2003); Dominguez-Garcia and
Hadjicostis (2010), for all s ∈ {1, 2, . . . , d} we have

lim
k→∞

ris(k) =
1

n

n∑
j=1

xj
s(0). Therefore,

lim
k→∞

ri(k) =

[
lim
k→∞

ri1(k), lim
k→∞

ri2(k), . . . , lim
k→∞

rid(k)

]T
=

[
1

n

n∑
j=1

xj
1(0),

1

n

n∑
j=1

xj
2(0), . . . ,

1

n

n∑
j=1

xj
d(0)

]T
=

1

n

n∑
j=1

[xj
1(0), x

j
2(0), . . . , x

j
d(0)]

T

=
1

n

n∑
j=1

xj(0) 2

Thus, we have convergence in the case when node states
are vectors.

3. A MONOTONICITY RESULT FOR CERTAIN
CONSENSUS PROTOCOLS

In this section we demonstrate a monotonicity property
of the ratio consensus problem. We will show that under
the update framework given by (5), the network states
{ri(k)}ni=1 at time k can be used to define a sequence of
polytopes {rk}∞k=0 as

rk := co({ri(k)}ni=1) (6)

We then prove that these polytopes are descending in
the sense that rk ⊇ rk+1. In the process we recover
monotonicity results of the min-max protocols from the
one dimensional case, see Prakash et al. (2019), as well as
their generalization to the vector case, see Khatana et al.
(2019).

This insight is used to develop a distributed stopping
criteria, guaranteeing convergence of all nodes vector ratio
state is within an ε-ball of the consensus for a general
norm.
Lemma 3.1. Let pij ≥ 0, v ∈ Rd, x1, . . . , xn ∈ Rd, and
y1, . . . , yn ∈ R with Mv ∈ R such that xi · v ≤Mvyi for all
i then ∑

j

pijxj · v ≤Mv

∑
j

pijyj .

holds for all i as well.

Proof. Computing directly,∑
j

pijxj · v ≤
∑
j

pijMvyj = Mv

∑
j

pijyj . (7)

2

Theorem 3.1. The vector ratio consensus algorithm is
monotonically convex in the sense for ri(k) defined in (5)
rk ⊆ rk+1, for rk polytopes defined in (6).

Proof. If rk = co({ri(k)}ni=1) is contained in a half space
{w : w ·v ≤Mv} then in particular (xi(k)/yi(k)) ·v ≤Mv.
Applying Lemma 3.1,

∑
j pijx

j(k)·v ≤Mv

∑
j pijyj(k), so

that ri(k + 1) = xi(k+1)
yi(k+1) is an element of {x : x · v ≤ Mv}

as well. Since the half space is arbitrary, and rk+1 is the
intersection of all closed halfspaces containing it, ri(k +
1) ∈ rk, and hence rk+1 ⊆ rk. 2

When d = 1, the convex hull is simply described,
co(r(k)) = [minj{rj(k)}nj=1,maxj{rj(k)}nj=1], so that
co(r(k)) ⊇ co(r(k + 1)) gives the monotonicity results
from Prakash et al. (2019),minj{rj(k)}nj=1,≤ minj{rj(k+
1)}nj=1 and maxj{rj(k)}nj=1,≥ maxj{rj(k+1)}nj=1. In the
d-dimensional case, this improves Theorem 4 of Khatana
et al. (2019).

4. NORM BASED FINITE-TIME TERMINATION

Similar to the convex hull comprising all points (corre-
sponding to each agent), radius of a minimal norm ball
in d dimension enclosing all the points can also be used
as a termination criterion. Once the radius is within some
bound ε, it can be easily shown that every agent’s state is
within 2ε of the consensus value. Even in the p−norm case
calculation of minimum norm ball in a distributed manner
is a difficult problem, see Fischer (1975). We provide an
algorithm which distributedly finds an approximation of
minimal ball at each agent. We show that the minimal ball
is enclosed in this approximation, thus if the approximate
ball’s radius is within ε then the minimal ball’s radius is
within ε as well. This is established in next Lemma.
Lemma 4.1. Let {ri(k)} be the sequence generated by the
consensus protocol of (5). For all i ∈ V, let
Ri(k + 1, k′) := max

j∈N−
i

{‖ri(k′ + k + 1)− rj(k′ + k)‖

+Rj(k, k
′)} (8)

with Ri(0, k
′) := 0 and k′ ≥ 0. Then
rj(k′) ∈ B{Ri(D, k′), ri(k′ +D)} (9)

where B{Ri(D, k′), ri(k′+D)} is a ball of radius Ri(D, k′)
centered at ri(k′ + D) and D is the diameter of the
underlying graph topology.

Proof. Proof is omitted due to page constraints.

Lemma 4.1 provides an easy and distributed way to find a
ball which encloses all the nodes. Only information needed
by a node is the current radius of its neighbors (along
with the states pertaining to ratio consensus) and it can
calculate the final radius within D iteration. Further, since
the ball B{Ri(D, k′), ri(k′+D)} encloses all the nodes, it
also encloses the minimum ball, as mentioned earlier. We
next present a framework which we use to prove that this
radius converges to 0 and can be used as a distributed
stopping criterion.

Let the element-wise maximum and minimum of the ratio
states over all the agents at any time instant k be given
by, M(k) = [M1(k) M2(k) . . .Md(k)]

T and m(k) =
[m1(k) m2(k) . . .md(k)]

T respectively. That is,
Ms(k) := max

i∈V
ris(k) (10)

ms(k) := min
i∈V

ris(k) (11)
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where Ms(k) ∈ R, ms(k) ∈ R for all s ∈ {1, 2, . . . , d} and
ris(k) is the s-th elements of ri(k). Then from Prakash
et al. (2018), for all time instants k

′ ≥ k and for all i ∈ V
and s ∈ {1, 2, . . . , d},

ms(k) ≤ ris(k
′
) ≤Ms(k). (12)

Further from Prakash et al. (2018), for all i ∈ V, l ≥ 0
and s ∈ {1, 2, . . . , d},

Ms((l + 1)D) < Ms(lD) (13)
ms((l + 1)D) > ms(lD). (14)

By using (12), (13) and (14), we can prove the following
theorem.
Theorem 4.1. Consider the consensus protocol of (2), (3)
and (5). Let Assumptions 1 and 2 hold. Then,

lim
l→∞

M(lD) =
1

n

n∑
i=1

xi(0), lim
l→∞

m(lD) =
1

n

n∑
i=1

xi(0)

where, M(k) and m(k) are as defined earlier.

Proof. Proof is omitted due to page constraints.
Corollary 4.1. Consider the consensus protocol of (2), (3)
and (5). Let Assumptions 1 and 2 hold. Then,

lim
l→∞

||M(lD)−m(lD)|| = 0.

Proof . The proof directly results from Theorem 4.1 and
is left to the reader. 2

It is clear from Lemma 4.1 that at any instant k, all agents
ratio states are within 2Ri(D, k) of each other, that is,

max
i,j∈V
‖ri(k)− rj(k)‖ ≤ 2Ri(D, k). (15)

Thus if Ri(D, k) is within a tolerance ε/2, all the agents
ratio state will be within ε of consensus. We next provide
convergence result for Ri(D, k) as k →∞.
Theorem 4.2. Consider the consensus protocol of (5) and
update in (8). Let Ri(l) := Ri(D, lD) for l = 0, 1, 2, . . .
and all i ∈ V. Then

lim
l→∞

Ri(l) = 0 (16)

for all i ∈ V.

Proof. Proof is omitted due to page constraints.

Notice that Ri(l) can be different for different nodes and
each node might detect ε-convergence (Ri(l) < ε) at
different time instants. But according to Lemma 4.1, once
Ri(l) < ε for any i ∈ V, ‖ri(lD) − rj(lD)‖ < 2ε, that
is the ratio state is within 2ε of consensus value, and the
consensus is achieved. Further, any node i which detects
convergence can propagate a "converged flag" in the net-
work. To take that into account, we run a separate 1-bit
consensus algorithm (denoted as convergence consensus)
for each node where each node maintains a convergence
state bi(k) and shares it with neighbors. Each node initial-
izes bi(k) at every lD iteration for l ∈ {0, 1, 2, . . . } with 1
or 0 depending on the node has detected convergence or
not, and updates its value on every iteration using,

bi(k + 1) =
⋃

j∈N−
i

bj(k), (17)

where
⋃

denotes "OR" operation, k ≥ 0 and bj(0) = 1 if
node j has detected convergence at initialization instant 0

Input:
ε, xi(0) ; // Initial condition

Initialize:
k := 0; Ri(0) := 0; yi(0) = 1;bi(0) = 0; l := 1;

Repeat:
Input:

xj(k), yj(k), Rj(k), j ∈ N−i
/* ratio consensus updates of node i given

by (2), (3) and (5) */
xi(k + 1) :=

∑
j∈N−i

pji(k)x
j(k);

yi(k + 1) :=
∑

j∈N−i

pji(k)yj(k);

ri(k + 1) := 1
yi(k+1)x

i(k + 1);
/* radius updates of node i given by (8)

*/
Ri(k + 1) := max

j∈N−
i

{‖ri(k + 1)− rj(k)‖+Rj(k)}

bi(k + 1) =
⋃

j∈N−
i

bj(k, )

if k = lD then
if bi(k + 1) = 1 then

break
else

Ri(l) = Ri(k + 1);
if (Ri(l) < ε) then

bi(k + 1) = 1
else

Ri(k + 1) = 0; bi(k + 1) = 0;
l = l + 1;

end
k = k + 1;

Algorithm 1: Finite-time termination of ratio consen-
sus in higher-dimension d (at each node i ∈ V)

and bj(0) = 0 otherwise. Clearly, if bj(0) = 1 for any j ∈ V,
then bi(D) = 1 for all i ∈ V where D is the diameter. Thus
each node can use bi(D) as a stopping criterion.

Using above discussion and Theorem 4.2, we present an
algorithm (see Algorithm 1) which calculates the radius
Ri(l) for l = 0, 1, 2, . . . and all i ∈ V and provides a finite-
time stopping criterion for vector consensus.
Theorem 4.3. Algorithm 1 converges in finite-time simul-
taneously at each node.

Proof . From Corollary 4.1, it follows that Ri(l) → 0 as
l → ∞. Thus, for any given ε > 0 and node i ∈ V there
exists an integer t(ε, i) such that for l = t(ε, i), Ri(l) < ε.
As each node has access to Ri(l), convergence can be
detected by each node and the convergence bit bi(lD + 1)
will be set to 1. Thus bi(lD+D+1) = 1 for all i ∈ V and
algorithm will stop simultaneously at each node. 2

Remark 1. Notice that using the above protocol, each
node detects convergence simultaneously. Further, the only
global parameter needed for Algorithm 1 is the knowledge
of diameter D. However, it should be noted that each node
does not need to know the actual diameter D but some
upper bound. In most applications, an upper bound on
the diameter D is readily available.
Remark 2. It is to note here that for Algorithm 1, the only
extra communication required between nodes is passing of
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the current radius at each node, a scalar value, along with
a single bit for convergence consensus. Therefore the total
bandwidth required for each neighbor-neighbor interaction
is ((d + 1)B + 1) where B is the bit length (usually 32)
for floating point representation. Thus, the above proto-
col is suitable for ad-hoc communication networks where
communication cost is high and bandwidth is limited.

A finite-time termination criterion for vector consensus
was previously provided in Khatana et al. (2019). There,
each element of ratio state required a maximum-minimum
protocol (see (10) and (11)), with stopping criterion given
by,

‖ max
s∈{1,2,...,d}

max
i∈V

ris(k)− min
s∈{1,2,...,d}

min
i∈V

ris(k)‖ < ε

This maximum-minimum is a special case for finding a
minimum convex set in the form of a hyper rectangle (box)
which encompasses all the points. Here, at each iteration,
two extra states are shared by each node, namely, one
state for element-wise maximum and the other for element-
wise minimum. Thus the total communication bandwidth
required for this algorithm is 3Bd. An example case where
d = 10, B = 32, requires bandwidth of 960 bits per
interaction. For this example, Algorithm 1 only requires
353 bits per interaction, with a reduction of 63%. Thus for
the applications with high dimensional vector consensus,
algorithm reported here provides a reliable distributed
stopping criterion with significantly less communication
bandwidth.

5. RESULTS

In this section, we present simulation results to demon-
strate finite-time stopping criterion for high-dimensional
ratio consensus. A network of 25 nodes is considered which
is represented by a randomly generated digraph (see Fig. 1
with diameter 6. Here the numerator state is chosen to be
a 10-dimensional vector and selected randomly for every
node. Equation (2), (3) and (5) are implemented in MAT-
LAB and simulated. 2-norm of each node’s ratio state is
plotted in Figure 2 achieving convergence in 60 iterations.

Algorithm 1 is also implemented in MATLAB and the ra-
dius Ri(l) for all i ∈ V is plotted in Fig. 3. It can be clearly
seen that radius comes under some pre-specified tolerance
(0.0166, 1% of the norm of the consensus vector) within
60 iteration and is used as a stopping criterion by each
node. Fig. 4 plots the two dimensional projection of the
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Fig. 1. A communication network represented by a 25 node
digraph.
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Fig. 2. 2-norm of 10-dimensional ratio states of all the
nodes (25) in the network.
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Fig. 3. Radius Ri(l) at each node.
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Fig. 4. 2-dimensional projection of norm balls for node 1
with changing l.

norm ball B{Ri(l), r
i(lD+D)} for node 1 as l progresses

over time. As expected, with increase in l, balls shrink in
size. Similar observation is seen for all the other nodes as
well. Thus we have established that Algorithm 1 can be
successfully used as finite-time termination criterion for
distributed ratio vector consensus.
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6. CONCLUSION

In this article, we presented the monotonic property of con-
vex hull of network states in vector consensus algorithms.
We showed that this property can be used a finite-time
stopping criterion and provided a distributed algorithm.
We further provided an algorithm which calculates an
approximation of minimum norm balls which contain all
the network states at a given iteration. Radius of these
balls was shown to converge to zero, and algorithm was
presented to use that as a finite-time stopping criterion.
This algorithm was shown to have much smaller commu-
nication requirement compared to existing methods. The
effectiveness of our algorithm is validated by simulating
a vector (∈ R10) ratio consensus algorithm for a network
graph of 25 nodes.
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