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Abstract:
Higher order (HO) proportional-integrative-derivative (PID) control aims to fill the gap between
traditional and fractional order PID control. Thereby, it allows to fulfill more complex
requirements on the target loop performance than it is possible in traditional PID control.
This paper illustrates, how HO PID controllers may be derived by generalizing the constructive
simple/Skogestad (SIMC) method for analytical model-based controller tuning. Controllers with
HO derivative actions are necessarily based on improved design of noise attenuation filters.
To evaluate their impact, shape related performance measures of the input and output step
responses will be used based on concept of piece wise monotonic signals. Deviations from the
ideal shapes due to the noise, design imperfections and plant-model mismatch, establishing
additional constraints in designing as fast as possible transients, are quantified in terms of
modified total variations. Tuning scenarios based on modified “half-rule” and their superiority
in comparison to the IAE optimization based controller design are demonstrated by simulation
and by real time experiments. Pros and cons of more complex HO PID controllers are discussed.

Keywords: Filtration, PID control, measurement noise, derivative action, monotonicity.

1. INTRODUCTION

The high interest in fractional-order PID controllers has
been apparent for a long time and was also documented
by the contributions of the IFAC PID’2018 conference. It
should be remembered here that under this “exotic” name
there are actually considered controllers, which are ulti-
mately realized by higher-order (HO) filters. Their main
benefit in comparison with traditional PID controllers
(Tepljakov et al., 2018) is the possibility of obtaining
a wider range of performance properties. On the other
hand, in the original paper by Skogestad (2003) devoted
to simple internal model (SIMC) method for constructive
analytical PID controller design, a focus has been paid to
the simplest PI and PID control. For first and second order
time delayed plant model F (s), a controller R(s) has been
designed to get a required closed loop model

Fcl(s) =
R(s)F (s)

1 +R(s)F (s)
(1)

specified by the transfer function Fcl(s)

Fcl(s)
!
= 1Fcl(s)=

1

1 + Tc1s
e−Tds (2)

This may be accomplished by the controller

R(s) =
Fcl(s)

1− Fcl(s)

1

F (s)
(3)

When applied to a 2nd order time delayed (SOTD) model

2F (s) =
Kse

−Tds

(s+ 1/T12)(s+ 1/T22)
(4)

the method resulted into a not implementable ideal PID
controller. Design of an appropriate implementation and
? Supported by the grants APVV SK-IL-RD-18-0008, VEGA
1/0745/19 and by Slovenská e-akadémia, n. o.

noise-attenuation filter has not been treated in details.
Thus, the bad reputation of PID control in dealing with
noisy loops remained. In a recent paper by Grimholt
and Skogestad (2018), the authors made a step towards
higher order controllers, however, by presenting integral
of absolute error (IAE) optimization based PID controller
modifications that should increase the achievable perfor-
mance limits. And, furthermore, the filtration aspects have
not been deeper analyzed again. At the same time, it has
been shown that by proper filtration enabling work with
higher order derivative actions (see, for example Huba
et al. (2018a)) significant performance improvements may
be achieved. This raised the question whether also the
SIMC method could continue by being extended to design
of HO controllers, thus filling the gap between the simplest
traditional PID regulators and their substantially more
complex generalizations of non-integer orders.

1.1 FOTD based PI controller design

For the first order time delayed (FOTD) plant model with
a dead time Td, time constant T1 and the plant gain Ks

1F (s) =
Kse

−Tds

s+ 1/T1
=
Kse

−Tds

s+ a
(5)

after approximating the exponential term in denominator
of (3) by its first-order Taylor series

e−Tds ≈ 1− Tds (6)

for stable FOTD systems (a > 0) with

Ti = T1 > 0; Kc =
1

Ks(Tc1 + Td)
(7)

the SIMC design yields PI controller

RPI(s) =
s+ 1/T1

Ks(Tc1 + Td)s
= Kc(1 +

1

Tis
) (8)
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In Skogestad (2003) it has been recommended to choose

Tc1 ≥ Td (9)

Next, to explain the controller tuning by stressing possible
differences between the identified plant model and the
really considered system, parameters of the model (5) T1
and Td will also be denoted as T1m, Tm and Km.

1.2 Example of HO PID controller design

In case of HO processes, as, for example the fourth order
time delayed model with a quadruple time constant T4

4F (s) =
Kse

−Tds

(s+ 1/T4)4
(10)

(see E4 in Skogestad (2003)), the original system has been
firstly reduced by the “half-rule” method. Formulated for
a mix of different time constant, when applied for simpli-
fying plant transfer functions including several delays

• the largest neglected (denominator) time constant
(lag) has to be distributed evenly to the effective delay
and the smallest retained time constant,
• the effective delay summarizes (besides of above

contribution) the original plant delay and different
shorter loop delays.

The required closed loop (2), of course, does not respect
the causality conditions and brings uncertainty about the
results achieved throughout the approach. Therefore, next
we pay attention to the situation arising in full respect of
the order of the controlled system by the choice

4Fcl(s)=
1

(1 + Tc4s)4
e−Tds (11)

Then, (6) yields a solution of (3) in form of a controller

4PID(s)=Kc
1 + Tis

Tis

1 + TD1s+ TD2s
2 + TD3s

3

1 + Tf1s+ Tf2s2 + Tf3s3

Ti = T4; TD1 = 3T4; TD2 = 3T 2
4 ; TD3 = T 3

4

Kc =
1

Ks(4Tc4 + Td)T 3
4

; Tf1 =
6T 2

c4

4Tc4 + Td
;

Tf2 =
4T 3

c4

4Tc4 + Td
; Tf3 =

T 4
c4

4Tc4 + Td

(12)

In difference to the ideal PID considered in Skogestad
(2003), the proper 4PID transfer function simplifies its
implementation and evaluation of noise attenuation filters.
Although the approximation of monotonic step responses
by (10) is nearly as simple as for FOTD models (5) (Strejc,
1959), next we are going to show, how this controller
based on a HO approximation may be used to get as fast
as possible, but thereby also smooth transients based on
simple integral plus dead time (IPDT) plant models.

2. CONTROL OF INTEGRAL PLANTS

Integral models are frequently used as approximations
of more general systems, as those with long time con-
stants, or nonlinear systems, where they represents the
simplest linear approximation and play central role in sev-
eral popular approaches as Model Free Control (Fliess and
Join, 2014), Active Disturbance Rejection Control (Gao,
2014), or feedback linearization (Isidori, 1995). Tuning of
PI and PID controllers for IPDT models achieved with
appropriate model reduction techniques, as e.g. the ”half-
rule” (Skogestad, 2003) is frequently treated in all control

Fig. 1. Cascade control of IPDT plants with a stabilizing
controller Rs(s) and a SIMC controller R(s); δ -
measurement noise

areas for a broad range of processes. In the simplest case,
even those approximated originally by FOTD model (5)
(by putting a = 0). Consequently, high number of ”op-
timal” tuning rules based on this model may be found
(O’Dwyer, 2009). Among the first ones we could mention
the experimental controller tuning by Ziegler and Nichols
(1942), analyzed in details in transition to sampled-data
control (Takahashi et al., 1971) and still giving inspiration
to many new approaches (Hägglund and Aström, 2002;
Åström and Hägglund, 2004; Šekara and Mataušek, 2010).
However, they may not be directly treated by the approach
presented in Section 2.1. Namely, when T1 →∞

F (s) =
Y (s)

U(s)
= F0(s)e−Tds; F0(s) =

Ks

s
(13)

the PI design degrades into the proportional control with
a poor rejection of input disturbances (Skogestad, 2003).
In case of integral models, Skogestad abandoned the con-
structive model-based design and instead addressed the
question of an optimal tuning of add-hoc chosen PI con-
troller. Its tuning has been proposed by analyzing con-
ditions of the critically damped closed loop with the PI
controller and integral delay-free plant (Td = 0), when the
double real dominant pole method yields

Ti = 4/(KsKc) (14)

To consider Td in above equations, Tc1 = Td was firstly
chosen which yields simple and easy to remember SIMC
tuning rules Kc = 1/(2KsTd) ; Ti = 8Td, which, in com-
paring with IMC, resulted into a reasonable improvement
of the input-disturbance response. Yet simpler they may
be expressed by dimensionless parameters

1κ = KcKsTd; τi = Ti/Td; iae = IAE/(KsT
2
d ); (15)

SIMC 1PI: 1κ = 0.5; τi = 8; iae = 16 (16)

And still, the analytical double real dominant pole deriva-
tion dominated in the applied design.

2.1 Stabilization of integral plants by cascaded control

Instead of the simplified tuning applied above, an alter-
native approach may be proposed by applying a two-
step stabilization-based design In the first step, the in-
tegral system (13) may be stabilized by a P, PD, or PDA
(proportional-derivative-accelerative) control proposed by
the multiple real dominant pole method with possible
inclusion of the filtration aspects (e.g. by the half-rule
method). In the second step, dominant dynamics of such
stabilized loops may be approximated by stable second
order, third order, or fourth-order models. Then, the an-
alytical SIMC design may be directly applied. In order to
illustrate such more complex situations, an ideal stabiliz-
ing PDA controller has been chosen defined as

Rs(s) = KP +KD1s+KD2s
2 (17)
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For IPDT plants it yields the characteristic quasi-polynomial

A(s) = seTds +KsKD2s
2 +KsKD1s+KsKP (18)

The condition of quadruple real dominant pole so in
A(s) = (s− so)4Ared(s) requires to fulfill{

A(s);
d

ds
A(s);

d2

ds2
A(s);

d3

ds3
A(s)

}
s=so

= 0 (19)

From d3A(s)/ds3 = [sT 3
d + 3T 2

d ]eTds = 0 it follows

so = −3/Td; To = −1/so = Td/3 (20)

KPo =
27

2KsTde3
; KD1o =

5

Kse3
; KD2o =

Td
2Kse3

(21)

Thus, since the stabilized loop has a quadruple dominant
pole so and a unity steady-state gain, it may well be
approximated by the transfer function (10) with parameter
estimates T 4 = To = Td/3 and Ks = 1/T 4

o = 81/Td. For
cascade PDA-4PID control with Tf → 0

IAE = lim
s→0

E(s) =

[
TiKs

KPKs[Kc(1 + Tis) + Tis]

]
s=0

=

=
Ti

KcKP
=

2

27
e3KsTd(4Tc4 + Td); iae =

2

27
e3(4τc4 + 1)

(22)

Since in dimensionless parameters it is realistic to set
τc4 ≈ 0.5, the achievable performance iae ≈ 4.5 may nearly
be up to 4 times better than for PI control with iae = 16.

2.2 Noise attenuation filters

Due to the proportional term, the high frequency noise
is not attenuated even in the simplest case of PI control.
Whereas some authors add in such situations 2nd order
Butterworth filters (Segovia et al., 2014), other recom-
mend the simplest binomial filters (Rivera et al., 1986)

Qn (s) = 1/(Tfs+ 1)
n

(23)

The binomial filters will be included into the plant delay
by a modification of the “half-rule” (MHR).

Definition 1. (Modified Half Rule MHR). When working
with a combination of FOTD system (5) with ntuple filter
time constant Tf of (23), the plant parameters considered
in design should be modified according to

T1 = T1m + nTf/2; Td = Tm + nTf/2 (24)

For the IPDT model (13) it is enough to modify Td and
with respect to the stabilizing controller (17) to guarantee
the stabilizing loop causality by choosing n ≥ 2.

3. PERFORMANCE MEASURES

Higher emphasis on the measurement noise attenuation is
being put today by numerous authors. In the new setup of
the optimal control design (Segovia et al., 2014), one has
to deal with a trade-off between control error attenuation
(measured usually in terms of integral of absolute error)

IAE =

∫ ∞
0

|e(t)| dt ; e = w − y ; w = setpoint (25)

measurement noise injection influencing primarily the “ex-
cessive control effort” (controller activity, input usage,
but including possibly also the “output wobbling” Huba
(2019a)) and the “robustness”. In this paper we combine
the IAE values (used for evaluating speed of the transients,
or, more precisely, the loop retardation which is inverse to
the considered speed) with the shape related constraints.
These may be applied both in analytical derivations and in

experimental evaluation. Since the setpoint step responses
may also be optimized by an appropriate feedforward,
the analysis will preferably focus on the (input/load) dis-
turbance step responses given fully by the feedback con-
troller. Furthermore, since the achieved responses strongly
depend on possible uncertainty of the considered plant
model (with an uncertainty impact similar to external
disturbances (Chen et al., 2016)), this gives additional
motivation to deal with the disturbance responses as an
indispensable part of the robustness analysis.

3.1 Useful and excessive output and input increments

Together with the requirement to have the output re-
sponses as fast as possible (wit as low as possible IAE),
it is also necessary to consider shapes of actual output
and input signals. The corresponding measures based on
deviations from monotonicity represent modifications of
the total variation (the total sum of absolute increments
(Skogestad, 2003)). For one monotonic interval (with an
initial value y0 and a final value y∞) this yields

TV0(y) =
∫∞
0

(∣∣∣∣dydt
∣∣∣∣− sign(y∞ − y0)

dy

dt

)
dt ≈

≈
∑

i (|yi+1 − yi|)− |y∞ − y0|
(26)

An ideal input disturbance step response of first order
plants (as e.g. in Fig. 2) has always the shape of a one-pulse
(1P) curve (Huba, 2019a,b) consisting of two monotonic
intervals separated by an extreme point ym /∈ (y0, y∞)
(the monotonicity evaluation according to (26) has to be
applied twice) with the deviation evaluated according to

TV1(y) =
∑
i

|yi+1 − yi| − |2ym − y∞ − y0| (27)

As shown e.g. in Huba (2019a), in case of the single
integrator also the input responses corresponding to the
setpoint and input disturbance steps have to ideally consist
of two monotonic intervals forming a one-pulse (1P) shape.
Similarly as above, deviations of the plant input u(t) from
an ideal 1P step response should be constrained in terms of
TV1(u) measures. Basically, for control of the FOTD plants
it might be meaningful to consider also input with lower
or higher number of control pulses, but such situations
represent already marginal options.

3.2 Optimization problem

Let us start with summarizing basic facts (Huba, 2019a):

(1) Traditional optimization based on quadratic cost
functions (LQ control design) does not distinguish
useful and excessive signal increments which signif-
icantly limits effectiveness of its application.

(2) Separation of the excessive and useful increments (at
the input and output) enables to focus fully on an
effective minimization of the superfluous changes.

(3) In the new setup of the optimal control design
(Segovia et al., 2014), one has to deal with a trade-
off between control error attenuation (IAE), measure-
ment noise injection resulting into “excessive control
effort” (“controller activity/input usage” (Grimholt
and Skogestad, 2018), or the “output wobbling”) and
“robustness”.
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Fig. 2. Transients of the loops with IPDT plant and
filtered SIMC PI (8) and cascade PDA-4PID control
for a measurement noise |δ| ≤ 0.25 generated in
Matlab/Simulink with a Uniform Random Number
block corresponding to parameters (30): Ks = 1;
Tm = 1; Ts = 0.001; tsim = 30
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Fig. 3. IAE (blue), TV1(u)/5, 100TV1(y), J(u)/20 and
10J(y) (green), k = 1 (left) and the same measures
with J(u)/107 and J(y)/104, k = 6 (right) of the loops
with IPDT plant from Fig. 2

(4) Optimal controller and filter tuning is expected to
depend on the noise parameters. Thus, without con-
sidering filtration properties, a “generally” optimal
PID tuning becomes questionable.

For the loop optimization, different cost functions and
optimization constraints may be defined. A “holistic”
optimization considering both the plant input and output
may be looking for a minimal value of the cost function

J(u) = IAEk TV1(u) (28)

By the parameter k it is possible to weight contributions
of IAE (speed of control) into the resulting product. To
minimize the output wobbling, for the disturbance step
responses the cost function may be defined as

J(y) = IAEk TV1(y) (29)

3.3 Example 1: Simulation of IPDT system

In this example, 3rd order binomial filter (23) has been
added to both SIMC PI and to the inner loop of cascade
PDA-4PID controller based on IPDT models. Then, the
dead time of the identified plant model Tm has been
modified according to (24). Thereby, for Tm = 1;Ks = 1
the controller parameters have been specified as:

1PI: Tc1 = 1; Tf = 0.01
4PID: Tc4 = 0.4; Tf = 0.1

(30)

The required closed loop time constant Tc1 has been
chosen according to (9). Since PI controller does not
include “aggressive” derivative terms, Tf may be chosen
relatively short. PDA-4PID control usually allows faster
transients, which is reflected by shorter Tc4. However,
due to expectation of an increased noise impact, Tf has

been intuitively increased. Transients in a loop with an
external noise with an amplitude |δ| ≤ 0.25 generated in
Matlab/Simulink by a Uniform Random Number block
are in Fig. 2. The corresponding performance measures
and combined cost functions (28) and (29) (with k = 1
and k = 6) are in Fig. 3. At the output, both controllers
yield nearly ideal 1P responses. Whereas the IAE value of
the cascade PDA-4PID control is (despite the differences
in filtration) still more than 3x lower than for SIMC PI
control, TV1(u) and TV1(y) are more than 10x higher.
For k = 1, the combined cost functions (28)-(29) indicate
advantages of simple PI control (Fig. 3 left). However,
when penalizing slower responses by k = 6 (Fig. 3 right),
PI control is essentially worse than the much faster cascade
control. Obviously, evaluation of the chosen controller
+ filter tuning and its optimization are far from being
trivial and require to develop a systemic approach. The
up to now carried out considerations have shown that
we can design controllers by taking into account the
effects of measurement noise. The considered PDA-4PID
controller represents only a fraction of many possible
solutions. Others could be obtained by considering P
or PD stabilizing regulators, replacing transport delay
by Padés approximations of different degrees, etc. In
other words, in the yet relatively little explored gap
between traditional PID controllers and fractional order
controllers there exist a wide range of other solutions
with an acceptable degree of complexity. These can be
based on the most widespread 3 and 2 parameter models
of the FOTD or IPDT systems, but also on the widely
used 4 parameter models with multiple time constants
and dead time. In order to fully grasp the issue, however,
there is no greater emphasis on evaluating the optimum
solutions obtained. In each case, it is not enough to
consider only the speed of the transients evaluated eg.
using IAE. Substantially rarely used deviations from the
ideal shapes of input and output based on modifications
of TV introduced in Skogestad (2003) may also not be
considered separately. Ultimately, however, it would be
desirable to use combined purpose-based cost functions
that holistically take into account several performance
indicators at the same time. It should also be noted that:

• Obtaining a controlled system model is always asso-
ciated with a trial-and-error approach to achieve the
highest match between theoretical expectations and
experimental results underpinned by identification.

• Its evaluation is usually based on a multicriterial cost
function, whose multiplicity is virtually unlimited
and excludes substitution by a single general purpose
function and a single all-encompassing optimization.

• Given requirements are much easier to cope with by
simple analytical approaches, especially when they
are built using a modular approach.

• Of course, standard solutions for the most common
situations can also be obtained. Well, that does not
mean that they will cover at a high level also less
numerous but still important situations, in which
other presented approaches may yield better results.

• From this perspective, openness and flexibility of
adaptation can be considered as the main advantages
of the SIMC method. But we pay for it by navigating
within a wide range of existing options and finding
the optimal alternative.
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Fig. 4. TOM1A thermal channel: left-plant output, right-
plant input step responses; 1PI-blue, PDA-4PID-red
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Fig. 5. Details of transients at the input and output of
the TOM1A thermal channel and the fan input as a
disturbance; 1PI-blue, PDA-4PID-red

4. EXAMPLE 2: THERMAL PLANT CONTROL

Possible balance of all three aspects of the controller de-
sign: speed of the transients, noise impact and robust-
ness will now be illustrated experimentally. We will deal
with the thermal channel of the laboratory Arduino-based
thermo-opto-mechanical system TOM1A used already for
testing of method for filtered PI and PID controller tuning
based on equivalence of delays, or for testing different
approaches to dead time compensator design (Huba et al.,
2017). Although the design could be based on standard
SIMC design for stable plants, the experiments will be
carried out by a simplified approach based on approxi-
mating just initial part of the step responses by IPDT
models, which essentially shortens time required for iden-
tification. Simultaneously, such an approach demonstrates
robustness of the applied design: The model parameters
taken from Huba et al. (2017) (Ks = 0.011, Tm = 0.3s) 1

will be increased by an additional communication delay
Tmc = 1s helping to achieve for Ts = 0.02s 2 and (24)
higher ratio Td/Ts and thus allow a simplified design in
continuous-time domain with

1PI: Tf = 0.4, n = 2
PDA−4 PID: Tc4 = 0.5; Tf = 0.4, n = 4

(31)

Higher aggressiveness of PDA-4PID control will be con-
sidered by an increased filter order. Thanks to Td/Ts ∈
[85, 105], we can expect that the design in a continuous
time domain will give sufficiently concise results. Overall
transients in Fig. 4 show that (after controller instal-
lation), both solutions yield nearly equivalent solutions.
However, for PDA-4PID control the initialization period
requires much longer time. Finer details may be illustrated

1 the identified plant time constant T1m ≈ 20s will not be used
2 limited by Arduino-Simulink communication speed
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Fig. 6. Performance measures (above) and combined cost
functions for k = 1 (middle) and k = 6 (below)
evaluated over four disturbance intervals

by Fig. 5 showing correlation of the transients with the fan
producing control disturbances. They demonstrate that
when properly combining filtration, which yields smoother
signals, with prediction (derivative action) allowing faster
dynamics, we may get faster transients without impair-
ing their shapes by noise impact. This documents that
once we accept possibility to upgrade PI to PID, we
should continue with upgrading PI to control with higher
order derivatives. In time of the software-implemented
controllers, the argument that PI control is preferably
used due to its simplicity (Grimholt and Skogestad, 2018)
might seem to be questionable. However, higher order
controllers also bring complexity related to high number
of initial conditions which may require special start-up
procedures. Furthermore, by enabling possibility of tighter
control working with higher gains, special attention has
to be paid to control constraints (Huba, 2019a). Since
the transients are influenced also by slow modes of heat
transfer with the time constants longer than experiment
duration, four disturbance periods have been considered
to identified possible changes in performance. Evaluation
of performance measures and combined cost functions (28)
and (29) in Fig. 6 illustrates lower IAE and higher shape
related deviations of PDA-4PID control at the plant input.
However, with higher accent on speed of the transients, for
k = 6 this control is definitely better in all combined cost
functions. In the carried out example, the controller tun-
ings have not been chosen to show limits of the considered
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approaches, but to illustrate their features. Impact of a
chosen tuning parameter on the trade-off between speed of
control and the shape related deviations at the input and
output may be systematically analyzed by using several
types of characteristics. Dependence of two basic basic
measures of the closed loop performance displaying the
shape related deviations at the input, or output from their
ideal values (variable ξ) and the control error attenuation
(IAE characterizing speed of the transients, variable η)

ξ = TV1(u), η = IAE, or ξ = TV1(y), η = IAE (32)

define the speed-effort (SE) and speed-wobbling (SW) char-
acteristics (Huba, 2019b).

5. CONCLUSIONS

SIMC controller design represents a powerful approach
which may further be extended by considering control
including HO derivative actions and noise filters. Thereby,
the original, rather “speculative” design for integral plants
may be replaced by a more rigorous and at the same time
powerful cascade control, when the integral (or unstable)
system will firstly be stabilized by P, PD, or PDA con-
trollers. Then, by using “half rule” and its modifications,
the original approach yields excellent results, which enable
to use it also in high demanding applications. This paper
has shown that by taking into account the filtration as-
pects, huge space available for performance improvements
may be created. In this newly established framework, opti-
mal PID design depends significantly on the measurement
noise level and on the required filtration degree. Due to its
analytical core, the introduced method remains flexible in
a huge range of possible situations. For further research,
we see several lines suitable, as numerical verification of
the analytically proposed equivalence of the time delays
by modifications of the“half-rule” and other types of de-
lay equivalence (Huba et al., 2018a), use of alternative
performance measures and tuning strategies (for example,
to keep a constant standard deviation), or extension to
higher order plant models. It is also to remember that
any good technology we use, the success of implementation
greatly depends on the tuning of the controller and filter.
Thereby, the non-ideal state of the art in the PID con-
trol fully confirms this comments (Åström and Hägglund,
2006). Since the staff dealing with control application has
to focus on numerous other tasks, the only realistic way
to improve this situation seems to be use of intelligent
technologies combining the presented approaches with the
plant identification and evaluation tools. As a step towards
such a computer support, we have started to develop tools
for such a design (Bistak, 2018; Bisták and Huba, 2019).
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