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Abstract: Oxygen therapy plays a vital role to recover a patient from severe hypoxia as well as to
minimize the risk of hypoxia in a critical situation. Based on this therapeutic technique, this article
presents an application of backstepping control for the oxygenation in a cardiopulmonary system.
A nonlinear multi-compartment system with unknown hysteresis is used as a human model in this
study. With no a priori knowledge of the underlying system dynamics, a radial basis function (RBF)
network is integrated into a closed-loop subsystem and trained to identify the unknown nonlinear
functions. Consequently, a backstepping controller is designed based on the Lyapunov stability theorem
for regulating oxygenation. The theoretical framework and simulation are presented and demonstrated
in terms of stability and control performance under the presence of simulated physiological changes,
possibly caused by pathophysiological effects in the cardiopulmonary system i.e. critically ill patients
with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
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1. INTRODUCTION

Oxygen therapy is an effective technique of medical treatment
for subjects or patients in various clinical conditions (such
as aviation first aid, chronic obstructive pulmonary disease
(COPD), infant respiratory distress syndrome (IRDS), or severe
hypoxia) by providing supplementary oxygen concentration in
the breathing air. The purpose of this technique is to reverse the
adverse consequences of low oxygen in the blood so that oxy-
genation is improved and maintained at an appropriate target
range. In this article, a cardiopulmonary system is considered
based on the control input of a fraction of inspired oxygen
(FiO,) and the output in terms of oxygenation, specifically
arterial oxygen saturation (Sa0O;) or partial pressure of oxygen
in arterial blood (PaO;). Based on a historical perspective, there
were a number of different advanced control strategies nom-
inating for the control of oxygenation, for example adaptive
control (Sano and Kikucki (1985)), robust control (Dugdale
et al. (1988)), an expert system (Waisel et al. (1995)), and a
protocol-driven expert system (Pomprapa et al. (2017b, 2015)).
The most distinctive application is for preterm infants (Pom-
prapa (2015)).

To control oxygenation, a mathematical model of the complex
cardiopulmonary system was developed based on human hy-
poxia using a three-compartment model of lungs, brain, and
lumped body tissue (Fincham and Tehrani (1983a)). In addition,
the regulation of cardiac output and cerebral blood flow was
modeled based on the use of Chebyshev polynomials (Fincham
and Tehrani (1983b)). In this contribution, we design a con-
troller based on this particular model, consisting of coupled
linear models in the compartments, transport delay, first-order
linear model of metabolism and nonlinear relationship of blood
gas. This approach should be able to translate to the closed-
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loop adjustment of FiO, in a mechanical ventilator based on the
concept of oxygen therapy (Pomprapa et al. (2017a)). On one
hand the overall design should be able to handle hypoxia, but on
the other hand, it should be able to avoid hyperoxia that leads
to oxygen toxicity in other body tissues (Mach et al. (2011)).
Therefore, it becomes a challenging task for the optimization
of control input (FiO,) in a nonlinear cardiopulmonary system
with unknown hysteresis and system dynamics.

Backstepping control has been introduced in the early of 1990s
(Kokotovic et al. (1992)) as a systematic and recursive method
to cope with a nonlinear system. The practical applications
of backstepping control are numerous, for example, a power
system (Jain and Khorrami (1995)), a nonholonomic mobile
robot (Fierro and Lewis (1989)), chemical processes (Chen and
Liu (2005)), flight dynamics (Xu et al. (2016)), and a pneumatic
muscle actuator (Carbonell et al. (1995)). Therefore, it is mo-
tivated to investigate its feasibility for a biomedical system, in
particular a nonlinear cardiopulmonary system for the control
of oxygenation. With this control strategy, the virtual control
laws are initially synthesized in small subsystems and progres-
sively derived until reaching the final cascaded subsystem of the
overall system based on the Lyapunov stability theorem (Krstic
et al. (1995)).

This article is organized as follows. It starts with the descrip-
tion of a nonlinear cardiopulmonary system based on oxygen
dynamics of a human model in section 2, followed by a design
of backstepping control using an integrated RBF network in
section 3. Simulation results in various clinical scenarios are
then presented in section 4 in order to evaluate stability and
control performance. In addition, a discussion is provided in
section 5 and this article ends with the conclusion in section 6.
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2. SYSTEM DESCRIPTION

The model configuration of a cardiopulmonary system is pre-
sented in Fig. 1, based on a three-compartment model of lungs,
brain, and lumped body tissue based on linear differential equa-
tions (Fincham and Tehrani (1983a)). The control mechanisms
for cardiac output and cerebral blood flow using Chebyshev
polynomials (Fincham and Tehrani (1983b)) are integrated into
the system modeling. In addition, metabolism and transport
delay between heart and brain tissue (Tg=10 s) are included to
represent a human model.
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Fig. 1. A three-compartment model of a cardiopulmonary sys-
tem with integrated cardiac output and cerebral blood flow
controllers.

A fraction of inspired oxygen (FiO;) serves as a control input
for the system. The internal states (such as partial pressure of
oxygen in arterial blood (PaO,=z;)) are assumed to be acces-
sible and oxygen saturation in arterial blood (SaO;=z;) is the
control output, which is governed by a nonlinear relationship,
providing in eq. (1) with a unit in percent [%] (Tehrani (1992)).

(M

The dynamical behavior of this nonlinear system was simulated
and verified in the previous work under the condition of hypoxia
(Pomprapa et al. (2014a)). The overall cardiopulmonary system
can also be presented in the nonlinear strict-feedback form with
input saturation as follows:

X1 :f()(Xl,t)-l-g()(Xl,t) 71 (2a)

2y =fi(x1,z1,0) + g1(x1,21,0) - 22 (2b)
25 = fh(x1,2,t) + g2(x1,2,t) - sat(u(t)) (2¢)
y(t) = (), (2d)

where x represents a state vector (= [x| z; z3]T = [SaOy.t PaO,
Sa0,1"), z = [z1 z]7), and f;(x,t) and g;(x,t) are the nonlinear
functions with a subscripti € {0, 1,2}, representing each partic-
ular subsystem. u(t) is a control input and a saturation function
of u(t) is defined by eq. (3).

021 if u(t)<0.21
sat(u(t)) = < u(t) if 021 <u(t)<1 (3)
1 i u(t) > 1

3. CONTROL SYSTEM DESIGN
3.1 Radial Basis Function Network

Radial basis function (RBF) network is used to approximate the
unknown nonlinear functions fj(x,t) and g;(x,t) with the idea of
learning kernels in the distinct shape, yielding the approximate
functions fi and g;, respectively (Schilling et al. (2001)). Its
architecture consists of input layer, hidden layer, and output
layer in a cascade structure, presented in Fig 2.
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Fig. 2. Architecture of a RBF network.

Based on its topology, the stimulus input vector (x) is used
in the hidden layer and is defined by a RBF with Gaussian
function (¢(x) : R* — R), which can be expressed by

[ —w5(0) [1?

) j=1ln
20,

;(x) = exp(— @

where 1;(t) represents a center vector for neuron j whilst o;
is called a width of neuron j and || - | denotes the Euclidean
norm. The symbol “n” denotes the overall number of nodes in
the hidden layer. In this work, 5 hidden nodes were chosen.

The unknown nonlinear functions f and g can be approximated
by RBF networks in the hidden layers, which can be expressed
in eq. (5).

n
fi=Y) Wi-o+e (5a)
j=1
n
gi=Y Wgi- 0+ o, (5b)
=1

where Wy and Wg;; denote the weights of f and g at output
layer for a subsystem i and &;; and € represent the modelling
errors of functions fj and gj, respectively. Moreover, functions
f; and g; are assumed to be smooth and g; # 0.

The model approximation f, and &; can then be computed using
the RBF functions, as follow:

(6a)
(6b)

A weighting error matrix Wi is specified by
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Fig. 3. Block diagram of the closed-loop backstepping control technique with the RBF neural network for oxygen therapy.
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and a neural network functional reconstruction error vector
&, =e1 €n] will be used to formulate the Lyapunov function
(V), which is defined by

1 I =T |~
V= EgiTéi‘F Su(WiT; W), ®)
where I is a positive definite matrix. With an assumption,
the desired trajectory and its derivatives are bounded. The
adaptive mechanism for tuning the weighting error matrix can
be provided by the following dynamical equation.

Wi=Tig& — kT3 || & | Wi, ©)
where k, represents a scalar positive constant. The stability
analysis lies on the assumption of bounded ideal weight under
the Frobenius norm and its proof of stability was provided in
Kwan and Lewis (2000).

3.2 Backstepping control design

Given the block diagram in Fig. 3, the control objective is to
stabilize the whole system via state feedback and to control the
output value of oxygenation based on SaO, using a backstep-
ping controller with a RBF network. To design a backstepping
control, a repetitive process is carried out for the synthesis
of the virtual inputs in the subsystems as well as the control
input u(t) in the nonlinear cardiopulmonary system based on
Lyapunov stability analysis (Khalil (2015)).

Step 1: z; is defined by the virtual input and z4 represents the
desired virtual input. We can then formulate eq. (10).

8V1 @ 8V1

Vi=Gx ot ox toteon) (10
v v
= a?ll (f0+g0'Zld)+W:g0(Z1 —2714) (10b)
v
<-W(x)+ Tlgo(ll —714), (10c)
X1

where e; = z; — z1q and W(x) denotes a positive definite func-
tion, provided in eq. (11).

Assumption: A Lyapunov function V exists and satisfies the
following condition to ensure a stability in this particular sub-
system.

avi

—|fi < - 11
%, [fo +g0z14] < —W(x) 1n
Step 2: Let’s determine V»(x) = Vi (xy) + 1e?.
. oV
Vo <=W(x) + 5 ~goer +erér (12a)
1
A%
=—W(x)+e1[5 - go+ei] (12b)
X1
aV1 (921(1
— Vg4 f _7hd g
W(x)+e][8x1 go+fi+giz 9%, (fo +g0z1)]
(12¢)

7 is the virtual control and zpq4 is provided in eq. (13) and
defined so that the second term of eq. (12¢) is negative.

i[alld oA

, Txl(foJrgoZl) —fi— TxllgO*klel}a

Zo4 = (13)
where e, =75 —7pq and k; € RT is required as a designed
parameter to stabilize the subsystem.

Step 3: Similarly as in Step 2, the backstepping control law for
the cardiopulmonary system in terms of oxygen therapy can
then be designed by

u(t) = é[izd*fzfelgl —kae]. (14)
The backstepping control procedure with RBF network is a
repetitive process in analyzing the subsystems based on Lya-
punov functions in order to synthesize the virtual control inputs
and control input u(t). Its derivation remains unchanged even
in the presence of parametric and nonparametric uncertainties.
Thereby, it can be classified as a robust and adaptive control
scheme in order to cope with a nonlinear system with no a
priori knowledge of system dynamics and unknown hysteresis
in a cardiopulmonary system. In eq. (14), the control input u(t)
can therefore be designed based on the estimation of nonlinear
functions (81,8, and f,) using the RBF network, derivative
of virtual input, errors in the subsystems (e; and e;), and the
designed parametric gain (ky). Based on this control design, it
yields

V2 < —W(x) —kie] —kae3, (15)

k; € RT, which guarantees that the overall closed-loop system
is asymptotically stable under the bounded tracking error for
the control of oxygenation.
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4. SIMULATION RESULTS

Based on the proposed human model (Fincham and Tehrani
(1983a) and Fincham and Tehrani (1983b)), the dynamical
response of oxygenation can be simulated using MATLAB with
Simulink (The MathWorks Inc., Natick, MA, USA). To prove
the effectiveness of control performance, a clinical scenario
of possible pathophysiological change was also simulated at
different conditions of atelectasis or loss of lung volume by
changing alveolar ventilation per breath (V) as given in eq.
(16).

0.0271/s ift<300s
. 0.0371/s if 300 <t < 600 s
Val(t) = - 16
Al) 0.0471/s if600<r<900s O
0.057 /s if 600 <t <900 s

The closed-loop control performance is demonstrated as shown
in Fig. 4 for its nonlinear behavior and controller interactions
in the cardiopulmonary system, presenting SaO,, SaO;..f PaO,
and FiO,, respectively. It should be noted that the respiratory
rate was fixed at 15 breaths per minute (bpm).

The input reference (SaOyf) was applied to excite the sys-
tem and used to determine a desired physiological output re-
sponse of (Sa0,). The excitation was a sinusoidal wave with
an amplitude of 1% so that its control operation was in the
nonlinear region. The backstepping controller interacts with the
nonlinear cardiopulmonary system, yielding acceptable control
performance with the bounded error (e(t) = SaO; — SaOyef).
The output of Sa0O; is also in a clinical safety region (> 88%)
(ARDSNetwork (2000); Pomprapa et al. (2017b)) under the
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Fig. 4. Closed-loop control performance under the presence of
step variation in alveolar ventilation, reflecting possible
lung collapse due to a pathophysiological change.

severe condition of the simulated sudden change of alveolar
ventilation, namely the loss of lung volume or atelectasis.

The backstepping controller can react in a closed-loop venti-
lation system to cope with the risks of hypoxia and hyperoxia
by computing and adjusting the control variable FiO, using the
proposed neural-based adaptive control configuration of state
feedback structure. Additionally, PaO; in mmHg was also pre-
sented in Fig. 4, which is based on the nonlinear mathematical
relationship, given in eq. (1). PaO, and SaO, have a direct
dependence, specifically when PaO, variable increased so was
the SaO,. Conversely, when PaO; variable decreased, the SaO,
variable declined as well.

Based on the simulation result in Fig. 4, the control perfor-
mance can be evaluated under various pathological conditions
with an abrupt change of the condition in every 300 s. Four
phases of different pathological conditions were designed with
Va = 0.027 I/s, 0.037 /s, 0.047 Us, and 0.057 1/s, respec-
tively, represented the severe condition for 52% loss of tidal
volume, 35% loss of volume, 17.5% loss of volume and nor-
mal healthy condition in the respiratory system. In all phases,
oxygen therapy was able to reverse the condition of hypoxia.
At the last phase of Va = 0.057 s, it was not able to control
Sa0;. In other words, no tracking performance was achievable
because the system operated under normal tidal volume. There-
fore, PaO, and SaO, remained constant at the lowest physical
limitation of FiO, = 0.21. For the other phases from phase I
to phase III, the condition of the tidal volume was gradually
improved and the backstepping controller was able to stabilize
oxygenation in the safe operating region.

In this simulation, we treated the overall system as a single-
input and single-output (SISO) system for oxygen therapy. The
control input FiO, reacts to stabilize the unknown cardiopul-
monary system and is used to maintain the system output SaO,
at the body compartment based on the computation from the
backstepping controller in a timely manner, which could avoid
hypoxia and hyperoxia by automatic adjustment of FiO;. In
this study with a constant setting of the respiratory rate, the
increment of oxygen concentration in the inspired air (FiO5) is
sufficient to reverse the adverse effect of hypoxia. In addition,
the automated setting of FiO, = 0.21 suppressed the oxygena-
tion in terms of Sa0; as well as PaO, with the prominent effect
of time delay in the cardiopulmonary system. It should also be
noted that we require less amount of FiO, given to the patient
when the condition of lungs was recovered. Last but not least, if
we introduced a low amplitude of the excited sinusoidal signal
(=0.1), the operating point would be in a linear region of the
saturation curve. The backstepping controller was also able to
stabilize the oxygenation and to keep the error bounds within
2%.

As presented in Fig. 4, nonlinear saturation limits and time
delay among the compartments degrade the overall control
performance and it becomes the challenge in dealing with
this particular system. Based on its physiological aspect of
oxygenation, we deal with the underlying unknown oxygen
exchange and oxygen transport in the cardiopulmonary sys-
tem using a multi-compartment model of body tissues, heart,
lungs. The limitation of oxygen bonding, the reserved number
of hemoglobin, metabolism, and transport delay (by blood cir-
culation and blood storage) for each individual patient play a
vital role in the control of oxygenation and they also act as
an unknown constraint in the system. The proposed control
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design should be able to stabilize the oxygenation and prevent
the unexpected severe events at the bedside for the unexpected
events of atelectasis.

5. DISCUSSION AND OUTLOOK

The backstepping control strategy offers a recursive and sys-
tematic approach for the control of oxygenation with no re-
quired accurate patient model. Its closed-loop configuration is
categorized by a state-feedback control structure. In this partic-
ular setup, online identification of unknown nonlinear functions
is carried out with the aid of a radial basis function (RBF)
network. The tuning of the neural network has no learning
phase involved, and it should provide us a practical solution in
the real implementation. It is of great advantage for this control
configuration, which saves time for system identification and
requires no precise mathematical model, especially in the crit-
ical situation with a time constraint to stabilize and maintain
oxygenation at the target range. The analysis of backstepping
control laws is relatively tedious and requires the formulation of
Lyapunov functions in the subsystems. The control signals can
be synthesized based on the guaranteed stability in each par-
ticular subsystem. Therefore, the boundedness of the tracking
error and weight updates can be achievable in the closed-loop
control system by synthesizing the optimal control input FiO,
to prevent hypoxia as well as to avoid hyperoxia during oxygen
therapy.

Typically, backstepping control works well for the system with
linear unknown parameters. However, in this work, we deal
with a system with linear and nonlinear unknown parameters
(Fincham and Tehrani (1983a)) and this control strategy can
also provide a satisfactory control performance with bounded
error under saturation input for FiO, in different clinical com-
plication such as atelectasis and variable cardiac outputs. Based
on the simulation results, we showed that this control strategy is
promising and realizable for the control of oxygenation. There-
fore, it should be stable and safe when we implement this con-
trol strategy in real clinical practice with unknown uncertainties
and with limited variation in the cardiopulmonary system.

The learning ability of the radial basis function (RBF) net-
work will boost the overall system stability and robustness
for the strict-feedback nonlinear system. The parameters of
RBF network based on centers, widths, and weights are up-
dated with guaranteed stability by minimizing the neural net-
work functional reconstruction error vector (éi) (Kwan and
Lewis (2000)). The learning process with guaranteed parameter
convergence was verified in simulated clinical scenarios with
complications of atelectasis and variable cardiac outputs based
on a human cardiopulmonary system (Fincham and Tehrani
(1983a,b)). The key merit of the neural network is to provide
real-time learning for the modeling of a complicated nonlin-
ear system with uncertainties, particularly in the presence of
pathophysiological states, which may have sudden or gradual
changes in internal states.

From the application perspectives, we may extend the use of
this control strategy in the intensive care unit (ICU) for patients
with acute respiratory distress syndrome (ARDS) or with se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
home-based mechanical ventilation for elders and emergency
devices to rescue the patients in need of oxygen therapy. How-
ever, the critical implementation is on the realizable assessment
of internal state variables such as PaO, and SaO,. Further

sensor technique and failure handling of state measurement is
of great interest in the overall development of the mechanical
ventilator in a closed-loop physiological system. In addition,
the sensor settings should be placed at reliable physiological
positions in order to achieve continuous signals with the best
signal quality. An excessive time delay should be avoided be-
cause it may introduce instability into the overall closed-loop
system. This can be realizable by proper positioning of sensors
and stabilizing ambient temperature to minimize the temper-
ature gradient that may worsen the signal quality during the
measurement of oxygenation.

Backstepping control has successfully been implemented in a
number of applications, especially for a mechatronic system
such as a vehicle with active suspension (Yagiz and Hacioglu
(2008)). However, based on our literature survey in a biomed-
ical system, the applications of backstepping controller were
still limited and focused merely on numerical simulations, for
instance tracking control of coronary artery system (Li (2009)),
MRI-guided therapeutic microrobot in blood vessels (Arcese
etal. (2010)), functional electrical stimulation (FES) of agonist-
antagonist muscles (Koo and Leonessa (2011)), and blood glu-
cose control for type I diabetes (Parsa et al. (2014)). Hence, the
translation from numerical simulation to real clinical practice
should be the next challenging task for the control community
in order to realize such a closed-loop system with the proposed
neural-based adaptive backstepping controller. Based on our
knowledge, there is a growing interest in the implementation
of this control method in the medical assistive device i.e. an
exoskeleton for human upper limbs (Li et al. (2015)).

For our future work, the backstepping control algorithm with
the aid of the RBF network should, therefore, be implemented
in order to evaluate the control performance with unknown
system dynamics in practice. The RBF network will perform
the online identification for estimating the underlying unknown
nonlinear functions of an individual patient. With this control
configuration, it promotes a generalized solution for a patient
with cardiopulmonary diseases by no requirement of a priori
knowledge of the system. In addition, further implementation
of multivariable control for gas exchange in terms of oxy-
genation and carbon dioxide (PaCO; or pH value), in which
the Henderson-Hasselbalch equation will play a role in the
nonlinear bicarbonate buffer system (Pomprapa et al. (2014b)).
This should thereby be carried out using the backstepping con-
trol in order to have a complete regulation of gas exchange
during respiration including inspiration and expiration phases.
Additionally, it would be a challenge to integrate this control
algorithm for oxygen therapy to patients with SAR-COV-2 (Tu
et al. (2020)) in order to support and stabilize oxygenation.

6. CONCLUSION

Backstepping control is applicable for a system with multiple
dynamics and with mismatched uncertainties. Based on the
proposed backstepping control scheme with a combination of
the RBF network, we do not require a priori knowledge of
the system dynamics for the control of oxygenation. Using
the multi-compartment model of a human cardiopulmonary
system with unknown parameters, hysteresis effect and time
delay, we present the feasible design of Lyapunov based control
laws and we evaluate the closed-loop stability and the overall
control performance through simulations of unexpected clinical
complications for critically ill patients with acute respiratory
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distress syndrome (ARDS) or with SAR-COV-2 in the presence
of uncertainties such as variable loss of tidal volumes. For
stabilizing and controlling oxygenation in the cardiopulmonary
system, the proposed control technique guarantees the bounded
error at the acceptable safety region. Therefore, this control
strategy would be an alternative for closed-loop control of
oxygenation.
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