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Abstract: Gas utilization rate (GUR) is an important state parameter to reflect the energy
consumption, the quality and production of the pig iron, and the distribution of the gas flow
in a blast furnace. The GUR is mainly adjusted by burden distribution and hot-blast supply.
According to the analysis of mechanism and data, burden distribution and hot-blast supply affect
the GUR on a long-time scale and short-time scale, respectively. However, few of the previous
researches proposed the control method for the GUR and they did not consider multi-time-
scale characteristics. Thus, it is necessary to design a control strategy or system for the GUR
considering the multi-time-scale characteristics, which can make the GUR have a reasonable
development trend. This paper presented a burden control strategy based on a reinforcement
learning algorithm for the GUR. The method improved the development trend of the GUR on a
long-time scale. The experimental results demonstrated that the sequence of the parameters of
the burden distribution given by the presented method ensured a reasonable development trend
of the GUR on a long-time scale.

Keywords: Blast furnace, gas utilization rate, burden control strategy, reinforcement learning
algorithm, long-time scale.

1. INTRODUCTION

A blast furnace (BF) is a complex reactor to convert iron
ore into liquid pig iron through a series of physical changes
and chemical reactions (shown in Fig. 1) (An et al., 2020,
2018b; Gomes et al., 2017). The iron ore and coke are
discharged into a BF from the top to form the iron-ore
layers and coke layers, which are controlled by burden
distribution. The hot blast is discharged into a BF from
the bottom, which is adjusted by hot-blast supply. The
coke burns with the hot blast to form an upward gas flow.
Then, the iron ore reacts with carbon monoxide in the
upward gas flow to form liquid pig iron, slag, and BF gas
flow. The BF gas flow is discharged from the top of a BF,
which is called the top gas flow. The gas utilization rate
(GUR) is the ratio of the carbon dioxide content to the
total content of carbon monoxide and carbon dioxide in
the top gas flow. The GUR, ρCO, is calculated as

ρCO =
VCO2

VCO + VCO2

. (1)

⋆ This work was supported in part by the National Natural Science
Foundation of China under Grants 61973287 and 61333002, and the
111 project under Grant B17040.
1 Corresponding author: anjianqi@cug.edu.cn (Jianqi An)

Improving the GUR is good for reducing consumption,
improving the quality of the pig iron, and increasing the
production. Thus, it is important to control the GUR.

Some researches analyzed the GUR based on mechanism
analysis. For example, a definition of the GUR was given
by analyzing the correlation between the GUR and the
chemical reactions (Kou et al., 2016). A gas flow distribu-
tion and operation state were determined by the GUR in
a BF (Xiang et al., 2013). An impact of the natural gas
injection on GUR was analyzed by mathematical modeling
and energy exchange (Guo et al., 2013).

In addition, some researches focused on predicting and/or
optimizing GUR based on data-driven methods. For ex-
ample, a relation model based on low-frequency feature
extraction was established to analyze the explicit rela-
tion between the burden distribution and states (Zhang
et al., 2017). Thereby, a decision-making strategy was
designed to improve the GUR according to adjust the
burden distribution (Wu et al., 2018). Besides, a hybrid
model was established to improve the GUR according to
analyzing the position of the pile surface (Shi et al., 2016).
Meanwhile, some models were built to predict the GUR,
such as a model based on an online sequential extreme
learning machine (Li et al., 2017) and an echo state net-
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Fig. 1. Structure of BF

work ensemble model based on quantile regression (Lv
et al., 2016). And some methods were proposed to analyze
the characteristics of the GUR. For example, a method
based on fuzzy theory was used to analyze the relationship
between the top pressure and the gas distribution (An
et al., 2018a). A model combining the T-S fuzzy neural
network and particle swarm optimization was built to
describe the relationship between operations and the GUR
(Zhang et al., 2018). A model based on a fuzzy C-means
clustering and statistical knowledge was used to analyze
the features of the distribution for the gas flow center and
corresponding GUR (Li et al., 2016). A phase space model
based on the chaotic characteristics was built to reveal
the characteristics of the development for the GUR (Xiao
et al., 2017).

The previous researches made great contributions to opti-
mizing the GUR, which provided some guidance for the
BF operators. However, few of them gave the control
method to improving the GUR. Besides, these methods
only focused on a single-time scale when analyzing the
relationship between the GUR and the operations of a BF.
According to the mechanism and data analysis, burden
distribution affects the GUR on a long-time scale; hot-
blast supply affects the GUR on a short-time scale (An
et al., 2019). Therefore, it is necessary to design a control
method based on the multi-time-scale for the GUR.

The main purpose of this paper is to design a burden
control strategy based on the reinforcement learning algo-
rithm. The strategy is used to ensure that the GUR main-
tains a reasonable development trend on a long-term scale.
While the high GUR means lower energy consumption,
higher molten iron quality, and more reasonable gas flow
distribution, which further means reasonable operations
of a BF. Thus, the reasonable development trend in this
paper is that the GUR keeps rising in a period of time.
The rest of this paper is organized as follows. Section 2
introduces the reinforcement learning, especially the Q-
learning algorithm. Section 3 presents a burden control

strategy based on Q-learning on a long-time scale. Section
4 analyzes experimental results to demonstrate that the
presented method improves the GUR on a long-time scale.
And Section 5 draws conclusions and introduces the future
works.

2. REINFORCEMENT LEARNING

Reinforcement learning learns a suitable behavior through
the experiences generated by the interaction between an
agent and the environment (Sutton and Barto, 2011).
The formalization of reinforcement learning is based on
a Markov decision process, which mainly contains 5 ele-

ments, ⟨S,A,Pa(t)
s(t)s(t+1),R(t+ 1), γ⟩, where

• S denotes a set of states of the environment, and
s(t) ∈ S means a state at time t;

• A denotes a set of actions of an agent, and a(t) ∈ A
means a action selected at time t;

• Pa(t)
s(t)s(t+1) denotes the probability of selecting a(t)

when s(t) is changed to s(t+ 1);
• R(t+ 1) denotes a reward given by the environment
when s(t) is changed to s(t + 1) by executing a(t);
and

• γ denotes the discount rate.

As the Q-learning algorithm is one of the most important
algorithm in reinforcement learning proposed in Watkins
and Dayan (1992), this paper uses a Q-learning algorithm
to train the burden control sequence. The most important
step of Q-learning is to train an action-value function
Q(s(t), a(t)), which means the expected value when s(t)
is changed to s(t+ 1) after executing a(t). Q(s(t), a(t)) is
updated as{
Q(s(t), a(t)) = Q(s(t), a(t)) + α∆R
∆R = R(t+ 1) + γmax

a
Q(s(t+ 1), a)−Q(s(t), a(t))

,

(2)
where α ∈ (0, 1] is the learning rate.

According to the updated method of Q(s(t), a(t)), the Q-
learning considers the impact of current state and action
on subsequent states. In the iron-making process, the
subsequent GUR is affected by the current parameters of
the operations of BF. Thus, this paper uses the Q-learning
algorithm to design the burden control strategy for the
GUR on a long-time scale.

3. BURDEN CONTROL STRATEGY FOR GUR

This section introduces a burden control strategy for the
GUR based on Q-learning algorithm, which is designed
to keep a reasonable development trend for the GUR on a
long-time scale. The method contains 6 parts: the selection
of the controlled state G(t), the definition of states S and
actions A, the policy of action selection π(a(t)|s(t)), the
calculation of the reward R, the update of Q(s(t), a(t)),
and the strategy of burden control.

3.1 Selection of Controlled State

The main purpose of the method is to keep the GUR
rising on the long-time scale. Thus, this paper uses the
long-time-scale part of the GUR as the controlled state
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G(t). The long-time-scale part of the GUR is obtained by
the decomposition and reconstruction methods proposed
in An et al. (2019).

3.2 Definition of States and Actions

This part defines the states and actions used in the burden
control strategy.

States The goal of the control strategy is to improve
the development of the long-time-scale part of the GUR.
According to the analysis in An et al. (2019), the long-
time-scale part of the GUR is mainly affected by the
burden distribution. Thus, the parameters of the burden
distribution are selected as the states in S.
According to the mechanism relationship, the changes in
the parameters of the burden distribution are directly
reflected in the ore-to-coke ratios and central-coke ratios
in a BF. The ore-to-coke ratio is a ratio of the thickness
of the ore layer to the coke layer in the corresponding
angular position; the central-coke ratio, the ratio of the
amounts of the central coke to the total coke in the
corresponding angular position. Thus, this paper uses 4
ore-to-coke ratios and 2 central-coke ratios as the states
of burden distribution according to the actual run data
collected from a 2800 m3 BF.

Besides, the long-time part of the GUR cannot keep rising
for an indefinite period of time. Therefore, this paper adds
a state of time to S, which means it keeps rising for a
certain period of time.

Hence, the state, s(t) ∈ S, is defined as

s(t) = (sT (t), soc1(t), soc2(t), soc3(t),

soc4(t), sc1(t), sc2(t)),
(3)

where sT is used to control the total period of time.

Since the real values of the ore-to-coke ratio and central-
coke ratio vary at all times, this paper uses the interval to
represent the states of burden distribution. For each ore-
to-coke ratio and central-coke ratio, this paper first divides
the real values into different intervals by a frequency dis-
tribution histogram. Then, this paper chooses the median
value of the interval to represent this interval. S contains
these median values. The states in S are represented by
these median values.

The interval of each state is different. In order to calculate
the next state s(t + 1), this paper first numbers each
interval from small to large for each state of burden
distribution (n∗). Then, the state s(t) is mapped to ŝ(t):

ŝ(t) = (sT (t), noc1(t), noc2(t), noc3(t),

noc4(t), nc1(t), nc2(t)),
(4)

where n̂∗(t) means the interval number corresponding to
s∗(t).

Actions According to the state, the action contains two
parts. One part is used to adjust the states of time that
the value of the operation is 1. And the other part is
used to adjust the states of the burden distribution that
each operation has 3 values: 1 (up), 0 (unchanged), -
1(down). As the state contains 6 parameters of burden
distribution, the action should contain 6 corresponding
operations. Then the selection of action is 36.

In order to reduce the complexity of the algorithm, this
section analyzes the correlations between each parame-
ters of burden distribution based the Pearson coefficient
method. The correlation is calculated as

γjk =

L∑
t=1

(xk(t)− x̄k)(xj(t)− x̄j)√√√√ L∑
t=1

(xk(t)− x̄k)
2
(xj(t)− x̄j)

2

,

k = 1, 2, · · · , 6; j = 1, 2, · · · , 6,

(5)

where γjk is the correlation between xk(t) and xj(t); L,
the length of the time series of xk(t) and xj(t); xk(t) and
xj(t) are the time series of the kth and jth states of burden
distribution, respectively; x̄k and x̄j , the average values of
xk(t) and xj(t), respectively. The larger γjk is, the stronger
correlation between xk(t) and xj(t) is.

Table 1 shows the correlation between each state of burden
distribution. It is clear that soc1, soc2, and soc3 are pos-
itively correlated, which means they can be adjusted by
an operation. sc1 and sc2 are negatively correlated, which
means they can also be adjusted by an operation, just by
using the opposite value. soc4 is not related to others.

Table 1. Correlation between states of burden
distribution

States soc1 soc2 soc3 soc4 sc1 sc2
soc1 1.000 0.940 0.846 -0.024 -0.187 0.300
soc2 0.940 1.000 0.837 -0.017 -0.205 0.316
soc3 0.846 0.837 1.000 0.041 -0.381 0.348
soc4 -0.024 -0.017 0.041 1.000 -0.204 0.231
sc1 -0.187 -0.205 -0.381 -0.2044 1.000 -0.746
sc2 0.300 0.317 0.348 0.231 -0.746 1.000

Based on the correlation, the action, a(t) ∈ A, is defined
as

a(t) = (aT (t), a1(t), a2(t), a3(t)). (6)

Thus, the next state s(t+1) after executing a(t) in s(t) is
calculated as follows:

ŝ(t+ 1) = (sT (t+ 1), noc1(t+ 1), noc2(t+ 1), noc3(t+ 1),

noc4(t+ 1), nc1(t+ 1), nc2(t+ 1)),
(7)

where 

sT (t+ 1) = sT (t) + aT (t)

noc1(t+ 1) = noc1(t) + a1(t)

noc2(t+ 1) = noc2(t) + a1(t)

noc3(t+ 1) = noc3(t) + a1(t)

noc4(t+ 1) = noc4(t) + a2(t)

noc5(t+ 1) = noc5(t) + a3(t)

noc6(t+ 1) = noc6(t)− a3(t)

. (8)

Then,

s(t+ 1) = (sT (t+ 1), soc1(t+ 1), soc2(t+ 1), soc3(t+ 1),

soc4(t+ 1), sc1(t+ 1), sc2(t+ 1)),
(9)

where s∗(t + 1) is the median value of the interval corre-
sponding to n∗(t+ 1).
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Fig. 2. Prediction of GUR on long-time scale

3.3 Policy of Action Selection

This paper takes a ϵ-greedy algorithm as the policy of
action selection, which is shown as

π(a(t) | s(t)) =

{
ϵ/m+ 1− ϵ ã = argmax

a∈A
Q(s(t), a)

ϵ/m else
,

(10)
where ϵ is exploratory rate; ã, the action that maximize
Q(s(t), a); m, the number of actions.

Thus, this paper uses the probability of ϵ/m+1−ϵ to select
the action that maximize Q(s(t), a) and the probability of
ϵ/m to randomly select the other actions.

3.4 Calculation of Reward

In order to ensure a reasonable development trend of the
GUR on a long-time scale, the reward R(t+1) is designed
as

R(t+ 1) = Ĝ(t+ 1)− Ĝ(t), (11)

where Ĝ(t + 1) and Ĝ(t) are the prediction value of the
long-time part of the GUR at time t+1 and t, respectively,
which are obtained by the long-time-scale prediction model
of the GUR.

This paper uses the BP neural network algorithm to estab-
lish the long-time-scale prediction model. The parameters
when training the model are as follows: hidden layers is
9; epochs, 3000; goal, 10(−3); lr, 0.1; transfer function,
tansig; training function, trainlm; bias learning function,
learngdm. The inputs of the prediction model contain two
parts: 6 states of burden distribution and 6 historical in-
formation of the GUR. The number of history information
is calculated by the partial autocorrelation function in Box
and Jenkins (1971). The output of the prediction model is
the long-time-scale part of the GUR. The long-time-scale
part of the GUR is calculated by the methods shown in
An et al. (2019).

This paper uses four-month continuous samples of real-
world industrial data that were selected from the database
of a 2800 m3 BF. 450 samples are used for training; the
rest 40 samples, for testing. The interval time between
samples is 6 hours. Figure 2 shows that the prediction
model accurately predicts the development trend of GUR
on a long-time scale, which can be used to calculate the
reward.

3.5 Update of Action-Value Function

The aim of the update is to train a table of Q(s(t), a(t))
by multiple iterations. For each iteration, Q(s(t), a(t)) is
calculated based on π(a(t) | s(t)) and R(t + 1) by (2).
The update will not stop until the maximum number of
iterations or Q(s(t), a(t)) converges.

3.6 Strategy of Burden Control

The presented method designs a strategy of burden control
according to the table of Q(s(t), a(t)). The strategy is
obtained as follows:

Step 1 Select the action a(t) as

a(t) = argmax
a∈A

Q(s(t), a). (12)

Step 2 Calculate ŝ(t + 1) based on s(t) and a(t) by (7)
and (8).

Step 3 Calculated the state sequence of burden distribu-
tion in s(t + 1) by using the interval number obtained
by ŝ(t+ 1).

Step 4 Get the burden control strategy based on the state
sequence of burden distribution.

4. EXPERIMENT AND DISCUSS

This section proves the effectiveness of the presented
method by comparing the experimental result and the real-
world industrial data. The data used in this experiment
were selected from the database of a 2800 m3 BF.

In the experiment, the maximum value of sT is 12. As the
interval time between samples is 6 hours, the total period
of time is 72 hours (3 days). Besides, the current prediction
value of the long-time-scale part of the GUR is taken as
history information in the next time, which is used as one
of the inputs in the long-time-scale prediction model.

Figure 3 shows the state sequences of burden distribution,
which is the burden control strategy. Each data is a
median value of an interval, which represented an interval.
Table 2 shows the intervals corresponding to the data
shown in Fig. 3. The data in time 1 is the initial value
of each parameter. From the results, soc1, soc2, and soc3
are basically the same as the initial values on the whole.
soc4 is higher than its initial value. sc1 is lower than its
initial value and sc2 is higher than its initial value.

Figure 4 shows the comparison of the experimental results
and the real-world data of the GUR on a long-time scale.
The experiment results (the red line) are obtained by the
sequences of the parameters of the burden distribution
(shown in Fig. 3) and the prediction model of the GUR
on the long-time scale. The results are higher than real-
world data. Besides, the results show that the burden
control strategy changes the downward trend of the GUR
on the long-time scale. Figure 5 shows that the burden
control strategy increases the long-time-scale part of the
GUR by 1.5% at most. The experiment demonstrates the
effectiveness of the presented method.

Figure 6 shows the comparison of the fusion result and the
real-world data of the GUR. The fusion result is calculated
by the long-time-scale part and the short-time-scale part of
the GUR. The long-time part of the GUR is calculated by
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Table 2. Intervals corresponding to burden control strategy

Time soc1 soc2 soc3 soc4 sc1 sc2
1 (7.104,7.328] (6.918,7.145] (7.195,7.450] (4.451,4.859] (0.072,0.075] (0.263,0.276]
2 (7.104,7.328] (6.918,7.145] (7.195,7.450] (4.451,4.859] (0.070,0.072] (0.276,0.290]
3 (7.104,7.328] (6.918,7.145] (7.195,7.450] (4.042,4.451] (0.067,0.070] (0.290,0.304]
4 (7.104,7.328] (6.918,7.145] (7.195,7.450] (4.042,4.451] (0.065,0.067] (0.304,0.318]
5 (7.104,7.328] (6.918,7.145] (7.195,7.450] (4.042,4.451] (0.062,0.065] (0.318,0.331]
6 (7.104,7.328] (6.918,7.145] (7.195,7.450] (4.451,4.859] (0.059,0.062] (0.331,0.345]
7 (7.104,7.328] (6.918,7.145] (7.195,7.450] (4.859,5.268] (0.059,0.062] (0.331,0.345]
8 (6.879,7.104] (6.691,6.918] (6.940,7.195] (4.451,4.859] (0.059,0.062] (0.331,0.345]
9 (7.104,7.328] (6.918,7.145] (7.195,7.450] (4.859,5.268] (0.059,0.062] (0.331,0.345]
10 (6.879,7.104] (6.691,6.918] (6.940,7.195] (5.268,5.676] (0.059,0.062] (0.331,0.345]
11 (6.879,7.104] (6.691,6.918] (6.940,7.195] (4.859,5.268] (0.062,0.065] (0.318,0.331]
12 (7.104,7.328] (6.918,7.145] (7.195,7.450] (4.859,5.268] (0.062,0.065] (0.318,0.331]
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Fig. 4. Comparison of experimental result and real-world
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the method presented in this paper. The short-time part
is the real-world data of the GUR controlled by hot-blast
supply. The result shows that the burden control strategy
improves the value of the GUR as a whole by increasing
the long-time-scale part of the GUR, further illustrating
the effectiveness of the presented method.
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5. CONCLUSION

The main contribution of this paper is to present a burden
control strategy based on Q-learning algorithm for the
GUR. The goal of the method is to make a reasonable
development trend of the GUR on a long-time scale. The
experiment demonstrates that the presented method yields
a state sequence of burden distribution, which increases
the GUR on the long-time scale.

The method presented in this paper improves the GUR
and changes its development trend. Meanwhile, this
method uses the correlations between each state to design
the actions, which reduces the complexity of the method.
However, this method only considers a fixed step size when
training the burden control strategy. Besides, the method
only gives the sequences of the ore-to-coke ratios and
central-coke ratios that reflect the changes in the operating
parameters of the burden distribution. Thus, we will use a

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11885



random step size when finding the burden control strategy.
And we will study the relationship between the ore-to-coke
and central-coke ratios and the operation parameters.
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