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Abstract: During the technological preparation of the cutting process, it is necessary to
determine the path of the cutter when there are no self-intersections of the cutting path and the
part cut off from the sheet does not require any cuts, then arise the problems: first, representation
of the cutting plan as a planar graph which is the homeomorphic image of the cutting plan;
second, algorithms to find the cutter routes in this graph. The paper is devoted to a polynomial-
time algorithm for constructing a non-intersecting ordered enclosing chain (NOE-chain) for a
plane Eulerian graph. The proposed approach consists in splitting of all original graph vertices
with degree higher than 4 by introducing fictive vertices and edges and, thus, reducing the
considered earlier problem to the problem of finding an A-chain with ordered enclosing in
a plane connected 4-regular graph. A test example of constructing NOE-chain with ordered
enclosing is considered.

Keywords: CAD/CAM, Graph theoretic models, Graph theory, Path planning, Routing
algorithms, Software performance

1. INTRODUCTION

During the technological preparation of the cutting pro-
cess, it is necessary to determine the path of the cutter
when there are no self-intersections of the cutting path
and the part cut off from the sheet does not require any
cuts, then arise the problems: first, representation of the
cutting plan as a planar graph which is the homeomorphic
image of the cutting plan; second, algorithms to find the
cutter routes in this graph.

The paper by Silva et al. (2019) is devoted to the CPDP
(Cutting Path Determination Problem), which consists in
determining the optimal path for cutting according to a
given cutting plan with one or more tools. The authors
assume that there are two obvious restrictions: 1) all parts
must be cut out; 2) none of the cut out parts should
require further cuts, i.e. OE (Odered Eclosing) constraint
by Makarovskikh et al. (2015) is fulfilled. To solve the
CPDP problem, more detailed statements are known:
GTSP (General Traveling Salesman Problem, see Xie et al.
(2009); Jing et al. (2013); Dewil et al. (2015, 2016); Hoeft
et al. (1997); Dewil et al. (2014); Petunin et al. (2016);
Chentsov et al. (2018); Khachay et al. (2018); Chentsov
et al. (2016)), CCP (Continuous Cutting Problem Point),
ECP (Endpoint Cutting Problem), see Manber et al.
(1984); Lee et al. (2006), and ICP (Intermittent Cutting
Problem, see Makarovskikh et al. (2015)). Note that ECP
and ICP allow the combination of the parts borders, which
reduces material waste, cutting length and idle lengths (see
Dewil et al. (2015)). The problems of reducing material
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waste and maximizing the combination of the contours
fragments of the cut out parts are solved at the stage of
the cutting plan design.

Despite the noted advantages of the computer technologies
ECP and ICP most publications are currently devoted to
the development of GTSP and CCP technologies, which
use obvious cutting path algorithms consisting in contour-
by-contour cutting.

The development of ECP and ICP computer technologies
are considered, for example,in papers by Makarovskikh
et al. (2015); Manber et al. (1984); Panyukova (2007). The
polynomial algorithms for OE routing (when the part cut
off from a sheet does not require further cuts) are given
there.

For industrial enterprises related by their activity to the
tasks of cutting sheet material, there is a need to use
CAD/CAM systems for the technological preparation of
cutting processes. Taking into account the capabilities of
modern equipment for cutting parts from sheet material
allows you to make cutting plans that allow combining the
contours of the cut parts, which reduces material waste,
cutting length, and the number of idle passes. Algorithms
for cutting plans design for tasks that allow combination of
cuts do not fundamentally differ from algorithms that do
not allow combination. However, the algorithms for finding
the paths of the cutting tool movement are fundamentally
different. Therefore, the development of algorithms for
finding the route of the cutting tool for cutting plans that
allow the combination of the contours of the cut parts is
an open task.
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Our research is devoted to routing problems in plane
graphs, which are homeomorphic images of cutting plans.
Makarovskikh et al. (2019) give the description of the
format used for representation of the cut-out parts and
a cutting plan. The route covering all the borders of the
cut parts determines the path of the cutting tool. The
technological constraint is the absence of intersection of
the internal faces of any route initial part with the edges
of its remaining part. When constructing manipulator
control systems using an undirected graph as a model
of cutting plan we may display various elements of the
manipulator trajectory by it. In this case, problems of
constructing routes that satisfy various constraints arise.

As it was mentioned before, the most used approach is
one not involving the combination of the contours of the
cut parts. This method is material intensive and energy
consuming.

If the cutting plan represents a plane Euler graph, then
it is known that its dual face graph is bichromatic. For
this case, Bely (1983) proved the existence of an Euler
cycle homeomorphic to a plane Jordan curve without
self-intersections. However, the possibility of using this
result for CAD/CAM systems for the technological prepa-
ration of cutting processes remained unclear. The algo-
rithm proposed by Bely (1983) paper is polynomial. Sub-
sequently, Manber et al. (1987) gave the proof of the NP-
completeness of this problem. Further Fleischner (1990)
introduced the concept of a A-chain in which the allowed
transitions between edges are given in a cyclic order at
each vertex of the graph. He also showed that the problem
of determining the A-chain is NP-hard in the general, he
presented some particular cases for which the problem is
solvable in polynomial time. One such special case is a
4-regular graph.

Attempts to construct routes in which the covered part
does not cover edges that have not yet been completed
were made by Manber et al. (1984). A mathematical
statement of this problem in terms of OE-chains was
given by Panyukova (2007), however, the OE-chain allows
the possibility of self-intersections of the trajectory. The
construction of non-intersecting OE-chains (NOE-chains)
in plane Eulerian graphs has the great theoretical and
practical value.

We say a chain obtained by splitting the vertices of
the original graph is non-intersecting one if it home-
omorphic image is a plane Jordan curve without self-
intersections. Obviously, AOE-chain is non-intersecting
one. Makarovskikh et al. (2019) propose the polynomial
algorithm for constructing AOE-chain for the particular
case when the cutting plan is homeomeric to a plane
connected 4-regular graph.

In this paper we propose a polynomial algorithm for con-
structing a non-intersecting chain in a plane connected
Eulerian graph. The algorithm proposed here solves the
routing problem when two technological restrictions are
fulfilled: the part cut from the sheet does not require ad-
ditional cuts (some papers on this problem are Panyukova
(2014); Makarovskikh et al. (2016, 2015)) and there are no
intersections in the cutting path (the first announcement
of these results is made in Makarovskikh et al. (2017)).

Next section 2 contains the necessary definitions and de-
scribes the notation used to represent the data. Section 3
considers a class of non-intersecting OE-chains (or NOE-
chains). It is shown that the problem to construct NOE-
chain in a plane connected Eulerian graph can be reduced
in polynomial time to the problem of constructing the
AOE-chain for a plane connected 4-regular graph. An
algorithm for such reduction is given. Section 4 considers
a test example of constructing the NOE-chain. In conclu-
sion, the results obtained in the work are listed.

2. MAIN DEFINITIONS AND DESIGNATIONS

In this paper we use the graph representation from earlier
works (see Makarovskikh et al. (2019, 2016, 2017); Pa-
nyukova (2014); Makarovskikh et al. (2015)). Instead of
data cutting plan we use it homeomorphic image which is
a plane graph G with outer face f0 on plane S. Let for any
part J of graph G (i.e. J ⊆ G) Int (J) designates the set-
theoretic union of its inner faces (union of all connected
components S \ J without outer face). If J is an initial
part of the rote then Int(J) may be interpreted as a parts
cut off a sheet.

The topological representation of plane graph G on plane
S up to homeomorphism can be defined by the following
eight functions for each edge e ∈ E(G): vk(e), k = 1, 2
be the vertices incident to e; lk(e), k = 1, 2 be the
edges obtained by rotating of e counter clockwise around
vk(e); rk(e), k = 1, 2 be the edges obtained by rotating
e clockwise around vk(e); fk(e) be a face at right when
we move by e from vk(e) to v3−k(e), k = 1, 2 (see
Makarovskikh et al. (2016, 2015)).

In fact, graph representation gives the orientation of its
edges. Later we suppose that we move by edge from vertex
v1(e) to vertex v2(e). As soon as we do not know the
direction of passing an edge when we code graph G then
we need a function changing the indices of functions vk(e),
rk(e) lk(e), fk(e), k = 1, 2 for some edges. Function
REPLACE makes it for the presented algorithms. Its aim
is changing the indices of functions vk(e), lk(e), rk(e), and
fk(e) to 3− k, k = 1, 2 (see Makarovskikh et al. (2016)).

Let’s assume that off the considered plane graphs are rep-
resented by these functions. The space complexity of this
representation is O(|E(G)|·log2 |V (G)|) (see Makarovskikh
et al. (2019)). In further we wil use the following definitions
from papers Panyukova (2007); Szeider (2003); Fleischner
(1990). Here are the main ones for the readers convenience.

Definition 1. (Panyukova (2007)). We say that cycle C =
v1e1v2e2 . . . vk = v1 of Eulerian graph G has ordered
enclosing (or being OE-trail for short) if for any its initial
part Ci = v1e1v2e2 . . . ei, i ≤ |E(G)| condition

Int (Ci) ∩G = ∅
holds.

Definition 2. (Fleischner (1990)). Eulerian chain T is called
A-chain if sequent edges of T incident to vertex v be the
neighbours in cyclic order O±(v).

Definition 3. Let rank of edge e ∈ E(G) be called a value
of function rank(e) : E(G)→ N recursively defined:

• let E1 = {e ∈ E : e ⊂ f0} be a set of
edged bounding outer face f0 of graph G(V,E) then
(∀e ∈ E1) (rank(e) = 1);
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Algorithm 1 NOE-CHAIN (G)

Require: plane Eulerian graph G, presented by functions vk(e),
lk(e), rk(e), fk(e), k = 1, 2 rank(e);

Ensure: NOE-chain T (G);

1: Ĝ = NonIntersecting(G);. Split vertices of degree greater than 4

2: G̃ = CutPointSplitting(Ĝ); . Split cut-vertices at each rank

3: C∗=AOE TRAIL(G̃); . Obtain AOE-chain for graph G̃
4: C=Absorb(C∗); . Absorb all splitted vertices

Fig. 1. The initial pointers to the neighbouring edges of
the splitting vertex

• let Ek(G) be a set of edges having rank = 1

Gk

(
V,E\

(
k−1⋃
l=1

El

))
then (∀e ∈ Ek) (rank(e) = k).

Edge rank defines the remoteness of an edge from the outer
face and shows the minimal number of faces to be passed
to reach this edge from the outer face f0.

Definition 4. (Makarovskikh et al. (2015)). Let rank of
face f ∈ F (G) be the value of function rank : F (G) →
Z≥0:

rank(f) =

{
0, if f = f0,
min

e∈E(f)
rank(e), otherwise,

where E(f) be the set of edges incident to face f ∈ F .

3. NOE-CHAINS CONSTRUCTING ALGORITHM

The considered by Makarovskikh et al. (2019) class of
AOE-chains is rather narrow. Moreover, there are no
known effective algorithms for constructing of these chains.
As a matter of fact, for practice it is enough to obtain non-
intersecting OE-chains in spite of AOE-chains.

Definition 5. Let Eulerian cycle C of plane graph G be
non-intersecting if it is homeomorphic to a closed Jordan
curve without intersections obtained from graph G by
applying of O(|E(G)|) splittings of its vertices.

To obtain the non-intersecting Eulerian OE-chain (or
cycle) for plane connected Eulerian graph (in further we
call whis chain as NOE-chain) we may use the following
algorithm 1.

Function Non-intersecting (G) (algorithm 2) constructs

the 4-regular graph Ĝ by splitting all vertices v ∈ V (G)
of degree d = 2l (l ≥ 3) to l fictive vertices of degree 4
and adds l fictive edges incident to vertices obtained by
splitting and forming the cycle (see fig. 1 and fig.2).

Algorithm 2 Function Non-intersecting (G)

Require: plane Eulerian graph G presented by functions vk(e),
lk(e), rk(e), fk(e), k = 1, 2, and rank(e);

Ensure: plane connected 4-regular graph G∗ defined the same way;
1: for all v ∈ V (G) do . Initialization of Checked(v) function
2: Checked(v) := false;
3: end for
4: for all (e ∈ E(G) ) do . Search v : d(v) > 4 and split it them
5: k := 1; . Consider vertex with k = 1, then k = 2
6: while (k ≤ 2) do
7: if (! Checked(vk(e))) then . Is it unprocessed earlier?
8: if (k = 2) then . Correct the indices
9: REPLACE(e); . later only v1(e) handles

10: end if
11: Handle ( e); . Run the function for handling v1(e)
12: Checked(v1(e)) := true; . Mark vertex as viewed
13: end if
14: k := k + 1;
15: end while
16: end for

End of function

Fig. 2. Splitting the vertex (bold lines show the edges of G,
and the thin ones show the fictive ones) and modifying
the pointers according to splitting

For all considered modifications we need to look through
the functions vk(e), k = 1, 2 for all edges e ∈ E(G), and
modify the graph encoding system. To achieve this goal
we need boolean function

Checked(v) =

{
true, if vertex is handled;
false, otherwise

on set V (G). At initialization stage (lines 1–3 of algorithm
2) all vertices are said to be not checked, i. e. Checked(v) =
false for all v ∈ V (G). Handling the vertex v = v1(e)
so that Checked(v) = false consists in running the
procedure Handle (e) (algorithm 3).

Algorithm 3 during cycle repeat–until (lines 6–11) counts
the degree d of current vertex v. If d > 4, then the second
cycle repeat–until (lines 12–23) runs. IN this cycle the
handled vertex is splitted to d/2 fictive vertices, d fictive
edges incident to these vertices and forming a cycle are
introduced.

Let us admit that lines 18–23 are dealing not only with
changing the pointers to edges but also create a new
(fictive) face F , incident to all fictive vertices and edges,
and also define the ranks of fictive edges.

Definition 6. The rank of fictive edge (line 20) is equal to
rank of initial graph face incident to the entered fictive
edge.

After obtaining plane connected 4-regular graph Ĝ with
defined ranks of fictive edges and introduced fictive faces
we may consequentially run:
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Algorithm 3 Procedure Handle (e)

1: procedure Handle(e)
2: v := v1(e); . Splittable vertex
3: efirst := e; . Save the first considered edge
4: d := 0; . Initialization of degree counter d
5: F := FaceNum() + 1; . Define the number of a new face
6: repeat . Pass 1: Defining the degree of v
7: le := l1(e);
8: if (v1(le) 6= v) then REPLACE(le);
9: end if . Change the indices if necessary

10: e := le; . Take the edge into account
11: (d := d + 1;) . and go to the next one
12: until (e = efirst); . All edges incident to v are viewed
13: if (d > 4) then . If the degree of vertex is greater than 4
14: e := efirst; . Begin from the first considered edge
15: le := lk (e); . Define its left neighbour
16: enext := lk (le); . Save the edge for the next iteration
17: fl := new EDGE; . Add the fictive edge adjacent to le
18: (fle := fl; efirst := e;)
19: repeat . Put the edge pointers
20: e := enext; le := lk (e); fr := fl;
21: f1(fl) := F ; f2(fl) := f2(e);
22: . Define the faces incident to a fictive edge
23: rank(fl) := facerank(f2(fl));
24: . Define ”rank” of fictive edge
25: Function facerank()
26: . defines the face rank according to the definition
27: fl := new EDGE; enext := lk (le);
28: until (lk(le) = efirst);
29: end if
30: end procedure

• algorithm CUT-POINT-SPLITTING(Ĝ) for obtaining

graph G̃ with splitted cut-vertices of each rank;

• algorithm AOE-TRAIL(G̃) (see Makarovskikh et al.
(2019)) for constructing the AOE-chain C∗ for graph

G̃.

When constructing a chain C∗ algorithm AOE-TRAIL(G̃)
having opportunity to take one of two adjacent unpassed
edges of the same rank firstly takes the fictive edge to
guarantee the fulfilment of ordered enclosing condition.

Procedure Absorb(∗) replaces all the fictive edges and their
incident vertices (obtained while splitting v) from ∗ (runs
the operation of absorbing the fictive vertices). As a result
of running this procedure we obtain NOE-chain C for
initial graph G. Chain C obtained after deleting the fictive
edges and absorbing the fictive vertices belongs to class
OE as soon as procedure of edges deleting does not vanish
the order of the remaining edges of a chain. That excludes
the appearance of a cycle covering still not passed edges.

As soon as procedure Handle consists of two consecu-
tive scans of incident to current vertex v edges then
itscomputing complexity is equal to O(|E(G)|). Func-
tion Non-Intersecting consists in a single scan of
all edges, that is, its computational complexity is also
O(|E(G)|). Hence, algorithm for reducing a plane con-
nected Eulerian graph to a plane connected 4-regular
graph solves the problem in time O(|E(G)|2). Since the
algorithm AOE-TRAIL and function CUT-POINT-SPLITTING
Makarovskikh et al. (2019) preceding its call solve the
problem of obtaining AOE-chain C by time O(|E(G∗)| ·
log2 |V (G∗)|), then the problem of NOE-chain construct-
ing for graph G is solved by polynomial time O(|E(G)|2).

Fig. 3. The initial graph for the example of NOE-chain
constructing with a vertex of degree greater than 6
not incident to outer face

Fig. 4. Obtained 4-regular graph Ĝ

The above proves the following theorem.

Theorem 7. Algorithm NOE-CHAIN solves the problem of
constructing the NOE-chain for plane Eulerian graph by
time O(|E(G)|2).

4. EXAMPLE

Let us consider the running of algorithm on the example pf
graph in figure 3. This example involves the common case
when graph has a vertex of degree 6 or more not incident
to outer face and also graph has some cut-vertices (and
receives some after splitting process) of different ranks.
This graph is Eulerian, hence, the constructing of NOE-
chain may start from any vertex incident to outer face. Let
it be v2.

After procedure Handle() running we get graph in fig-
ure 4. As it is easy to see all vertices of this graph have
degree 4. Graph in figure 4 besides the split vertex v3
has cut-vertices v4 and v6 of ranks 3 and 2 correspond-
ingly, and also cut-vertex of rank 2 in the split vertex
v3 incident to edges e13, e4, and two fictive edges of the
same rank. These vertices are to be split by algorithm
CUT-POINT-SPLITTING. The result of running this algo-
rithm is shown in figure 5. Algorithm AOE-Trail allows
to define AOE-chain for the obtained graph. The symbol
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Fig. 5. 4-regular graph G̃ without cut-vertices at any rank

Fig. 6. The resulting non-intersecting OE-chain C

”*” means the transition by fictive edge(s). The chain is
following

T ∗ = v2e5v1e4v3 ∗ ∗ ∗ e19v4e17v5e18v4e20v3e16v5e15v3 ∗
e3v8e12v6e9v7e10v6e11v9e14v3e6v9e7v7e8v8e2v3 ∗
e13v1e1v2,

After absorbing the split vertices we get the following
NOE-chain for initial graph (see figure 6):

T ∗ = v2e5v1e4v3e19v4e17v5e18v4e20v3e16v5e15v3

e3v8e12v6e9v7e10v6e11v9e14v3e6v9e7v7e8v8

e2v3e13v1e1v2,

5. CONCLUSION

The algorithm proposed in the paper solves the routing
problem for cutting parts, when the following technological
restrictions are simultaneously imposed on the path of
the tool: (1) the part cut off from the sheet does not
require additional cuts (OE-routes), (2) there are no self-
intersections of the cutting path (NOE-chains).

The presented algorithm allows to obtain a NOE-chain in
a plane Eulerian graph. In the case of a plane non-Eulerian

(in the general case a graph is disconnected) graph G
without end-vertices, it is necessary to split all vertices of
degree higher than 4 in accordance with algorithm 3. As a
result, we obtain a graph having the degrees of vertices are
3 or 4 (w.l.o.g. vertices of degree 2 are not considered). For
this graph, the same sequence of actions is applicable as
described by Makarovskikh et al. (2019) for constructing
the AOE-cover. The chains of the resulting covering do
not contain any fictive edges, absorbing together all the
split vertices. As a result, we obtain NOE-covering.
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