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Abstract: This work deals with the problem of maximizing energy recovery while optimizing
braking capability of high-performance electric vehicles under given actuator constraints. A
scalable, real-time capable concept using a complementary filter with an additional daisy chain
for the control allocation between hydraulic brakes and electric motors is proposed. Furthermore,
a model inversion approach that derives necessary battery limits while trying to decouple the
wheel speed control loop from the protection loop of a modern battery management system is
described. The hybrid braking control architecture is studied in simulation and validated in a
prototype electric vehicle by highly dynamical driving manoeuvres.
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1. INTRODUCTION

With the increasing popularity of electric drives for high-
performance vehicles it becomes desirable to max out the
dynamic potential for this kind of drivetrains. Regarding
hybrid braking, modern electric vehicles (EV) rarely ex-
ploit the fast and precise controllability of electric motors
while maximizing recuperation at the same time (Ivanov
et al. (2015)). The combination of both might not improve
the energy balance when the driver is braking on dry roads
with limited deceleration. However, it is essential for an
efficient energy consumption when a significant amount
of slip-controlled braking manoeuvres are performed, e.g.
when driving on a race track or on icy roads.

The underlying control problem of an over-actuated sys-
tem using electric motors as well as hydraulic brakes for
acting on the same rotational degree of freedom has been
addressed multiple times. Johansen and Fossen (2013)
present an overview of different allocation approaches for
over-actuated systems and their application in various
branches. Ivanov et al. (2015) issue a survey of traction
control and antilock braking systems for full electric vehi-
cles including torque blending algorithms for hybrid brak-
ing such as logic-, fuzzy- and sliding-mode based variants.

Daisy chains and optimization-based methods hereby rep-
resent the most prevalent approaches. Using a daisy chain,
as introduced by Adams et al. (1994) in flight control and
applied to hybrid braking e.g. in Ko et al. (2015), is a prag-
matic approach. Yet, in its simplest form, it is only able
to maximize energy recovery and does not exploit the dy-
namic superiority of electric motors over electro-hydraulic
brakes. In Härkeg̊ard (2004) a quadratic-programming-
based problem formulation is presented which is referred

to as dynamic control allocation (DCA) and considers
actuator magnitude, as well as rate limits. De Castro et al.
(2012) show its application for an EV in simulation. More-
over, Satzger et al. (2014) compare DCA, daisy chain and
model-predictive control allocation (MPCA) for hybrid
braking. Computational effort poses the main obstruction
for implementation of optimization approaches on low-cost
control units in modern vehicles to date. Bächle et al.
(2015) show a real-time implementation of MPCA on a
control prototyping platform. However, direct control of
the wheel slip is omitted for complexity reduction.

In cascaded control architectures with wheel speed con-
trollers, derived logic-based methods are used to avoid
implementing the costly optimization. Rosenberger et al.
(2012) try to emulate the frequency-dependent distribu-
tion of DCA using a state machine that keeps the torque
of one actuator constant as long as possible and only
modulates with the second one. This only facilitates either
fast torque modulation using the dynamically superior
electric motor or quasi-static recuperation. Solving this
conflict of aims between improved wheel speed control and
maximized energy recovery is the main scope of this paper.

The second contribution is the explicit consideration of
dynamic battery behaviour as determinant system limita-
tion which can interfere with the wheel speed controller in
these control architectures. De Castro et al. (2012) restrict
the consideration to the use of an indicator which sets
the allowed regenerative braking torque to zero when the
state-of-charge (SoC) reaches an upper threshold. Rajen-
dran et al. (2018) assume a constant battery voltage and
peak power in order to calculate a current limit for a decel-
eration manoeuvre. In this paper, a feedforward approach
based on an equivalent-circuit model is introduced instead.
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Fig. 1. Illustration of the interaction between wheel speed control loop with its controller R1(s) plus allocation B+(s),
battery protection control loop with its controller R2(s), and a proposed feedforward battery limit controller C(s).

The work is structured as follows. Firstly, the identified
problems of hybrid braking are introduced. Concerning
these, a concept for constrained control allocation using
a combination of complementary filters and daisy chains
is proposed. Subsequently, the battery model and its
relation to the allocation is described. This is followed by
a simulative study and experimental validations in an EV.

2. PROBLEM DESCRIPTION

EVs usually have from one up to four electric motors,
as well as an electro-hydraulic brake-by-wire system in-
tegrated. Using input and output valves, a selective slip
control, referred to as ABS-braking, can be realised hy-
draulically. The allocation design is exemplified for a single
degree-of-freedom (DoF) representation here. However, it
is scalable to EVs with up to four electric drives.

Remark 1. Considering Fig. 1, the present paper focusses
on the synthesis of the allocation B+(s) and the feed-
forward battery limit controller C(s), as well as therefor
necessary control-oriented models for both employed ac-
tuators (Gem,Gbr) and the battery (Gbat). For the sake of
brevity, the description of the wheel speed controllerR1(s),
which is based on Reichensdörfer et al. (2020), and the
outer control loop for setpoint-speed generation is omitted.
Concerning the nonlinear tire-road contact, lateral vehicle
dynamics are disregarded.

2.1 Incorporated Actuators

For the control allocation synthesis the actuated torque T
for both friction brakes and electric motors are approxi-
mated by first-order lags with the transfer behaviour

Ti
T ∗i

(s) =
1

τis+ 1
, i ∈ {em, br}. (1)

Identification for both actuators is done by means of their
step response. The time constants are shown in Table 1.

Table 1. Actuator dynamics

Actuator Time constant

Electric motor τem = 0.005s
Friction brake τbr = 0.030s

Considering the significant difference in actuator dynam-
ics, a split of the actuation effort regarding its frequency
content seems reasonable for this vehicle configuration.

Problem 1. Design a real-time capable allocation concept
which utilizes the superior dynamic potential of electric
drivetrains for optimized tracking of a desired wheel speed
ω∗w while simultaneously maximizing energy recovery.

2.2 System Limitations

Regenerative braking is subject to multiple constraints.
Crucial boundaries are voltage and current thresholds of
the electric motor and the battery. Especially lithium-ion
cells are sensitive to their voltage. During charging, the
peak voltage Umax limits the minimum negative current
Imin, while the lower boundary Umin prevents its voltage
from dropping too low in discharging. Additionally, the
cells have discharge and charge current thresholds given
by C-rates. Exceeding these can harm the cell.

These boundaries determined by battery management
systems are mapped to torque limitations that restrict
the regenerative torque demand of either the driver or the
controller. During a controlled deceleration the coupling
of the battery protection and the wheel speed control
loop is shown in Fig. 1. When tracking a desired wheel
speed ω∗w, the controller R1(s) can be interfered by the
battery protection while handling the nonlinear tire-road
contact. The simplest realisation of R2(s) is a relay that
cuts the allowed current Imin to zero as soon as the cell
voltage exceeds a threshold. This can lead to discontinuous
transitions for the boundaries and has to be prevented by
an appropriate realisation of the feedforward limit C(s).

Problem 2. Derive dynamic torque boundaries for a con-
strained control allocation, resulting from battery voltage
and current constraints that circumvent the link between
the control loops for battery protection and wheel speed.

3. CONTROL ALLOCATION

Assuming linear actuator models, the allocation problem
is described by

Bu = v. (2)
The control effectiveness matrix B ∈ Rk×m relates the
virtual control input v ∈ Rk to the real input u ∈ Rm. For
an over-actuated system, B is assumed to possess the rank
k and m > k. With the presence of actuator constraints,
the problem is augmented by the component-wise relation

u ≤ u ≤ u. (3)
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Fig. 2. Structure of the proposed control allocation concept with complementary low-pass (Flp) and high-pass filters
(Fhp) as well as additional daisy chains leading to the regenerative (Treg) and friction brake torque requests (Tbr).

For hybrid braking k = 1 and m = 2, resulting in

(Breg Bbr)

(
Treg
Tbr

)
= v, (4)

subject to(
max(T em, T bat)

T br

)
≤
(
Treg
Tbr

)
≤
(

min(T em, T bat)
0

)
, (5)

with the torque limits being T em, T bat, T br ≤ 0 and
T em, T bat ≥ 0. In order to deduce a real-time allocation
concept from the optimization approach, a brief descrip-
tion of DCA is given.

3.1 Dynamic Control Allocation

The problem of DCA, according to Härkeg̊ard (2004), is
described by the time-discrete optimization problem

Ω = arg min
u≤u≤u

‖Wv(Bu− v)‖2, (6)

u = arg min
u∈Ω
‖W1(u− us)‖22 + ‖W2(u− ut−1)‖22. (7)

W1 affects the tracking of a desired steady state control
input us, whereas W2 penalizes the change in control
input compared to the input at the previous time step
ut−1. Therefore, W2 has an effect on the frequency split
of v onto actuators with different dynamics. Wv can be
used to prioritize between different components of v.

Härkeg̊ard (2004) shows that the unconstrained problem
for two actuators is solved explicitly by a complementary
filter with fast changing portions of v being promoted to
the dynamically more capable actuator. This characteristic
of DCA is utilized as a starting point for the alternative
control allocation concept.

3.2 Complementary Filter for Frequency Split

Since the dynamics of the brake-by-wire system are slower,
it is desirable to shift actuating torques in the higher
frequency range to the electric drivetrain. To perform this
frequency split, the first order low- and high-pass filters

Flp(s) =
1

τcfs+ 1
, (8)

Fhp(s) =
τcfs

τcfs+ 1
, (9)

are used. This complementary filter holds the relation
Flp(s) + Fhp(s) = 1 which ensures that (2) isn’t violated.

Alternatively, instead of adapting weight matrices in (7)
for choosing τcf , classical methods for determining the
design parameter can be used, too. Having modelled the
control loop, criteria for performance, robustness and
stability of the wheel speed control can be attempted
to achieve, e.g. using loop shaping (Åström and Murray
(2008)). The requirements are tried to be met by adapting
τcf in the simplified case of an unconstrained allocation
when propagating low-pass filtered torque requests to the
brakes and fast portions to the electric drive. The high-
pass fraction can then be interpreted as control effort that
only the faster actuator is able to satisfactorily realize.

3.3 Daisy-Chain for Desired Steady-State

Given that the high-pass filtered content oscillates around
a stationary value of zero, directly feeding this portion
to the electric drive and low-pass content simply to the
brakes does not optimize the recovered energy but just
the system’s dynamic response. Therefore, inspired by the
first term in (7) which attempts stationary allocation, a
downstream daisy-chain is added that prioritizes regener-
ative over hydraulic braking for the stationary as well as
for the transient part up to static and dynamic limits. The
resulting allocation structure, shown in Fig. 2, is

Tstat = Flp(s)v =
1

τcfs+ 1
v, (10)

Tdyn = Fhp(s)v =
τcfs

τcfs+ 1
v, (11)

Treg = min(max(Tstat, T reg,stat), T reg,stat)+

min(max(Tdyn, T reg,dyn), T reg,dyn),
(12)

Tbr = Tstat −min(max(Tstat, T reg,stat), T reg,stat)+

Tdyn −min(max(Tdyn, T reg,dyn), T reg,dyn).
(13)

The terms static and dynamic denote slow and fast frac-
tions in this context. Required static and dynamic limits
for the regenerative braking torques are discussed next.

3.4 Static and Dynamic Constraints

The boundaries must meet two properties. Firstly, since
both Tstat and Tdyn are preferentially transcribed to the
electric drivetrain, the sum of both fractions must not be
less than the total negative regenerative torque limit, i.e.

T reg,stat + T reg,dyn ≥ T reg. (14)
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Secondly, the quasi-static actuator boundaries should not
change faster than Tstat. This can be achieved by comput-
ing T reg,stat using the same Flp(s) as in (10). Additionally,
in order to attain a high disturbance rejection, a torque
allowance ∆ < 0 is introduced which tries to always facili-
tate the realization of Tdyn with the dynamically superior
electric drive. This leads to the static constraint

T reg,stat = Flp(s)T reg −∆. (15)

Assuming equality in (14), the dynamic boundary is

T reg,dyn = (1− Flp(s))T reg + ∆ = Fhp(s)T reg + ∆. (16)

It can be seen that this approach corresponds to a com-
plementary filtering of the torque limits.

Remark 2. Alternatively, it is also possible to use

T reg,dyn = T reg − Treg,stat + ∆, (17)

with the negative torque Treg,stat ≥ Flp(s)T reg −∆ as dy-
namic boundary. This can increase the dynamic potential
when stationary recuperation is not (yet) fully utilized for
example at the beginning of a braking manoeuvre.

4. BATTERY MODEL AND LIMITS

The derivation of necessary actuator boundaries is exem-
plified for the battery limitations. These often represent
the main obstruction for regenerative braking, especially
for high SoC. The aim is to design a feedforward controller
C(s) for the minimum allowable current by model inver-
sion, which prevents the cell voltage from exceeding its
limits and avoids formerly described coupling. Initially, an
equivalent-circuit battery model (ECM) is described.

4.1 Equivalent-Circuit Model

Battery cells show different dynamic behaviour on various
time scales. This paper focusses on their short-term dy-
namic behaviour. Changes occurring over lifetime are ne-
glected. For this purpose, an ECM consisting of a resistor
in series with a parallel RC element, in literature often
referred to as Thevenin battery model (Salameh et al.
(1992), Gao et al. (2002), Chan (2000)) and shown in Fig.
3, is contemplated.

The transfer behaviour in the frequency domain results in

U(s) = UOCV −RiI(s)− R1

(R1Cs+ 1)
I(s). (18)

Positive currents relate to discharging while negative ones
correspond to charging. The parameters Ri, R1 and C can
differ for charging and discharging and strongly depend on
the SoC and the cell temperature. Therefore, the battery
is modelled as a linear parameter-varying system with its

UOCV

RiI(t)

R1

C

U(t)

Fig. 3. Equivalent circuit model for the battery cell.
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Fig. 4. Match of modelled and measured battery voltage.

parameters identified by cell tests in order to facilitate
model inversion through a precise representation. Fig. 4
shows the accurate match of the model with the sensed
voltage during fast driving.

The dynamic voltage behaviour resulting from the resistors
and the capacity can be described by the transfer function

Gbat(s) =
UOCV − U(s)

I(s)
=
RiR1Cs+Ri +R1

R1Cs+ 1
, (19)

with the battery current I(s) as the system’s input.

4.2 Open-Circuit Voltage

In general, the open-circuit cell voltage (OCV) UOCV is a
nonlinear function of the electric charge, i.e. the SoC. For
the given cell, this characteristic is determined on a test rig
using small charge and discharge rates. While stressing the
battery, its OCV and SoC cannot be measured but need
to be estimated. Piller et al. (2001) present an overview
of different methods for determination of the SoC. Given
the possibility of accurate current measurement for the
employed battery, a combination of ampere hour counting
combined with recalibration during standstill is used.

Ampere hour counting is based on the integrated with-
drawn and returned current and can be described by

SoC(t) = SoC(t0) +

∫ t

t0

I(t)

Qbat
dt, (20)

where Qbat is the rated battery capacity. The initial value
SoC(t0) is determined by voltage measurement during
standstill when no current is drawn or supplied, combined
with the inverse characteristic relation of OCV and SoC.

Assumption 1. Compared to the voltage dynamics in (19),
changes of UOCV are significantly slower. This can also
be seen in Fig. 4. Therefore, the OCV is assumed to be
constant during a single brake action.

4.3 Feedforward Limit through Model Inversion

Given the quasi-static cell OCV and the cut-off voltage
Umax, their difference describes the limit for the dynamic
over-voltage. By inverting (19), which results in

G−1
bat(s) =

R1Cs+ 1

RiR1Cs+Ri +R1
, (21)

it is possible to derive the minimum allowable charging
current for the battery not to reach its voltage limit:
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Imin(s) =
R1Cs+ 1

RiR1Cs+Ri +R1
(UOCV − Umax). (22)

From (22), it can be seen that, given the voltage across
an ideal capacitor is initially zero, it is possible to allow
higher charging currents in the initial braking phase. As
the current across the capacitor decays exponentially and
the over-voltage rises, the current limit Imin decreases.

Remark 3. Battery packs for electric vehicles are com-
posed of many cells interconnected in series and parallel.
Under real conditions their open-circuit voltages can differ.
Therefore, a worst-case consideration is proposed which
uses the cell with the highest OCV for determining Imin.

4.4 Resulting Torque Limits for Control Allocation

Since the controller provides torque commands, it is neces-
sary to translate the current limits into torque constraints
by equating electrical and mechanical power

Pel = UlimIlim = T batωw = Pmech. (23)

Efficiency factors are omitted. The current limit Ilim is
given by the maximum of Imin resulting from voltage con-
straints and the C-rate charge current threshold mentioned
in Section 2.2, which is dependent on the specific cell.
In order to calculate the minimum electrical power, the
maximum voltage Ulim that would result if the battery
pack was charged with Imin is determined considering (18).

Instead of directly using the wheel speed sensors, the
desired value ω∗w, derived from a slip setpoint λ∗x, is
taken for the conversion to avoid copying the rotational
wheel dynamics into the torque boundaries. With the
longitudinal slip defined by

λx =
ωwrdyn − vx

max(|ωwrdyn|, |vx|)
, (24)

where rdyn denotes the dynamical tire circumference, and
assuming a constant λ∗x, the desired wheel speed during
braking results in

ω∗w =
vx

rdyn(1− λ∗x)
. (25)

The total negative wheel torque threshold for regenerative
braking resulting from charge limits is therefore given by

T bat =
UlimIlimrdyn(1− λ∗x)

vx
. (26)

Analogously, a positive torque limit for discharge T bat can
be derived by minimum voltage and maximum current.

5. CONCEPT VALIDATION

5.1 Numerical Simulation

A closed-loop simulation with the wheel speed controller
for anti-lock braking and a quarter car model given by

ω̇w =
1

Jw
(Treg + Tbr − Fx(λx, µ, Fz)rdyn), (27)

v̇x =
1

m
(Fx(λx, µ, Fz)− Fw), (28)

with the wheel moment of inertia Jw, vehicle mass m,
air resistance force Fw, tire force Fx and the vertical
load of the wheel Fz is performed. Its tire force Fx

is modelled by Pacejka’s magic formula. A qualitative
numerical simulation is exerted with a sample time of 1ms.
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Fig. 5. Torque shares for simulated emergency braking.

An emergency braking on initially dry road with a friction
coefficient µ = 1.0 is simulated, with the driver applying
the brakes at an initial speed of vx,0 = 38m

s . After two
seconds the friction coefficient drops to µ = 0.2 which
represents an icy surface. The SoC for the cell with the
highest OCV is assumed to be SoCmax = 77%. The
complementary filter time constant is chosen to be τcf =
60ms for the given actuator characteristics.

Fig. 5 illustrates the virtual control input v for the front
axle and the shares for hydraulic brakes and electric
drivetrain. The torques are specified in relation to the
symmetric motor torque limit in base speed range T em,0.
At initial brake application, there is a negative dynamic
torque shifted to the electric motors in order to quickly
build deceleration. Upon controller activation, the fast
dynamics of the motors are used to prevent excessive
wheel slip by quickly decreasing torque. This also applies
for the sudden change of friction with a positive spike
of Treg,dyn rapidly reducing the overall torque request
Treg. The slowly changing fraction Treg,stat is limited by
the low-pass filtered battery boundary which raises with
decreasing velocity as emanating from (26). The friction
brake torque request is changing slowly except for a minor
dynamic portion during initial deceleration. This could
be prevented by a higher torque allowance, which would
reduce stationary recuperation, or if ∆ was adaptive.
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Fig. 6. Torque shares for experimental emergency braking.
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Fig. 7. Wheel velocities as well as vehicle speed and
acceleration for straight-line emergency braking.

5.2 Experimental Evaluation

The control concept is implemented on an embedded rapid
control prototyping platform with a cycle time of 1ms and
equal parametrization for experimental validation. Fig.
6 shows the front axle actuator torques for emergency
braking on dry tarmac. Below vx < 16.5m

s the deceleration
is actuated by the electric motors only. Close to standstill,
regenerative braking is phased out and counterbalanced by
the friction brakes. The associated controlled mean front
wheel speed ωw in Fig. 7 illustrates reliable tracking of ω∗w
with hybrid actuation while recuperating. The unfiltered
acceleration v̇x indicates high mean deceleration enhancing
performance and safety through short stopping distances.

Fig. 8 displays the energy balance for high performance
tests on a race track. The net consumption Enet is
the difference of consumed and regenerated energy given

by Econsumed =
∫ tend

t0
U(t)I(t)dt for I(t) > 0 and

Erecuperated =
∫ tend

t0
U(t)I(t)dt for I(t) < 0, respectively.

Despite using the motors for optimized tracking control,
energy recovery η = (1−Enet/Econsumed) ·100% > 35% is
achieved without harming the battery, too, showing that
the Problems 1 and 2 can be solved.

6. CONCLUSION

Having shown a real-time allocation for improved wheel
speed control while charging a battery at its limit during
braking, it is important to recognize that the concept is
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Fig. 8. Energy balance for high-performance racetrack test.

scalable to any battery, controller and actuator configu-
ration by adjusting few parameters. Further research will
focus on analysis of the concept, adaptive design parame-
ters for B+(s) and consideration of elastic drivetrains.
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