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Abstract: This paper addresses the issue of data injection attacks on actuators in control
systems. Considering attacks that aim at maximizing impact while remaining undetected, the
paper revisits the recently proposed output-to-output gain, which is compared to classical
sensitivity metrics such as H∞ and H . In its original formulation, the output-to-output gain
is unbounded for strictly proper systems. This limitation is further investigated and addressed
by modifying the performance output of the system and ensuring that the system from attack
signal to performance output is also strictly proper. With this system description, and by using
the theory of dissipative systems, a Bi-linear Matrix Inequality (BMI) is formulated for system
design. Using this BMI, a design algorithm is proposed based on the heuristic of alternating
minimization. Through numerical simulations of the proposed algorithm, it is found that the
output-to-output gain presents advantages over the other metrics: the effect of the attack is
reduced in the performance output and increased in the detection output in a relatively large
spectrum of frequencies.

Keywords: System security, Quadratic performance indices, Fault detection, H∞ control,
Optimization.

1. INTRODUCTION

The trend towards increased usage of open-standard com-
munication protocols among industrial control systems has
made these systems vulnerable to online cyber-attacks
such as Stuxnet (Langner, 2011). The issue of cyber-
attacks has been addressed in detail for classical Infor-
mation Technology (IT) systems (Bishop, 2002). In IT
systems, cyber-security deals with properties such as confi-
dentiality, integrity, and availability. Although these prop-
erties are essential for control systems, other key features
such as stability and safe operation are not addressed.
Hence the results from classical IT security cannot be
directly extended to control systems.

Security of control systems has been studied in detail
from different contexts such as (a) Modelling of various
possible attacks, (b) Detection of attacks, (c) Quantifying
the impact of attacks and (d) Prevention and treatment
of attacks (Chong et al., 2019).

Possible attack scenarios such as eavesdropping attack,
denial-of-service attack, replay attack, bias injection at-
tack, zero dynamics attack are described in Cárdenas et al.
(2011). A common thread in these scenarios is that adver-
saries are considered to be rational, with given objectives,
resources, and constraints. Detection techniques of attacks
was studied for data injection attacks (Teixeira et al.,
2012), replay attacks (Mo et al., 2015) and routing attacks
(Ferrari and Teixeira, 2017). The context of the attack un-
detectability was studied in Pasqualetti et al. (2015). The
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impact caused by the aforementioned attacks on control
system was studied in Milošević et al. (2018b) and Urbina
et al. (2016). Detectability and impact of attacks are key
aspects in the security of control systems since they char-
acterize the robustness/vulnerability of the control system
against attacks. Given that the control system is under
attack, attack treatment/mitigation through secure state
estimation both in continuous-time (CT) and discrete-time
(DT) has been studied in Fawzi et al. (2014).

Nonetheless, there are still significant gaps in the existing
literature. First, most papers have focused on mitigating
sensor attacks, while stealthy attacks on actuators have
not been as much investigated (Ye and Luo, 2019). Second,
most of the work combining detection and impact has
focused on system analysis (Milošević et al., 2018a), and
these approaches are not amenable to design controllers
and detectors for increased security. Third, the joint design
of controllers and detectors has received little attention,
partly due to the decoupled nature of the sensitivity
metrics used in the related literature (Tan and Patton,
2015), (Ding et al., 2002).

This paper addresses the above mentioned research gaps
by investigating the joint design of controllers and detec-
tors against stealthy attacks on actuators. The contribu-
tion of this article is as follows: Firstly, we look into the
general DT control system representation and investigate
the shortcoming faced by certain sensitivity metrics when
applied to strictly proper systems (Teixeira, 2019). Sec-
ondly, we look into a different approach to address this
limitation in the following way: when control systems are
sampled from CT to DT, certain classes of systems end
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up having algebraic loops which are not entirely causal,
as supported by Blachuta (1999). Hence, we approach
the sensitivity metrics with an altered system description
(which respects causality) which in principle also addresses
the aforementioned shortcomings of the sensitivity met-
ric. Finally, we leverage the recent sensitivity metric, the
output-to-output gain (OOG), and the proposed system
description to cast the joint detector and controller design
as an optimization problem with BMI constraints, which
is tackled through an alternating minimization approach.

We conclude this section by providing the notations that
are used in the paper. A formal problem background is
provided is Section 2. Thereafter, a design problem based
on sensitivity metrics is formulated in Section 3. The
shortcoming faced by this design problem is discussed
in Section 4. An altered system description is proposed
to address this shortcoming. A design algorithm to the
design problem based on this altered system description
is presented. Section 5 provides numerical examples com-
paring the algorithm with the classical sensitivity metrics.
Concluding remarks are provided in Section 6.

Notation:

Throughout this article, R,C,Z and Z+ represent the
set of real numbers, complex numbers, integers and non-
negative integers respectively. A positive (semi-)definite
matrix A is denoted by A � 0, (A � 0). The maximum
and minimum singular values of a matrix A is denoted by
σ̄(A) and σ(A) respectively. The set of eigenvalues of a
matrix A is represented by λ(A). Let x : Z → Rn be a
discrete time signal with x[k] as the value of the signal x
at the time step k. Let the time horizon be [0, N ] = {k ∈
Z+| 0 ≤ k ≤ N}. The `2-norm of x over the horizon

[0, N ] is represented as ||x||2`2,[0,N ] ,
∑N
k=0 x[k]Tx[k].

Let the space of square integrable signals be defined as
`2 , {x : Z+ → Rn| ||x||2`2 , ||x||2`2,[0,∞] < ∞} and the

extended signal space be defined as `2e , {x : Z+ →
Rn| ||x||2`2,[0,N ] <∞,∀N ∈ Z+}. 0m×n(1m×n) represents a

matrix of size m× n where all the entries are zero (one).

2. PROBLEM BACKGROUND

In this section, we describe the control system structure
and the goal of the stealthy adversary. Consider the gen-
eral description of a closed-loop DT linear time-invariant
system with a plant (P), output feedback controller (C)
and anomaly detector (D). For the sake of simplicity, we
assume a static output feedback controller (2). The closed-
loop system is represented by

P :

{
xp[k + 1] = Axp[k] +Bũ[k]
y[k] = Cxp[k]
yp[k] = CJxp[k] +DJ ũ[k]

(1)

C : { u[k] = Ly[k] (2)

D :

{
x̂p[k + 1] = Ax̂p[k] +Bu[k] +Kyr[k]
yr[k] = y[k]− Cx̂p[k],

(3)

where xp[k] ∈ Rnx is the state of the plant, ũ[k] ∈ Rnu

is the control signal applied to the actuator, u[k] ∈ Rnu

is the control signal generated by the controller, y[k] ∈
Rnm is the measurement output produced by the plant,

yp[k] ∈ Rnp is the virtual performance output, x̂[k] ∈ Rnx

is the state estimate produced by the observer based
detector, yr[k] ∈ Rnm is the residue generated by the
detector, L and K are the controller and detector gains
respectively. In general, the system is considered to have
a good performance when the energy of the performance
output (||yp||2`2) is small and an anomaly is considered to

be detected when the energy of the residue (||yr||2`2) is
greater than a predefined threshold (say εr). Without loss
of generality, we assume εr = 1 in the rest of this paper.

2.1 Data injection attack scenario

In the closed-loop system described above, we consider
that an adversary is trying to inject false data into the
actuator of the plant. Given this setup, we now discuss
the resources the adversary has access to.

Disruption resources: The adversary can inject data on
all the control channels. This is represented by:

ũ[k] , u[k] + a[k],

where a[k] ∈ Rnu is the data injected by the adversary.

Model knowledge: The adversary has full system knowl-
edge. This system knowledge is used by the adversary
to calculate the optimal data injection attacks. Defining
e[k] , xp[k]− x̂p[k] and x[k] , [xp[k]T e[k]T ]T , the closed-
loop system under attack with the performance output and
detection output as system outputs becomes:

Pcl :

{
x[k + 1] = Aclx[k] +Bcla[k]
yp[k] = Cpx[k] +DJa[k]
yr[k] = Crx[k] +Dra[k],

(4)

where

Acl ,

[
A+BLC 0

0 A−KC

]
, Bcl ,

[
B
B

]
Cp , [CJ +DJLC 0] , Dp , DJ

Cr , [0 C] , Dr , 0.

Attack goals and constraints: The adversary aims at
deteriorating the system performance while remaining
undetected. Hence, the adversary injects attack signals
to maximize the energy of the performance output while
keeping the energy of the detection output lower than εr.
This objective can be translated into an attack policy,
which is formulated as the following optimization problem:

||Σ||2`2e,yp←yr , max
a∈`2e

||yp||2`2
s.t. ||yr||2`2 ≤ 1, x[0] = 0

(5)

where ||Σ||2`2e,yp←yrrepresents the OOG.

2.2 Dissipative systems theory

The OOG resulting from the optimization problem (5) can
be used for capturing the disruption induced by an attack
signal. This optimization problem (5) is non-convex and
can be reformulated to its convex dual counterpart as:

||Σ||2`2e,yp←yr , min
γ≥0

γ

s.t. ||yp||2`2 � γ||yr||
2
`2 ∀ a ∈ `2e.

(6)
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The strong duality between (5) and the above optimization
problem was shown to be zero in Teixeira et al. (2015). One
drawback of the above optimization problem is that, it
operates in signal space which is infinite dimensional. It is
advantageous, if the optimization problem is in the form of
finite dimensional matrix inequalities. This transformation
can be done by dissipative systems theory. For brevity,
a detailed presentation of dissipative system theory is
omitted (interested reader can refer to Teixeira (2019) and
references therein). But one of the important propositions
is presented below to keep the presentation self-contained.

Definition 1. A system Σ , (A,B,C,D) is said to be
dissipative with respect to the supply function s(·) if there
exists a real valued function V (·) such that the following
equation holds:

V (x[k1])− V (x[k0]) ≤
k1−1∑
k=k0

s(x[k], u[k]) ∀k1 ≥ k0

Remark 2. Without any loss of generality, for this setting,
the storage function can be taken of the form V (x[k]) =
x[k]TPx[k], with P = PT .

Proposition 3. Consider a DT system Σ which is assumed
to be controllable and observable. Let yi[k] = Cix[k] +
Diu[k], i = {1, 2}, s(x, u) = ||y1[k]||22− ||y2[k]||22. Then the
following statements are equivalent:

(1) The system Σ is dissipative w.r.t s(x, u)
(2) For all trajectories of the system with N > 0 and

x[0] = 0, it holds that
∑N−1
k=0 s(x[k], u[k]) ≥ 0

(3) There exists a P � 0 such that[
ATPA− P ATPB
BTPA BTPB

]
−Q � 0, (7)

where Q = [C1 D1]T [C1 D1]− [C2 D2]T [C2 D2].

Remark 4. Define G1(z) = C1(zI − A)−1B + D1 and
G2(z) = C2(zI−A)−1B+D2. Under these definitions, the
necessary condition for dissipativity (cyclo-dissipativity) is
given by the following inequality:

G1(z̄)TG1(z)−G2(z̄)TG2(z) � 0,

∀z ∈ C with z 6∈ λ(A), |z| = 1

2.3 Output-to-output gain

Let s(·) , γ||yr||2`2 − ||yp||
2
`2

. Under this definition, using

(7), the squared OOG (||Σ||2`2e,yp←yr ) which is the optimal

value of (6), can be obtained by:

min
P�0,γ≥0

γ

R(P ) +

[
CTp
DT
p

]
[Cp Dp]− γ

[
CTr
DT
r

]
[Cr Dr] � 0,

(8)

where R(P ) ,

[
ATclPAcl − P ATclPBcl
BTclPAcl BTclPBcl

]
. Here, the optimal

value of the optimization problem denotes the squared-
OOG, which represents the disruption induced by the
attack vector (optimizer of (5)) on the system.

3. DESIGN BASED ON SENSITIVITY METRICS

Sensitivity metrics can be defined as metrics quantifying
the influence of an anomaly (attack in this case) signal

on the system. One of the sensitivity metrics, the OOG,
which captures the worst-case effect of the anomaly in
the detection and performance output, was introduced in
the previous section. Currently, there are a few other ap-
proaches in the literature that deals with defining impact
metrics for the system under attack in the following ways:
the H∞ norm captures the worst-case (highest) effect of an
anomaly in the performance output of the system, the H
index captures the worst-case (lowest) effect of an anomaly
in the detection output of the system.

These sensitivity metrics can be used as an objective
function to design the controller and/or detector of the
system by minimizing the impact on performance and
maximizing the detectability of the anomaly in the system
outputs. This section is aimed at describing the sensitivity
metric and the corresponding design problems.

3.1 Output-to-Output gain (OOG) based design approach

The OOG can be used as an objective function to find
a controller (L) and detector (K) such that the effect of
the attack signal is increased in the detection output and
reduced in the performance output simultaneously. The
OOG optimal controller and detector is obtained by solv-
ing the optimization problem (9), where ||Σ||`2e,yp←yr =
γ∗ is the worst-case ratio of the effect of the attack signal
on the performance output to the detection output.

min
P,γ,L,K

γ∗

s.t. P � 0, γ > 0

R(P,L,K) +

[
CTp
DT
p

]
[Cp Dp]− γ

[
CTr
DT
r

]
[Cr Dr] � 0

(9)

where R(P,L,K) ,

[
ATclPAcl − P ATclPBcl
BTclPAcl BTclPBcl

]
and the

matrices Acl and Cp are functions of L and K.

Remark 5. The main advantage of using such a metric
is that: from Remark 4, it is evident that the detector
(Gr(z)) and the controller (Gp(z)) concentrate on the same
frequency (z). This means that the attack detection and
robustification occur at the same frequency, as opposed to
the classical H∞ and H methods. Hence the OOG design
objective focuses on improving the detectability only when
the impact of the attack signal on the performance output
is sufficiently high at the same frequency. In other words,
in frequency regions where the performance output is low,
the OOG design problem (9) does not focus to improve
the detectability. These observations are later illustrated
through a numerical example in Section 5.

3.2 Classical H∞ and H metrics based design approach

The objective of the H∞ design approach is to find a
feedback controller L, so as to reduce the effect of the
disturbance/attack signal in the performance output. The
classical H∞ design optimization problem is:

||Σ||2H∞
, min

L
max
a∈`2e

||yp||2`2
s.t. ||a||2`2 = 1, x[0] = 0

(10)

where the optimal value of the H∞ norm is ||Σ||H∞ . The
BMI approach for the optimization problem (10) exists in
the literature (Hilhorst et al., 2014) and is given as:
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min
P,β,L

β

s.t. P � 0, β > 0
P P (A+BLC) PB 0

(A+BLC)TP P 0 CTp
BTP 0 βI DT

p

0 Cp Dp βI

 � 0

where β2 = γ.
The objective of the H design problem is to find an
observer gain K, so as to increase the effect of the
disturbance/attack signal in the detection output. The
classical H design optimization problem is:

||Σ||2H , max
K

min
a∈`2e

||yr||2`2
s.t. ||a||2`2 = 1, x[0] = 0

(11)

where the optimal value of the H index is ||Σ||H . The
BMI approach for the optimization problem (11) exist in
the literature (Wang and Yang, 2008) and is given as:

max
P,γ,K

γ

s.t. P � 0, γ > 0 P − CTr Cr −CrDr (A−KC)P
−DT

r C
T
r −DT

r Dr + γI BTP
P (A−KC)T PBT −P

 � 0.

Remark 6. The H∞ design approach reduces the gain
of the system Σp at a frequency z1 where the attack
impact on the performance output is the highest. The H
design approach increases the gain of the system Σr at a
frequency z2 where the attack impact on the detection
output is the lowest. The disadvantage of using these
metrics for system design is that, the frequency at which
the fault detection occurs might not necessarily be the
same frequency at which robustification occurs (z1 6= z2).

4. JOINT DESIGN FOR STRICTLY PROPER
SYSTEMS

Before introducing the design procedure for solving the
non-convex BMIs in the previous section, there are certain
limitations faced by these design metrics when applied to
certain classes of systems. These limitations are discussed
in this section.

Theorem 7. Consider a DT system Σ , (A,B,C,D)
which is assumed to be controllable and observable. Let
yi[k] = Cix[k] + Diu[k], i = {1, 2}, D1 = 0, D2 6= 0 and
s(·) = γ||y1[k]||22−||y2[k]||22, γ ≥ 0. Under these definitions,
the system Σ cannot be dissipative with respect to the
supply function s(·).

Proof. For the system dynamics defined in the statement
of the theorem, using Proposition 3, the dissipation in-
equality (7) becomes:[
ATPA− P ATPB
BTPA BTPB

]
−γ
[
CT1
0

]
[C1 0]+

[
CT2
DT

2

]
[C2 D2] � 0.

(12)

For this inequality (12) to be satisfied, the following
inequality should be satisfied as well (one of the elements of
the above inequality): BTPB+DT

2 D2 � 0. We know that,
with the condition P � 0, this inequality is impossible to

solve (since DT
2 D2 � 0). Hence the LMI (12) is infeasible,

which concludes the proof.

Remark 8. For H control, in accordance with the defini-
tions of Theorem 7, we have y1 = yr for which the system
matrix D1 becomes 0 for any system of the form (4).
This satisfies the assumption made in the theorem above
(D1 = 0). Hence, Theorem 7 imposes a limitation on the
H control/design approach.

Remark 9. For H∞ control, in accordance with the defini-
tions of Theorem 7, we have y1 = a for which the system
matrix D1 becomes I for any system of the form (4).
This does not satisfy the assumption made in the theorem
above (D1 = 0). Hence, Theorem 7 does not impose any
limitations on the H∞ control/design approach.

4.1 Revised system description

This limitation described by Theorem 7 was also a result
pointed out in a previous work (see Teixeira (2019)) where
an approach to circumvent this issue was proposed based
on cyclo-dissipativity which unfortunately leads to a com-
plex design problem. In this section, we will concentrate
on an alternative approach. Let us momentarily consider
a CT plant described by:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t).

The DT version of the plant is obtained by a zero sample
hold (ZOH). The ZOH method can be represented by:

y(t = kh) = C

∫ kh

(k−1)h
ẋ(t)dt+Du(t ∈ [(k−1)h, kh)) (13)

where k is the discrete time step and h represents the
sample time.

This effect, mentioned in (13), is not captured in the sys-
tem description (1)-(3). Hence an system description with
the following variation which respects causality (Blachuta,
1999) is adopted.

y[k] = Cxp[k] +Dũ[k − 1]

yp[k] = CJxp[k] +DJ ũ[k − 1]

Defining e[k] , xp[k]−x̂p[k] and x̄[k] , [xp[k]T e[k]T u[k−
1]T a[k − 1]T ]T , the closed-loop system under attack with
the performance output and detection output as system
outputs becomes:

Pcl :

 x̄[k + 1] = Āx̄[k] + B̄a[k]
yp[k] = C̄px̄[k]
yr[k] = C̄rx̄[k],

(14)

where

Ā =

A+BLC 0 BLD BLD
0 A−KC −KD −KD
LC 0 LD LD
0 0 0 0

 , B̄ =

BB0
I


C̄p = [CJ 0 DJ DJ ] , C̄r = [0 C D D] .

Henceforth in this article, the altered system description
(14) will be used unless stated otherwise.

For the altered system description (14), the results dis-
cussed in Section 3 still holds which is summarized by the
following lemma.
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Lemma 10. The OOG for any given system of the form
(14) is the solution of the optimization problem:

||Σ||2`2e,yp←yr = min
P=PT�0,γ

γ

s.t. R̄(P ) � 0,

where

R̄(P ) =

[
ĀTPĀ− P ĀTPB̄
B̄TPĀ B̄TPB̄

]
−
[
γC̄Tr C̄r − C̄Tp C̄p 0

0 0

]
.

4.2 Joint controller and detector design algorithm

In the previous section, an altered system description was
proposed so that the OOG is bounded for any system of
the form (4). With this altered system description, we aim
to design an OOG optimal controller and detector in this
section. This design algorithm is discussed below.

Theorem 11. Consider the closed-loop system described

in (14). Let D = 0, Define P ,

[
Px Pxu
PTxu Pu

]
where

Px ∈ R(2nx+nu)×(2nx+nu), Pxu ∈ R(2nx+nu)×nu , Pu ∈

Rnu×nu , Ã ,

[
A+BLC 0 0

0 A−KC 0
LC 0 0

]
, C̃p , [CJ 0 DJ ]

and C̃r , [0 C 0] . The OOG optimal controller and
detector for the system (14) are obtained by solving the
following optimization problem:

min
P=PT ,L,K,γ

γ

s.t. Px � 0

PB̄ = 0 −Px PxÃ 0

ÃTPx −Px −Pxu
0 −PTxu −Pu

+ Q̄(γ) � 0,

(15)

where Q̄(γ) ,

0 0 0

0 −γC̃Tr C̃r + C̃Tp C̃p C̃
T
p DJ

0 DT
J C̃p D̃T

JDJ

. The opti-

mal solution variables L? and K? represent the optimal
control and observer gains, where as the optimal value γ∗

corresponds to the optimal OOG.

Proof. The dissipation inequality for any system of the
form (14) can be written as the BMI R̄ � 0. For the
above BMI to be satisfied, the necessary condition must
be satisfied as well: B̄TPB̄ � 0. Recalling the constraint
P � 0, as required for dissipativity, the former necessary
condition can be rewritten as PB̄ = 0.

Under the constraint PB̄ = 0, the BMI R̄ � 0 reduces to

ĀTPĀ− P + C̄Tp C̄p − γC̄Tr C̄r � 0 (16)

Under the definitions D = 0, Ā =

[
Ã 0
0 0

]
, P =

[
Px Pxu
PTxu Pu

]
and by using the Schur lemma (Boyd and Vandenberghe,
2004), (16) becomes the last constraint of (15), which
concludes the proof.

This optimization problem (15) is non-convex due to the
BMI in K,L and Px. Hence, an alternating minimization
approach is proposed in Algorithm 1 (Li et al., 2019).

Result: K∗, L∗, γ∗, P ∗

Initialization: Stabilizing K and L, k := 1;
while ||Pk − Pk−1|| ≥ ε do

(i) Solve (15) with respect to P .
(ii) Update Pk with the result of step (i).
(iii) Solve (15) with respect to K and L.
(iv) Update Lk and Kk with the result of step (iii).

end
Algorithm 1: Joint design of controller and detector

The advantages of designing the controller and detector
with Algorithm 1 are: (a) as a direct consequence of a
unified objective function, a joint optimal design of K and
L is possible, (b) imposing the condition Px � 0 guarantees
that the system is stable, which is an added advantage (c)
if the objective only concerns with the design of controller
(or detector), this algorithm still applies but the steps (iii)
and (iv) of Algorithm 1 is an optimization problem w.r.t.
L (or K) only.

5. NUMERICAL EXAMPLE

In this section, the effectiveness of the proposed Algo-
rithm 1 is depicted through a numerical example.

Example 12. Consider the system described in (14) with

A =

[
2 0 1
1 0.5 0
0 1 −0.5

]
, B =

[
1

0.3
1

]
, C = 11×3, CTJ =

[
I3

03×1

]
,

and DJ =
[
0T3×1 1

]T
. The sub-optimal gains obtained by

Algorithm 1 for the altered system description (14) are
L∗ = −0.6208 and K∗T = [1.2058 0.5283 0.3440]. For
comparison, the classical design problems are solved as
follows:

• The H∞ optimal controller for the altered system
description (14) is traditionally computed by solving
the BMI (Hilhorst et al., 2014). Since this problem
is non-convex, Algorithm 1 is employed to solve
this BMI. The only difference is that the optimization
problem is now only a function of L, γ and P .
• When designing the detector using the H method for

a strictly proper system as in our case, the limitation
mentioned in Remark 8 occurs. This implies that an
optimal detector cannot be designed. Hence a sub-
optimal detector design for a finite frequency range
is adopted (see Theorem 1, Wang and Yang (2008)).
A frequency range in which a solution exist for this
system (ω ∈ [1, 50)) is chosen.

The design gains obtained from these methods are L =
−0.5787 and KT = [1.6997 0.6185 0.3083]. The singular
values of the altered system with these controller gains
are shown in (a) Fig. 1 for performance output (σ̄(Σp))
(b) Fig. 2 for detection output (σ(Σr)). Fig. 1 and Fig. 2
represent the singular values of the system on the unit
circle of the complex plane i.e.: the x-axis of the figures
represent z where z = ejωTs with ω ∈ [0, πTs

]. The dark line

at
π

Ts
rad/sec represents the Nyquist sampling frequency.

5.1 Discussion

As mentioned before, the objective of the H∞ design is
to minimize the effect of the attack on the performance
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Fig. 1. Singular values - Performance output (σ̄(Σp))
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Fig. 2. Singular values - Detection output (σ(Σr))

outputs and the aim of the H design is to increase the
effect of the attack on the detection output. In terms of
singular values (SV), these objectives would translate to:
aiming to have low SV for the former and high SV for
the latter. From Fig. 1, it is clear that in low frequency
the SV of our OOG method performs as expected and
better than the H∞ design. From Fig. 2, it can be inferred
that the detection energy of our OOG method is increased
at almost all frequency ranges. There is a sharp drop at
ω ≈ 1.5 rad/s. The reasoning behind this is as follows: As
the effect of the attack signal in the performance output
is negligible, the detector does-not focus on improving the
detection at these frequency ranges.

Let us now consider a step attack signal of the form:

a[k] =

{
1, k ≥ 1

0, otherwise.

As shown in Fig. 3, the effect of the attack in the nor-
malized performance output energy ( 1

k ||yp||
2
[0,k]) is signifi-

cantly reduced. In addition, the effect of the attack signal is
prominent in the normalized detector output ( 1

k ||yr||
2
[0,k]).

The worst-case attack for the performance output is at
ω = 0.6 rad/sec. Applying this worst-case input signal

a[k] =
√

2 sin (0.60Tsk), the performance of the system
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Fig. 3. System outputs for step attack

is shown in Fig. 4. It can be seen that the detection
and the performance energy is higher than the classical
metrics. Hence, this method can help to improve attack
detection, at the expense of an increased deterioration of
the performance. However, in practice, the performance
deterioration may be prevented by timely switching to a
fault-tolerant controller (Gao, 2015) when the attack is
detected.

The worst-case attack for the detection output is at
ω = 1.42 rad/sec. Applying this worst-case input signal

a[k] =
√

2 sin (1.42Tsk), the performance of the system
is shown in Fig. 5. Although the detection energy is
lower than the classical metrics, it can be noted that the
detection energy at time intervals [0, 5] s is very close to
that of the classical metric which can help in detection.
Moreover, although the detection is harder in this case,
the performance degradation is also less significant when
compared to the other attack signals examined in this
section. By shifting the focus from attacks with small
impact on performance, the detector has managed to
improve its detection capabilities for other attacks with
higher impact.

With the H∞ and H optimal controller and detector
obtained from Algorithm 1, we obtain γ = 238.4265 by
solving (8). With the OOG optimal controller and detector
parameters from Algorithm 1, we obtain γ = 74.7920 by
solving (8). This is an indication of the bound imposed by
the choice of the design metric chosen on the disruption
induced by the attack signal.

6. CONCLUSION

This paper considers actuator attacks that aim at maxi-
mizing impact while remaining undetected, and proposes
a joint detector and controller design approach based on
dissipative systems theory and alternating minimization.
Numerical examples are provided to compare the effec-
tiveness of the proposed approach. Future work directions
include the extension to other classes of attacks, as well as
to other controller structures.
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2 sin (0.60Tsk)
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