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Abstract: This paper presents the actual status and future developments of a technological demonstrator
of key enabling technologies of Industry 4.0. The final scope of the project is the realization of a platform
where different solutions addressing specific companies needs can be analyzed and their performance
compared. Available Industry 4.0 technologies allows the realization of various architectures, even
though the most appropriate solution has to be found by the company, accounting for different aspects,
as economy, security, specific skills to be maintained or given in outsourcing.

The first core of the platform, already working, consists in a Control Loop Performance Monitoring
(CLPM) system which operates in cloud as a single module able to supervise routine data coming
from different plants. This is an attractive solution for many companies allowing to avoid costs of local
installations, linked to monitoring systems, human resources and additional effort for maintenance and
upgrading. Some technical details about the application on a pilot-scale plant are given to illustrate the
status of the activities. The scope of the project is to add new features to the system as: CLPM extended
to plants located in different sites, equipment condition monitoring and environmental data analyses. To
this aim, future developments of the platform are discussed in terms of improved technologies, different

protocols and architectures.
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1. INTRODUCTION

Industry 4.0 is definitely a current hot topic since both academia
and industry are rushing to get involved in order to exploit
the impressive characteristics and large opportunities offered
by what most players even consider a proper industrial revo-
lution. Paradigms of Industry 4.0 were born and firstly spread,
especially in Europe and Italy, mainly within the manufacturing
sector. Nevertheless, strong and integrated automation naturally
gives also large advantages to all the process industry. Signif-
icant returns of investment for entire industrial plants can be
obtained by the implementation of technologies, algorithms and
methods related to such paradigms. In Italy, also attractive fiscal
benefits offered by last governments to virtuous companies
investing in Industry 4.0 are giving a remarkable impulse to
this digital transformation.

Among the manifold theoretical definitions, a practical ap-
proach is to consider at Industry 4.0 level any physical and
digital solution which adopts at least one of the Key Enabling
Technologies (KET): Advanced Manufacturing Solutions, Inte-
grated Simulation, Industrial Internet of Things (IIoT), Cloud,
Cyber-security, Big Data Analytics (BDA). Cloud Computing,
defined by Mell and Grance (2011), allows the realization of
attractive process-related applications for many scopes such as:
data historians; analysis tools; alarm, asset and performance
management; training simulators; remote diagnostics (Latha
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and Jayaprakash, 2017). In particular, cloud computing is of
primary importance for smart industry with objectives of pro-
cess monitoring, control and optimization.

It is to be noted that various cloud computing platforms for
IIoT and BDA are commercially available. Key players are
really variegated: cloud services providers (Amazon Web Ser-
vices, Microsoft Azure, Google, Intel, IBM), enterprise solu-
tion vendors (as Oracle and PTC), networking companies (like
AT&T, Verizon, Cisco) and industrial engineering companies
(e.g., Siemens, ABB, AspenTech, Metso, Rockwell Automa-
tion, Honeywell, Bosch and General Electric), among others.
Some platforms require a proprietary licenses; few of them
are accessible as open source projects (Kabugo et al., 2020).
However, the optimal cloud-based solution must be chosen by
the company with reference to its specificity. Therefore, there
is space to analyze general architectures and compare different
solutions. This is also the conclusion of a very recent survey on
this subject, including different definitions of cloud, compar-
ison of on-premises vs. off-premises solutions, pro and cons
of various levels of services offered by vendors of different
platforms (De Caigny, 2019).

Nevertheless, examples of implementation of data analytics in
the context of cloud computing and Industry 4.0 with purposes
of process monitoring, control and optimization are still scarce
in the scientific literature. Among the few applications, an in-
teresting industrial cloud-based architecture applied to an elec-
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tric induction motor was developed by da Silva et al. (2016).
Another cloud-based condition monitoring system for machin-
ery with application to power plants was recently presented
by Elazab et al. (2017). Moreover, Kabugo et al. (2020) pre-
sented an IIoT software platform, based on cloud computing,
big data analytics and machine learning, able to guarantee data
acquisition, employ statistical methods for data pre-processing,
develop soft sensor, and perform real-time process monitoring
and offline data analytics. In particular, data-driven soft sensors
were derived to predict syngas heating value and hot flue gas
temperature in a waste-to-energy (WTE) plant.

The contribution of this work is thus to present a technological
demonstrator for global monitoring and assessment of process
plants taking advantage of various Industry 4.0 technologies.
The paper has the following outline: Section 2 illustrates the
general structure of the proposed technological demonstrator,
a cloud platform for performance monitoring and assessment.
Section 3 presents the actual status, with some details of the
working CLPM module and of the pilot plant used as first
demonstrator core of the whole system. In Section 4, future
developments in terms of alternative cloud architectures and
additional technologies to be soon implemented are discussed.
Finally, concluding remarks are reported in Section 5.

2. THE TECHNOLOGICAL DEMONSTRATOR

The first core of the cloud-based platform is already working
and concerns a Control Loop Performance Monitoring (CLPM)
module. The actual system operates as single unity and allows
remote supervision of PID control loops of a pilot plant.

This system will be enhanced in the close future with three
novel analytics tools: i) extended CLPM: the first cloud-based
solution for CLPM will be applied to different plants located
in distant areas to test the system scalability; ii) equipment
condition monitoring: other physical machines, e.g. electrical
engines, pumps, compressors, to perform energy consumption
and vibration analysis will be analyzed with the aim of condi-
tion monitoring and predictive maintenance; iii) environmental
analysis: variables, such as temperature, gas and liquid con-
centrations, will be supervised to perform specific data ana-
Iytics. In parallel, some hardware and software upgrading will
be studied: mainly, the implementation of fog computing, an
improvement of IoT integration, and the adoption of data min-
ing algorithms for predictive maintenance. The result will be
a comprehensive cloud-based system, a Platform as a Service
(PaaS), for global monitoring of industrial process plants.

By providing low-cost and abundant computing and storage re-
sources, cloud technologies enables Advanced Manufacturing
solutions which exploit the analysis of large amount of histori-
cal data through complex techniques, known as Big Data Ana-
Iytics (BDA), whose implementation is actually unfeasible with
the limited resources available in traditional systems. Another
major advantage of cloud computing is that centralized systems
can be applied in localized remote servers. Data from different
industrial plants and separated production sites can be trans-
ferred and analyzed in cloud by a single monitoring system.
This can be a particular appealing solution when control engi-
neers have to monitor a large set of similar plants or units, and,
consequently, have to tackle common issues and faults, or when
they have to supervise and/or control geographically dispersed
assets, as for water or energy supply plants (McGraw, 2018). In
addition, cloud-based systems have natural attractive features,

being easy accessible, replicable, distributable, and adaptable.
For example, the use of an unified logic highly reduces risks of
incorrect replications on single systems and involves minimal
employment of routine plant staff, since the whole task can be
carried out by dedicated and qualified company units or can be
outsourced as a service to specialists of third-companies.

Nevertheless, our long experience on performance monitoring,
and CLPM in particular, makes us believe that this process
may be long and tortuous. Practical difficulties may arise in
transferring skills acquired over years by operators on singles
plants, since specific competences of processes and operations
cannot be fully generalized and may not be exported quickly.
In addition, since process data are confidential, industrial com-
panies may be not trustful of moving data from local computer
systems to external clouds, as additional issues of cybersecurity
and service reliability arise. Therefore, industrial companies
may prefer to own and be in charge of their own clouds.

3. THE ACTUAL SYSTEM

In this section, the actual cloud-based architecture, with details
of the solutions adopted for data acquisition from the field and
transmission to the cloud are presented.

3.1 The CLPM module

Since at least two decades, major industrial engineering com-
panies have offered their own “traditional” solution for CLPM,
that is, an on-premises software tool, which has to be in-
stalled within the local computer systems of the different in-
dustrial plants under supervision. The most recent comparison
of CLPM packages has been carried out by Bacci di Capaci
and Scali (2018), within a review of literature on valve stiction.
In the last years, several industrial and control engineering
companies have moved their on-premises software in the cloud.
Among others, Siemens promotes a specific module for CLPM
within MindSphere, its PaaS for Industrial IoT.

Within our cloud-computing platform, the first established ap-
plication for process monitoring is devoted to CLPM. This
analytics tool exploits the PCU system, a long-standing soft-
ware developed in the Chemical Process Control Laboratory
of University of Pisa. Historically, the first full release of the
system with large industrial implementations was discussed in
Scali and Farnesi (2010). Updated versions with further large-
scale applications were then reported (Bacci di Capaci et al.,
2013; Bacci di Capaci and Scali, 2014).

Our CLPM system, under continuous updating, can diagnose
sources of malfunction of traditional single-input single-output
(SISO) control loops with PID controllers, by suggesting ac-
tions to be taken. External disturbances, poor controller tuning,
faults of valves and sensors, and interactions with other loops
are the main detectable malfunctions. These issues cause oscil-
lations in the process variables and therefore their distinction is
of primary importance in order to carry out the most suitable
correction. The availability of different measurements from the
field implies the activation of various analysis paths. For ex-
ample, when valve position is registered, as Fieldbus commu-
nication and smart positioners are used, an enhanced actuator
diagnosis can be performed. Details about core techniques and
algorithms installed into the various analytics modules, as well
as specific examples of application are reported in Scali and
Farnesi (2010) and Bacci di Capaci et al. (2013).
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Fig. 1. An example of on-premises architecture for CLPM: the
PCU™ system (Bacci di Capaci et al., 2013).

Within traditional systems for CLPM various modules interact
with each other and are all physically implemented into the
local computer control system. Interface, assistant, and appli-
cation are typically the three main functional categories which
the various modules belong to (Lee et al., 2010). Also our
traditional CLPM systems have these features. The architecture
of the first version of PCU system, currently monitoring several
refinery plants, can be found in Scali and Farnesi (2010). For
the later on-premises version (PCUT), a system specifically
devoted to smart industries and running in several power plants,
the architecture of Figure 1 is employed. A Scheduler module
leads data acquisition and processing operations; various OPC
servers and corresponding OPC clients running acquisition ap-
plications are employed to collect real-time data; a Viewer ap-
plication is used to show analysis results with plots and verdicts.
An interface of the database (DB) is edited to perform loop
configuration. The PCU analytics tool, developed in MATLAB,
works as an executable program and exchanges input/output
data once activated by the Scheduler.

3.2 The Actual Architecture

The CLPM module of our cloud-based platform exploits a
standard centralized architecture (see Figure 2). No module
is indeed on-premises, but all elements are installed within
a remote Linux cloud server. Once transmitted to the cloud,
data are then written and stored into the cloud database, which
acts as star center of the whole network. An updated analytics
tool (PCU-Cloud) is the core of the whole CLPM module and
runs once activated by a light scheduler. A Java web interface
queries the database and allows result visualization, as well
as many aspects of loops setting and all phases of analysis
management. Note that, when peculiarities of industrial sites
prevent full remotization, residual routines of configuration
may need to be completed within local computer systems. The
web application is accessible at the following link: https:
//pcu.rjcsoft.it/pcu-cloud/. Any interested guest
user can access with reader level and manage the application by
entering username and password. The main functionalities of
the web app are illustrated in Bacci di Capaci and Scali (2020).

The CLPM module employs standard features of cloud technol-
ogy: JSON data format and MQTT protocol. JSON (JavaScript
Object Notation) is a data interchange format, now very spread
being particularly simple when used on JavaScript. MQTT
(Message Queue Telemetry Transport) is the most common
and interoperable messaging system for 10T; it is [SO-standard,
based on TCP/IP, and holds intrinsic cybersecurity features.

Web
Interface

\ firewall
2\ /g

— PLC |e»

IdroLab

Fig. 3. IdroLab: the testbed for the cloud-based platform.

With a publish/subscribe structure, MQTT is designed for
lightweight M2M communications and useful for limited band
situations. A client/server model is used, where every smart
field device acts as client and connects to a remote server, called
broker. Every message is published to an address (fopic); clients
may subscribe to multiple topics, and every client subscribed to
a topic receives every message published to the topic.

3.3 The Pilot Plant

IdroLab is a pilot plant located at the Consorzio Polo Tecno-
logico Magona of Cecina, Livorno (Italy). The plant has been
recently upgraded to become the first demonstrator facility of
Industry 4.0 technologies in the framework of a project de-
veloped by CLUI AS, the Italian Association of Automation
& Instrumentation End Users. A novel PLC (Siemens, Simatic
§7-1500) is installed and configured with Simatic Step7 TIA
Portal program to control operations. The plant is comprised by
two hydraulic circuits equipped with a centrifugal pump under
inverter control (see Figure 3). Process operation and variables
measurement (pressure, flow rate and level) are possible by a
set of latest generation actuators and sensors. Profibus protocol
is used for Fieldbus communication from the smart devices to
PLC; while MQTT protocol is employed for communication
from PLC to cloud server.

The plant is being used as first field of application to test our
cloud-based process monitoring platform. The CLPM mod-
ule has been extensively tested and now is perfectly working.
Other hardware and software functionalities are currently under
implementation or definition. Five PID control loops are now
programmed into the PLC: four pressure loops with pneumatic
actuator, one flow rate loop with electric valve. PLC operates
each loop with a period of 1 s, collects and stores data in its lo-
cal DB, and then transfers data to the cloud server. The various
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data are written within a defined string in JSON format with key
and value notation. The following data are transmitted: name,
time stamp, loop measurements — set-point, process variable,
PID output, as mandatory data, manipulated variable (that is,
valve position), valve positioner drive signal, electropneumatic
converter output, as optional, and PID controller parameters —
proportional gain, integral constant, derivative constant, filter
constant, controller mode, high and low limit on variables.

Main causes of fault in PID control loops can be reproduced
by using some physical modular items as described in Scali
et al. (2011). In addition, malfunctions can be also introduced
by the use of dedicated software blocks. For example, valve
stiction is reproduced by activating a data-driven model within
a customized function block of the PLC. External software
disturbances are introduced within the inverter and two motored
valves. A sinusoidal disturbance can be imposed to the desired
inverter velocity, by setting amplitude and frequency of oscil-
lation around the set-point value. Moreover, the input signal to
motored valves can be altered with a step-wise wave.

4. POSSIBLE FUTURE ENHANCEMENTS

We are currently updating the proposed cloud-based platform
and the IdroLab testbed in order to introduce other monitoring
applications, improve current functionalities and extend the
interface. Specifically, we aim at enhancing our work in the
following directions: i) improve the architecture of the platform
in order to ease the large scale adaptation of the solution for
CLPM and test the scalability of the system by integrating addi-
tional plants located in different areas; ii) integrate other phys-
ical equipment, such as electrical engines, pumps, compres-
sors, to perform energy consumption and vibration analysis; iii)
integrate sensors to monitor environmental variables, such as
temperature, gas and liquid concentrations. In the following, we
will provide an overview of the possible future enhancements
for the platform to implement in practice the above mentioned
functionalities.

4.1 Extending the Cloud Architecture

The first architecture for CLPM module depicted in Figure 2 is
a standard cloud-based solution, tested over IdroLab pilot plant.
However, it has to be noted that all the messages directly pub-
lished by the various field elements can be naturally managed
by the MQTT broker, regardless the element type, even when
installed in geographically far industrial sites. Therefore, the
first architecture can be easily expanded as shown in Figure 4.
Different plants can be thus monitored by an unique fully cen-
tralized cloud system. DCS, PLC, or single smart devices, as
sensors and actuators, of different plants, production sites and
even industrial companies can directly communicate with the
same MQTT broker.

In this solution, one can ensure high levels of cybersecurity:
the server provider guarantees intrinsic safety of the cloud
platform; a three-level security system is used to protect com-
munication channel: a secret alias for the broker, and unique
username and password to identify various clients. In addition,
by turning to MQTTS (where S stands for Secured), protocol
security can be enhanced. This means to adopt a certificate on
server side during TLS handshake, which avoids “man-in-the-
middle” issues. Note that additional safety requisites of local
networks, in terms of firewall, protected ports, etc. are still
under the responsibility of the various industrial companies.

firewall

PLANT1 [« PLANT N IdroLab

Fig. 4. Extended cloud-based platform with CLPM module.

This extended platform is programmed to be scalable and in-
dustry oriented. The software side does not cause additional
issues, as core codes are general and can be easily exported
to different scenarios. When one has to be monitor numerous
sites or large plants with thousands of elements, the number of
messages published into the cloud may become high, therefore
physical architecture limitations need to be overcome, by aug-
menting transmission band, CPU, RAM and so on. Otherwise,
during configuration of local client systems, one may reduce
transmission frequency and then data size to limit data traffic
and save cloud space. However, it is important to note that such
fully centralized cloud architecture cannot be the final solution
for a global monitoring platform.

4.2 Implementing Fog Computing

Despite the many advantages, the Cloud technology is indeed
characterized by limitations and disadvantages. A fully central-
ized architecture, as the one of Figure 4, confines data and func-
tionalities into data centers which can be very distant from the
physical locations where information are produced. This cen-
tralized architecture requires the data to be transmitted through
an Internet connection, which can represent a significant draw-
back for critical applications (Abdelwahab et al., 2014), like
some industrial scenarios with specific requirements in terms
of confidentiality and reliability. This continuous offload of the
data can represent a confidentiality concern and an unaccept-
able point of failure for some applications, as an interruption
of the Internet connection results in a break of the flow of data
and its analysis. In addition, the Internet introduces a significant
delay, which might not be tolerable for critical applications, e.g.
the ones that require a timed data processing for monitoring.

In order to overcome such limitations, Fog computing can be
adopted. This technology introduces an intermediate computing
and storage layer between the cyber physical systems and the
Cloud infrastructure (Bonomi et al., 2012). The Fog layer is
deployed directly into the physical locations where the data
is produced and aims at supporting the execution of critical
applications. This additional layer is implemented by means of
high performance embedded systems, the Fog nodes, which are
in direct communication with PLC, sensors or other devices.
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Fig. 5. The monitoring platform extended with fog computing.

A future evolution of our global performance monitoring plat-
form is to adopt the Fog computing paradigm. The centralized
architecture can be extended by installing a Fog node in prox-
imity of the various analysis modules (or co-located with them)
to support the execution of a part of the functions of the system.
The runtime environment provided by each Fog node could
allow to migrate some of the functionalities from the Cloud
to the Fog in a seamless manner without requiring modifica-
tions to the current implementation. The possibility to execute
some of the functions directly in proximity of the plant could
enable functions that require real-time analysis, since the direct
communication with the physical systems allows to collect and
analyze data within predictable time limits. Big data analysis
on historic series can still be implemented on the Cloud as data
can be offloaded after a first analysis, as shown in Figure 5.

The possibility to run some of the functions directly on site
could help in improving security and confidentiality. Sensitive
data could be analyzed locally without the need to move them
to the Cloud, while data anonymization and filtering could
be implemented locally before sending the data to the Cloud
in order to enforce confidentiality. These functionalities could
be beneficial to foster the adoption of the system on a large
scale: the improved security and confidentiality is expected to
convince industrial companies to adopt the system, whether
they were not favorable to standard cloud-based solutions.

4.3 Improving loT integration

The current implementation of our platform exploits the MQTT
protocol to collect the data from the devices and forward them
to the cloud. The core of the system is the MQTT broker that is
responsible for receiving all the communication from the sen-
sors and dispatching them to the Cloud application. Although
this solution is widely adopted today in many commercial sys-
tems, it has some limitations. The main drawback is the broker,
that has to handle every message generated by the devices. A
system that integrates different plants or even various compa-
nies is expected to handle a large amount of messages. In this
scenario, MQTT can represent a performance bottleneck since
all the messages are transmitted to the broker. The result is that
the maximum collection frequency that can be adopted on a site
is bounded by the available bandwidth provided by the Internet
connection used to transmit the data.

The Fog computing paradigm can help in mitigating this issue:
by moving some of the functionalities directly on the plant, (a
part of) the data could be analyzed locally without offloading
it through the Internet. The centralized MQTT approach, how-
ever, is not well suited for a multi-layered architecture, where
data can be dispatched to both the cloud and local Fog nodes.

GET
coap://aaaa::1/temperature

CoAP CoAP Client
Server 2.05 Content
\ {temperature:25} /
QUL
/temperature L-ﬂ Q /

Sensor Application

Fig. 6. Web of Things message exchange example.

In order to implement a multi-layer architecture, a different
solution based on the Web of Things paradigm has been pro-
posed recently (Guinard and Trifa, 2009). The Web of Things
integrates physical devices into Cloud platforms through the
same client/server approach originally defined for the World
Wide Web. Rather than sending the measurements continuously
to the cloud, each device is programmed as a server to expose
an interface which can be invoked via network connection to
retrieve the data by any other element implementing the func-
tionalities of a client. In this way, an application running in
the Cloud or in a Fog node can retrieve the data in the same
manner a Web browser retrieves a web page from a Web server
(see Figure 6). This simple model is implemented by the Con-
strained Application Protocol (CoAP), which has been recently
standardized as the interface for the communication between
applications and devices, adopting the Web of Things approach.

With respect to MQTT, CoAP can ensure a better integration
with a Fog/Cloud architecture. Eventually, this approach can
help to mitigate the bottleneck represented by transmission of
the data over the Internet. To this aim, the Web of Things
approach will be adopted in the future evolution of our plat-
form, in order to improve its scalability and sustain both larger
deployments and higher data sampling rate.

4.4 Adopting Data Mining for Predictive Maintenance

The continuous collection of data from different plants at higher
rates will allow one to monitor the various status in real-time,
highlighting malfunctions and issues immediately. In addition,
the system will allow the creation of a large database with
fine-grained time-series measurements, which can be analyzed
offline to investigate the operating conditions of each part of
plants. Such data analysis could help to look for hints of wear
and upcoming faults, predict possible malfunctions in advance,
as well as point out unconventional behaviors (Carnero, 2006).

This predictive maintenance analysis (Gouriveau et al., 2016)
for monitored devices represents a significant challenge and
it is of primary importance for the optimization of mainte-
nance procedures. The ability to timely and efficiently replace
malfunctioning parts can have an evident impact to reduce
service outage, improve the process quality, and implement
cost-effective policies. For this reason, the data collected from
a plant at high rate will be stored in the cloud to create an
historic repository of data, which will be used to implement
novel predictive maintenance functionalities.

Specifically, data mining algorithms (Shang and You, 2019)
will be developed to perform both supervised and unsupervised
analysis of the available streaming data, so to timely spot
out anomalies. A two step approach will be adopted in the
definition of such algorithms. In the first place, a sample of
real data will be collected from the IdroLab testbed in order to
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Fig. 7. The future comprehensive fog/cloud-based platform for
process monitoring.

design a first definition of the algorithms and tune them. Later,
the algorithms will be tested by introducing simulated faults in
the system and then on data acquired from industrial plants.

To conclude, the proposed enhanced fog/cloud-based platform
is shown in Figure 7. The adoption of Web of Things leads
to a change of perspective: from a broker-centric solution with
MQTT protocol to a sensor-centric approach with CoAP stan-
dard. The following functional applications will be performed
within the Fog layer: data pre-processing (e.g., filtering, scal-
ing, outliers removal), alarms management, critical and confi-
dential analysis, and also traditional analytics for CLPM with
PCU tool. Moreover, specific algorithms for Big Data Analytics
(BDA) will be adopted into the Cloud layer within three main
tools: extended CLPM on multivariate scale, condition monitor-
ing of machineries, and environmental analyses. Finally, note
that within the proposed platform data exchanges are totally
bidirectional, as information and commands can be also dis-
patched from cloud and fog layers to the field level.

5. CONCLUSIONS

The platform here discussed is an example of remote system
for global performance monitoring and assessment of process
plants. Implementation details have been given, in terms of
global architecture and selected protocols. Starting from a stan-
dard cloud-based solution devoted to PID control loops per-
formance monitoring and tested over a pilot plant facility, the
following enhancements are outlined: extending the fully cen-
tralized cloud solution to multiple plants of distant productive
sites and of different industrial companies; implementing a
fog/cloud architecture to increase mainly flexibility and relia-
bility of the system; adopting Web of Things approach with
CoAP protocol to further increase robustness and scalability;
employing data mining algorithms on big data with the aim of
predictive maintenance of different devices, from control loops,
as sensors and actuators, to other plant machineries, as electric
motors, pumps and compressors.
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