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Abstract: The maneuvering control of autonomous vessels has been under extensive investi-
gations by academic and industrial communities since it is one of the primary steps towards
enabling unmanned shipping. In this paper, a model predictive control (MPC) approach is
presented for trajectory tracking control of vessels which takes into account the thrust allocation
(TA) problem in the presence of rotatable thrusters. In this approach, the TA problem is formu-
lated over a finite horizon and solved with regard to the power consumption, changes in the angle
and speed of actuators, and the operating constraints. In the proposed control approach, several
linearization techniques have been employed to enable the adoption of quadratic programming
approaches for solving the MPC’s and TA’s optimization problems. The performance of the
proposed approach is evaluated through several simulation experiments using a replica vessel
model.

Keywords: Autonomous vessels, model predictive control, maneuvering control, thrust
allocation, feedback linearization, quadratic programming.

1. INTRODUCTION

Maneuvering control is one of the most critical challenges
on the way of enabling autonomous vessels. The problem
has been considered in several research works in the last
few years where different control approaches have been
adopted at address different aspects of this challenge, e.g.,
see Haseltalab and Negenborn (2019a,b); Sørensen and
Breivik (2015); Ashrafiuon et al. (2008) .

One of the main adopted approaches for trajectory track-
ing control is Model Predictive Control (MPC) where the
maneuvering model of the vessel is used for building the
prediction model and solving the optimization problem of
MPC (Haseltalab and Negenborn (2019b); Zheng et al.
(2016)). To use MPC, in most of the research works,
the maneuvering model of the vessel is linearized using
Taylor’s approximation scheme and then, discretized (e.g.,
see Zheng et al. (2016); Chen et al. (2019a,b)) so that
quadratic programming approaches can be adopted to
solve the optimization problem of the MPC. In Zheng
et al. (2016), a Model Predictive Control (MPC) algo-
rithm is proposed to address the problem of trajectory
tracking control with knowledge over arrival time where
the nonlinear model of the vessel is linearized to decrease
computational complexity. Nonlinear MPC algorithms are

? This research is supported by the project “Impulse Autonomous
Shipping for Amsterdam” of the Amsterdam Institute for Advanced
Metropolitan Solutions (AMS Institute).

adopted in Abdelaal et al. (2016, 2018); Zheng et al (2013)
to address the problem of trajectory tracking.

The outputs of the ship maneuvering controller are the
forces that should be applied to the ship’s Center of
Gravity (CoG). These forces should be generated by the
actuating propellers. As a result, a Thrust Allocation (TA)
problem should be solved. The complexity of this problem
depends on the type and configuration of the propelling
thrusters (Fossen (2011)). In most of the research works on
the maneuvering control of autonomous vessels, the thrust
allocation problem is either not considered or trivially
considered.

In this paper, the objective is to integrate the thrust
allocation problem into the ship maneuvering controller
in the presence of rotatable thrusters. After presenting
the ship maneuvering model and formulating it in a
state space format, an MPC control approach is proposed
for trajectory tracking in which Input-Output Feedback
Linearization (IOFL) as well as a linearization technique
are utilized to enable the use of quadratic programming
for solving the MPC’s optimization problem. Then, the TA
problem is considered where it makes use of the predictions
of the MPC over a finite horizon with the objective of
minimizing the power consumption as well as the rotation
of rotatable thrusters. In order to solve the TA problem
using quadratic programming approaches, the TA problem
is linearized over the prediction horizon. For evaluating the
performance of the proposed approach, a replica model of
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Fig. 1. A vessel with two propellers, a bow thruster, and
a stern thruster.

a tug vessel is considered and its voyage is simulated in
the city of Amsterdam waterways. The contributions of
the paper can be summarized as:

1. Proposing an MPC control approach incorporating
maneuvering control and thrust allocation.

2. Enabling the use quadratic programming methods for
solving the optimization problems through adopting
a set of linearization approaches.

The remainder of the paper is as follows. In Section 2, the
maneuvering model of the vessel is presented in a state
space format. In Section 3, the proposed MPC and TA
approaches are formulated and presented. The simulation
experiment results are shown and discussed in Section 4.
In Section 5, concluding remarks are given.

2. SYSTEM DESCRIPTION AND THE PROBLEM
FORMULATION

In this section, maneuvering model of vessels and the
thrust configuration problem in 3 Degrees of Freedom
(3DoF) are presented.

2.1 3DoF maneuvering model

In this paper, the 3DoF maneuvering model is considered
(Fossen (2011); Skjetne et al. (2004)) which is suitable
for maneuvering control applications of surface vessels.
The model includes information about the mass of the
vessel and displacement, centrifugal and Coriolis forces,
drag forces, and configuration of actuators. In Figure 1,
the layout of a vessel with two propellers and two thrusters
is illustrated.

The maneuvering model of the ship can then be described
as:
η̇s(t) = R

(
ηs(t)

)
vs(t)

Msv̇s(t) + Cs

(
vs(t)

)
vs(t) = τs(t) + τdrag

(
vs(t), ηs(t)

)
,

(1)

where ηs(t) = [x(t), y(t), r(t)]T is the ship position and
orientation at time t, vs(t) = [vx(t), vy(t), vr(t)]

T is the
3DoF ship speed and τs is the vector of forces applied to
the ship center of gravity. Ms is the Inertial Mass matrix
which consists of rigid body and added mass matrices:

Ms = MRB +MA (2)

where

Ms =

[
mb 0 0
0 mb 0
0 0 Iz

]
,MA =

[
max 0 0

0 may 0
0 0 Ia

]
. (3)

Parameter mb is the mass of the vessel, Iz is the moment
of inertia, max and may are the added mass in x and
y direction, respectively, and Ia represents the added
moment of inertia.

Matrix Cs(·) is the Coriolis and Centrifugal matrix defined
as:

Cs(vs) =

[
0 0 −mbvy

0 0 mbvx

mbvy −mbvx 0

]
. (4)

Function τdrag(.), which is a function of ship speed and
course angle, represents drag forces in 3DoF applied to
the craft. The details of this function are provided in
Haseltalab and Negenborn (2019b).

A method to present drag forces is by establishing added
Coriolis and damping matrices. In this regard,

τdrag

(
vs(t), ηs(t)

)
= −CA

(
vs(t)

)
−Ds

(
vs(t)

)
(5)

where

CA(vs) =

[
0 0 c13(vs)
0 0 c23(vs)

−c13(vs) −c23(vs) 0

]
, (6)

with c13(vs) = Yv̇vs + 1
2 (Nv̇ + Yṙ) and c23(vs) = −Xu̇vx.

The damping matrix Ds is constructed by addition of a
linear and a nonlinear matrices, i.e.,

Ds(V ) = DL +DNL

(
vs

)
, (7)

where

DL =

[−Xu 0 0
0 −Yv −Yr

0 −Nv −Nr

]

DNL

(
vs

)
=

[−d11(vs) 0 0
0 −d22(vs) −d23(vs)
0 −d32(vs) −d33(vs)

]
,

(8)

with d11(vs) = X|u|u|vx| + Xuuv
2
x, d22(vs) = Y|v|v|vy| +

Y|r|v|vr|, d23(vs) = Y|v|r|vy|+Y|r|r|vr|, d32(V ) = N|v|v|vr|+
N|r|v|vr| and d33(vs) = N|v|r|vx| + N|r|r|vr|. For more
information on the model and the parameters, see Fossen
(2011); Skjetne et al. (2004).

Matrix R(ηs) transforms ship velocity from body-fixed into
inertial velocities and is defined as:

R(ηs) =

[
cos(r) − sin(r) 0
sin(r) cos(r) 0

0 0 1

]
. (9)

Vector τs is the vector of forces generated by propellers
applied to the ship center of gravity, defined as:

τs(t) =

[
τx(t)
τy(t)
τr(t)

]
, (10)

where τx and τy are surge and sway forces and τr is the
yaw moment.

2.2 Thrust allocation

Considering rotatable and non-rotatable thrusters, the
relationship between the thrust produced by actuators and
the vector of forces is Fossen (2011):

τs = Ξ3×mF = Ξ3×m

 f1

...
fm

 , (11)
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where f1, . . . , fm are propelling thrust generated by
actuators, m is the number of actuators, and Ξ is the
thrust configuration matrix defined as:

Ξ = [γ1 ... γm] , (12)

with γ1, γ2, ..., γm column vectors for standard actuators.
If the actuator is a non-rotatable thruster, then:

γi =

[
1
0
−lyi

]
, (13)

if the actuator is a rotatable thruster, then:

γi =

[
cos(αi)
sin(αi)

lxi sin(αi)− lyi cos(αi)

]
, (14)

and if the actuator is a stern or bow thruster, then:

γi =

[
0
1
lxi

]
, (15)

where lyi and lxi represent the position of the actuator i
in the vessel’s reference frame.

The TA problem can be formulated as (Fossen (2011)):

Pn : min
f,α

Jn(f, α) (16)

subject to:

Ξ(α)F = τ

Fmin ≤ F ≤ Fmax

αmin ≤ α ≤ αmax

∆αmin ≤ ∆α ≤ ∆αmax

∆Fmin ≤ ∆F ≤ ∆Fmax

(17)

where objective function Jn is:

Jn(f, α) =FTPF + (α− α0)TQ(α− α0)

+
µ

ε+ det (Ξ(α)ΞT (α))
.

(18)

In the above optimization problem, parameter α is the
vector of rotatable actuators’ angle, α0 is the vector of
measured angles, ∆α = α−α0 is the difference between the
current angles and the angles in the next sampling time,
∆F = F−F0 is the difference in thrust generation between
two consecutive sampling times, and P is a positive definite
diagonal matrix.

3. PREDICTIVE TRAJECTORY TRACKING
CONTROL AND THRUST ALLOCATION

In this section, a control approach is proposed for maneu-
vering control and TA.

3.1 Predictive Trajectory Tracking Control

Let us rewrite the speed dynamics of the ship as:

v̇s(t) = M−1
s

(
τs + τdrag

(
vs(t), ηs(t)

)
− Cs

(
vs(t)

)
vs(t)

)
.

(19)
With the following IOFL law the above system can be
linearized:

τs = Ms

(
−τdrag

(
vs(t), ηs(t)

)
+Cs

(
vs(t)

)
vs(t)+Asvs+Bsνs

)
(20)

where νs is the input vector of linearized system, vs

represents its states and As and Bs are states and input

matrices of the linear system, respectively. As a result, the
transformed linear system can be written as:

v̇s = Asvs +Bsνs. (21)

After discretization, MPC is applied where the objective
is to keep the ship as close as possible to the reference
trajectory. In this regard, the following MPC problem is
defined with sample time Tk:

P(vs) : min
νs

(
VN(vs, νs) =

N−1∑
i=0

l
(
vs(k + i), νs(k + i)

)))
(22)

subject to:

vs(k + i+ 1) = As(Tk)vs(k + i) +Bs(Tk)νs(k + i)

vmin(k + i) ≤ vs(k + i)(k) ≤ vmax(k + i)

νmin(k + i− 1) ≤ νs(k + i− 1) ≤ νmax(k + i− 1),

∀i ∈ [0, N ],

(23)

where

l
(
vs(k), νs(k)

)
=
(
vs(k)− vsref (k)

)T
Ws

(
vs(k)− vsref (k)

)
+ νTs (k)νs(k).

(24)

In the above MPC problem, parameter N is the prediction
horizon and Ws is the positive definite weight matrix of the
cost function.

The reference ship speed vsref (k) is approximated using (1)
as:

vsref (k + 1) = R−1
(
ηs(k)

)(ηref(k + 1)− ηs(k)

Tk

)
. (25)

The adoption of IOFL for MPC results in clear advantages
since the optimization problem is simplified, however, due
to non-linearity of input constraints, quadratic program-
ming cannot be adopted for solving the optimization prob-
lem. In the following, using the results in te Braake et al.
(1999), we adopt a methodology for linearizing the input
constraints in (23) to further simplify the optimization
problem which leads to major reduction of computational
costs.

The main idea behind this methodology is linear esti-
mation of non-linear constraints. Let us present the con-
straints acting on the thrust vector τs:

τmin ≤ τs(k) ≤ τmax. (26)

If the IOFL rule is rewritten as:

νs(t) =Ψs

(
vs(t), τs(t)

)
=

B−1
s

(
M−1

s τs(t) + τdrag

(
vs(t), ηs(t)

)
− Cs

(
vs(t)

)
vs(t)

−Asvs(t)
)
,

(27)

then, νs can be approximated around
(
vs(t0), τs(t0)

)
as:

νs(t) ≈ Ψ̂st0

(
vs(t),τs(t)

)
= Ψs

(
vs(t0), τs(t0)

)
+
∂Ψs

∂vs

∣∣∣∣(
vs(t0),τs(t0)

)(vs(t)− vs(t0)
)

+
∂Ψs

∂τs

∣∣∣∣(
vs(t0),τs(t0)

)(τs(t)− τs(t0)
)
.

(28)
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Let vs(k + i|k) denote the value of vs at time (k +
i)tk predicted at time ktk, then using (28), the linear
constraints can be found as:

νmin(k + i− 1) =

min
τs(k+i−1)

Ψ̂sk+i|k−1

(
vs(k + i|k − 1), τs(k + i− 1)

)
νmax(k + i− 1) =

max
v2(k+i−1)

Ψ̂sk+i|k−1

(
vs(k + i|k − 1), τs(k + i− 1)

) (29)

subject to,

τmin ≤ τs(k + i− 1) ≤ τmax,∀i ∈ [0, N − 1]. (30)

Note that for time instant (k +N − 1)tk, we have:

νmin(k +N − 1) = νmin(k +N − 2)

νmax(k +N − 1) = νmax(k +N − 2).
(31)

Note also that, due to the linearity of Ψ̂sk+i|k−1
(.), the

optimization problems in (29) are trivial to solve.

The adoption of this methodology leads to simplification
of the optimization problem within MPC and to the
possibility of using a quadratic programming scheme.

At every sample time k, the proposed control algorithm
generates a set of control inputs νs(k|k), ...,νs(k+N−1|k)
and vs(k|k), ...,vs(k+N − 1|k). Using these sets and (20),
the set of future control inputs τs(k|k), ...,τs(k +N − 1|k)
can be estimated.

3.2 Predictive Thrust Allocation

The optimization problem in (16) and (17) is a non-convex
nonlinear problem which needs a significant amount of
computation. Moreover, it does not use the future control
inputs τs(k|k), ...,τs(k + N − 1|k). In this section, the
optimization problem in (16) is regulated and approx-
imated with a convex quadratic programming problem
which utilizes the prediction of future required propelling
forces.

The first term in the optimization problem Pn can be rep-

resented as (F (k − 1) + ∆F (k))
T
P (F (k − 1) + ∆F (k))

where F (k − 1) is the vector of generated thrusts by
actuators in the previous sampling time. The second
term can be shown as ∆α(k)TP∆α(k) and the third
term, i.e., the singularity avoidance penalty can be ap-
proximated by a linear term around α(k − 1) that is
∂
∂α

(
µ

ε+det(Ξ(α)ΞT (α))

)
α(k−1)∆α(k). As a result, the lin-

earized TA problem Pl can be written as:

Pl : min
∆F,∆α

Jl

(
∆F (k),∆α(k)

)
(32)

subject to:

Ξ
(
α(k − 1)

)
∆F (k) +

(
∂

∂α
Ξ(α)F (k − 1)α(k−1)

)
∆α(k)

= τ(k)− Ξ
(
α(k − 1)

)
F (k − 1)

Fmin − F (k − 1) ≤ ∆F (k) ≤ Fmax − F (k − 1)

αmin − α(k − 1) ≤ ∆α(k) ≤ αmax(k − 1)

∆αmin ≤ ∆α(k) ≤ ∆αmax

∆Fmin ≤ ∆F (k) ≤ ∆Fmax

(33)

with objective function Jl defined as:

Jl (∆F (k),∆α(k)) =

(F (k − 1) + ∆F (k))
T
P (F (k − 1) + ∆F (k))

+ ∆α(k)TP∆α(k)

+
∂

∂α

(
µ

ε+ det (Ξ(α)ΞT (α))

)
α(k−1)∆α(k).

(34)

The above TA problem can be extended to a predictive
TA problem over finite horizon N . In this regard, the
generated thrust at time step k + i can be formulated as:

F (k + i) =F (k + i− 1) + ∆F (k + i)

=F (k − 1) +

i∑
j=0

∆F (k + j).
(35)

If χF(k) = {∆F (k), ...,∆F (k + N − 1)} and χα(k) =
{∆α(k), ...,∆α(k+N−1)} are the sets of generated thrust
and thrusters’ angle, respectively, over horizon N , then,
using (34) and (35), the cost function of the predictive TA
problem can be formulated as:

Jp

(
χF(k), χα(k)

)
=

N−1∑
i=0

(
F (k − 1) +

i∑
j=0

∆F (k + j)
)T
P
(
F (k − 1)

+

i∑
j=0

∆F (k + j)
)

+ ∆α(k + i)TQ∆α(k + i)

+
∂

∂α

(
µ

ε+ det (Ξ(α)ΞT (α))

)
α(k−1)

i∑
j=0

∆α(k + j)

+ (N − i)∆F (k + i)TP∆F (k + i).
(36)

In the above objective function, the fourth term ∆F (k +
i)TP∆F (k+ i) is added to guarantee the convexity of the
problem and to explicitly take into account the changes of
the thrust generated by actuators during the operation.

Function Jp can be represented in a quadratic program-
ming format as:

Jp

(
χF(k), χα(k)

)
= uTHu+ LTu (37)

where u = [∆FT (k), ...,∆FT (k +N − 1),∆αT (k), ...,
∆αT (k +N − 1)]T ,

H =

2NP 2(N − 1)P · · · 2P 0m×r 0m×r · · · 0m×r

2(N − 1)P 2(N − 1)P · · · 2P 0m×r 0m×r · · · 0m×r

...
...

. . .
...

...
...

. . .
...

2P 2P · · · 2P 0m×r 0m×r · · · 0m×r

0r×m 0r×m · · · 0r×m Q 0r×r · · · 0r×r

0r×m 0r×m · · · 0r×m 0r×r Q · · · 0r×r

...
... · · ·

...
...

...
. . .

...
0r×m 0r×m · · · 0r×m 0r×r 0r×r · · · Q


,

and
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L =



2NFT (k − 1)P
2(N − 1)FT (k − 1)P

...
2FT (k − 1)P

N
∂

∂α

(
µ

ε+ det (Ξ(α)ΞT (α))

)
α(k−1)

(N − 1)
∂

∂α

(
µ

ε+ det (Ξ(α)ΞT (α))

)
α(k−1)

...
∂

∂α

(
µ

ε+ det (Ξ(α)ΞT (α))

)
α(k−1)



.

The constraints of the predictive TA optimization problem
are:

Au ≤ b
Aequ = beq

lb ≤ u ≤ ub

(38)

where

A(
2N(m+r)×N(m+r)

) =

Im 0m×m · · · 0m×m 0m×r 0m×r · · · 0m×r
Im Im · · · 0m×m 0m×r 0m×r · · · 0m×r
...

...
. . .

...
...

...
. . .

...
Im Im · · · Im 0m×r 0m×r · · · 0m×r
−Im 0m×m · · · 0m×m 0m×r 0m×r · · · 0m×r
−Im −Im · · · 0m×m 0m×r 0m×r · · · 0m×r

...
...

. . .
...

...
...

. . .
...

−Im −Im · · · −Im 0m×r 0m×r · · · 0m×r
0r×m 0r×m · · · 0r×m Ir 0r×r · · · 0r×r
0r×m 0r×m · · · 0r×m 0r×r Ir · · · 0r×r

...
...

. . .
...

...
...

. . .
...

0r×m 0r×m · · · 0r×m 0r×r 0r×r · · · Ir
0r×m 0r×m · · · 0r×m −Ir 0r×r · · · 0r×r
0r×m 0r×m · · · 0r×m 0r×r −Ir · · · 0r×r

...
...

. . .
...

...
...

. . .
...

0r×m 0r×m · · · 0r×m 0r×r 0r×r · · · −Ir


and

b(
2N(m+r)×1

) =



Fmax − F (k − 1)
...

Fmax − F (k − 1)
−Fmax + F (k − 1)

...
−Fmax + F (k − 1)
αmax − α(k − 1)

...
αmax − α(k − 1)
−αmax + α(k − 1)

...
−αmax + α(k − 1)



.

Matrix Im is an m×m identity matrix and Ir is an r × r
identity matrix.

The equality constraints matrix Aeq is:

Fig. 2. Tito-Neri vessel.

Aeq(
3N×N(m+r)

) =
Ξα(k−1) 03×m · · · 03×m DΞF 03×r · · · 03×r

Ξα(k−1) Ξα(k−1) · · · 03×m DΞF DΞF · · · 03×r

...
...

. . .
...

...
...

. . .
...

Ξα(k−1) Ξα(k−1) · · · Ξα(k−1) DΞF DΞF · · · DΞF


where Ξα(k−1) = Ξ

(
α(k − 1)

)
and DΞF = ∂

∂αΞ(α)F (k −
1)α(k−1). The equality constraints vector is:

beq(
3N×1

) =


τ(k)− Ξα(k−1)F (k − 1)

τ(k + 1)− Ξα(k−1)F (k − 1)
...

τ(k +N − 1)− Ξα(k−1)F (k − 1)

 .
The vector bounds on u can be derived from (33) as,

lb(
N(m+r)×1

) =



∆Fmin

...
∆Fmin

∆αmin

...
∆αmin


, ub(

N(m+r)×1

) =



∆Fmax

...
∆Fmax

∆αmax

...
∆αmax


.

Then, using (37), the predictive TA problem can be
formulated as:

Pp : min
χF,χα

Jp

(
χF(k), χα(k)

)
(39)

subject to constraints in (38).

4. SIMULATION EXPERIMENTS

In this section, the performance of the proposed control ap-
proach is evaluated using a high fidelity 1:30 replica vessel
model known as Tito-Neri (Figure 2). The maneuvering
model parameters of the vessel is presented and discussed
in Haseltalab and Negenborn (2019b).

For the simulation experiment, a trajectory of real vessels
in IJ river, in Amsterdam metropolitan areas, is chosen
that is shown in Figure 3. The trajectory is scaled down
using Froude scaling so that it is applicable to Tito Neri
vessel. Matlab Simulink 2018a is used for simulations.

The prediction horizon is chosen as N = 20 with controller
sampling time of Ts = 3s. The MPC weight matrix is

Ws =

[
100 0 0
0 100 0
0 0 10

]
, and the predictive TA weighting

matrices are chosen as P =

[
1 0 0
0 1 0
0 0 1

]
and Q =

[
10 0
0 10

]
.
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Fig. 3. Tito-Neri vessel.

The constraints on τs are chosen as τmin = −τmax =
[−2,−2,−2]T and the constraints on thrusters are Fmax =
−Fmin = [3, 3, 3]T and αmax = −αmax = [π/2, π/2]T .

The simulation results are provided in Figure 4 where
the vessels starts its trajectory tracking from [0, 0]. The
trajectory tracking performance is shown in Figure 4a. The
propelling forces generated by the thrusters are shown in
Figure 4b and the angle of azimuth thrusters during the
voyage is presented in Figure 4c.

The speed of the vessel in its own reference frame and its
power consumption are shown in Figure 5. By integrating
over the power consumption, the overall energy consump-
tion during the voyage is calculated using the thrusters
model which is 19.86 W.

This experiment is also carried out using a conventional
discrete PI-based approach where the PI controller pa-
rameters are chosen as Kp = 1.15 and KI = 0.025.
This approach is used in combination with non-predictive
TA approach in (32). The Root-Square Error (RSE) of
trajectory tracking is shown in Figure 6. By integrating
over the RSE results in Figure 6a, the overall RSE of PI-
based approach is derived as 955 while this for the MPC-
based approach is 719.3. Moreover, the overall energy
consumption of the PI-based approach is 24.66 W.

5. CONCLUSION

In this paper, Model Predictive Control (MPC)-based
approaches have been proposed for trajectory tracking
control and Thrust Allocation (TA) of autonomous ves-
sels. Several linearization techniques have been adopted
including Input-Output Feedback Linearization (IOFL) to
enable the use of quadratic programming approaches for
solving the optimization problems of MPC and TA prob-
lem. For the simulation experiment, a replica vessel model
known as Tito-Neri has been adopted and the trajectory
of real vessels in Amsterdam metropolitan waterways are
chosen. The results show that the proposed approaches
are capable of improving the system performance and
decreasing the energy consumption.
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Fig. 4. Trajectory tracking performance of the proposed
control approach.
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Fig. 6. Trajectory tracking performance of the conven-
tional PI-based approach.
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