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1. INTRODUCTION

Qualitative models deal with a symbolic representation
of the input, state and output signals of a underlying
discrete-time system. They have been proposed decades
ago and can be used for observation, fault diagnosis and
simulation (Lichtenberg, 1998; Lichtenberg and Lunze,
1997; Schröder, 2003). However, the storage complexity
of the underlying stochastic automaton increases rapidly
with the number of system signals to be considered by the
qualitative model. Thus, reducing the storage complexity
of the stochastic automaton is the main challenge for
making qualitative models applicable to large discrete-
time systems.
In previous work we presented an approach to reduce
the storage amount of qualitative models by storing the
transition probabilities of the automaton in a tensor,
which is then reduced by a factorization method known
as canonical polyadic (CP) tensor decomposition (Kolda
and Bader, 2009). For the resulting so-called CP tensor
representation, which is usually an approximation of the
qualitative model, we have provided algorithms for qua-
litative observation and fault detection that exploit the
reduced model structure and therefore can be efficiently
implemented (Müller et al., 2015; Müller-Eping et al.,
2017). Here we focus on qualitative simulation with regard
to applications like supervisory control, predictive main-
tenance or the investigation of qualitative properties of
stochastic systems behavior. That is, we first introduce a
new description of qualitative models based on an exact
direct CP tensor representation. Furthermore, we show
how a modern mathematical method, referred to as tensor
completion (Acar et al., 2011) can be used to overcome
the problem of incomplete qualitative models identified
by data-driven black-box approaches using historical mea-
surement data of the underlying process.
The structure of the paper is as follows: Section 2 recalls
the basics of qualitative models and the principles of
qualitative simulation. In Section 3, the definitions and

notations of tensors are given while Section 4 introduces
the simulation with qualitative models in tensor represen-
tation. Section 5 presents the direct CP representation of
qualitative models. How qualitative models can be further
reduced and completed via CP tensor decomposition is
investigated in Section 6. The paper concludes with an
application example in Section 7.

2. QUALITATIVE MODELS

In this section we introduce the qualitative models and
how they can be used for qualitative simulation.

2.1 Quantized System

In Fig. 1, the process with the input vector u(k) ∈ Rm, the
state vector x(k) ∈ Rn and the output vector y(k) ∈ Rq is
a discrete-time, continuous-variable system

x(k + 1) = f(x(k),u(k)) , (1)

y(k) = g(x(k),u(k)) , (2)

x(0) = x0 , (3)

where the behavior of the process is described by the vector
functions f : Rn × Rm → Rn and g : Rn × Rm → Rq.

Process

Quantizer Quantizer Quantizer

Quantized system

Quantized

input
[u(k)]

Quantized
output

[y(k)]

u(k) y(k)

Quantized
state

[x(k)]

x(k)

Qualitative

model S

Qualitative Simulator Pr([x(k + 1)] = z̄)

Pr([y(k)] = w)

Fig. 1. Qualitative simulation of a quantized system

For an arbitrary time horizon T and a given input sequence

U(0...T ) = (u(0),u(1), . . . , u(T )) , (4)

the process generates a unique state and output sequence

X(0...T ) = (x(0),x(1), . . . , x(T )) , (5)

Y(0...T ) = (y(0),x(1), . . . , y(T )) . (6)
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The quantized system consists of the process as well as the
quantizers and shows the qualitative behavior of the pro-
cess, which will be described by a qualitative model (Licht-
enberg, 1998). The quantizers transform the real-valued
input u(k), state x(k) and output y(k) vectors into a
scalar input [u(k)]=v∈U , state [x(k)]=z∈X and out-
put [y(k)]=w∈Y, where U :={1, . . . ,M}, X :={1, . . . , N}
and Y :={1, . . . , Q} are finite sets, called the qualitative
input, state and output space (Lichtenberg and Lunze,
1997). The integer values v, z and w which the quantized
input [u(k)], state [x(k)] and output [y(k)] can take, are
called qualitative input, state and output. The realization
of the quantization procedure is introduced by a rectan-
gular partitioning of the quantitative input Rm, state Rn
and output Rq space, where each space is separated into
disjoint sets Qu(v), Qy(w) and Qx(z), such that e.g. for
the state space

∀i 6= j : Qx(i) ∩Qx(j) = ∅ i, j ∈ X , (7)⋃
i∈X
Qx(i) = Rn , (8)

hold (Lichtenberg and Lunze, 1997). Due to the partition-
ing, the qualitative inputs v, states z and outputs w are
given by the relations

[u(k)] = v ⇐⇒ u(k) ∈ Qu(v) , (9)

[x(k)] = z ⇐⇒ x(k) ∈ Qx(z) , (10)

[y(k)] = w ⇐⇒ y(k) ∈ Qy(w) . (11)

That is e.g., the qualitative value z ∈ X of the quantized
state [x(k)] is given by the number of the partition Qx(z)
to which the vector x(k) belongs. Due to the quantiza-
tion (9)–(11), the quantitative sequences of the inputs,
states and outputs (4)–(6) are transformed into the quali-
tative input, state and output trajectories

[U(0...T )] = ([u(0)] = v(0), . . . , [u(T )] = v(T )) , (12)

[X(0...T )] = ([x(0)] = z(0), . . . , [x(T )] = z(T )) , (13)

[Y(0...T )] = ([y(0)] = w(0), . . . , [y(T )] = w(T )) . (14)

In Fig. 2 the separation of a two dimensional output space
into six partitions Qy(1), . . . ,Qy(6) is exemplarily shown.
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Fig. 2. Partitioning of a 2-dimensional output space R2

2.2 Stochastic Automata as Qualitative Model
Assume a discrete stochastic process with random in-
puts V (k), states Z(k) and outputs W (k). That is, for a
given random input V (k)=v ∈ V :={1, . . ,M} the stochas-
tic process passes some state Z(k)=z ∈ Z :={1, . . , N}
and produces an output W (k)=w ∈ W :={1, . . , Q}. The
behavior of such processes, i.e. how the states and outputs
behave for a given input, can be described by a stochastic
automaton which is defined next.

Definition 2.1. (Stochastic Automaton (Schröder, 2003)).
The 5-tuple S∗ = (V,Z,W,L∗,p∗0) (15)

consisting of the set of inputs V, the set of states Z and
the set of outputs W, as well as the behavior relation L

and the initial state distribution p0, is called stochastic
automaton (SA). The behavior relation of the SA

L∗(z̄, w | z, v) = Pr

(
Z(k + 1) = z̄, Z(k) = z,

W (k) = w V (k) = v

)
(16)

denotes the conditional probability that the SA changes
its state from z to the successor state z̄ while receiving the
input v and giving the output w, where

∀z ∈ Z, v ∈ V :
N∑̄
z=1

Q∑
w=1
L(z̄, w | z, v) = 1 (17)

holds. Note that the one-step transition probabilities (16)
are time-invariant, what makes the SA (15) a homoge-
neous Markov chain of first order (Blanke et al., 2006).
The vector p∗0 ∈ [0, 1]N describes the initial state distri-
bution, i.e. its components are given by the probabili-
ties Pr(Z(0) = z), z ∈ Z.

Definition 2.2. (Qualitative Model (Lichtenberg, 1998)).
For using a SA as qualitative model, the sets of the in-
puts V, states Z and outputs W in (15) are replaced by
the sets of qualitative inputs U , states X and outputs Y,
such that the SA is given by

S = (U ,X ,Y,L,p0) . (18)

Now, each automaton input v ∈ U , state z ∈ X and
output w ∈ Y is associated with a quantized input [u(k)],
state [z(k)] and output [y(k)] and the behavior relation is
defined by

L(z̄, w | z, v) = Pr

(
[x(k + 1)] = z̄, [x(k)] = z,

[y(k)] = w [u(k)] = v

)
. (19)

The initial distribution of the qualitative states is given
by the vector p0 with components Pr([x(0)] = z), z∈X . If
there is no knowledge about this probability distribution
available, a uniform distribution is used at time k = 0:

Pr([x(0)] = z) = 1/N , ∀z ∈ X := {1, . . . , N} . (20)

Note that the qualitative model will not be a precise model
of the quantized system, because the underlying SA (18)
possesses the Markov property but the quantized system
usually does not (Blanke et al., 2006).

2.3 Model Identification

In Schröder (2003) different identification methods for
qualitative models are given. Here we use a black box
method referred to as stochastic qualitative identification,
which is based on determining the conditional probabili-
ties (19) by the use of historical measurement data of the
underlying process (Lichtenberg, 1998). Therefore, the el-
ements of the measured quantized input, output and state
sequences (12)−(14) are sorted in tuples for k = 0, 1, . . . , T

[Θ(k)] = ([x(k + 1)], [y(k)], [x(k)], [u(k)]) .

Then, the relative frequencies

ĥ(z̄, w, z, v) =
# n-tuples [Θ(k)] = (z̄, w, z, v)

T
,

can be determined which are approximations of the joint
probabilities

ĥ(z̄, w, z, v) ≈ Pr

(
[x(k + 1)] = z̄, [x(k)] = z,

[y(k)] = w [u(k)] = v

)
.

After that, an approximation of the boundary distribu-
tions

ĥ(z, v) =
N∑̄
z=1

Q∑
w=1

ĥ(z̄, w, z, v)

can be calculated, what finally leads to the conditional
probabilities
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L(z̄, w|z, v) =

{
ĥ(z̄,w,z,v)

ĥ(z,v)
if ĥ(z, v) 6= 0 ,

0 if ĥ(z, v) = 0 .
(21)

Note that the qualitative model identified by this proce-
dure may be structurally incomplete, i.e. the condition (17)
may not be fulfilled. A solution to this issue is investigated
in Section 6.

2.4 Qualitative Simulation

The procedure of qualitative simulation is straightly re-
lated to the simulation of stochastic automata (see Blanke
et al. (2006)). Here we introduce the mathematical back-
ground directly in the sense of qualitative modeling. In
a first step, the transition and output relation, which are
boundary distributions of the conditional probability (19),
have to be determined.

Definition 2.3. (Transition Relation (Schröder, 2003)).
The transition relation

F(z̄ | z, v) =
Q∑
w=1
L(z̄, w | z, v) (22)

yields the conditional probability, that the SA moves from
state z to the successor state z̄ while receiving the input v.

Definition 2.4. (Output Relation, (Lichtenberg, 1998)).
The output relation

G(w | z, v) =
N∑̄
z=1
L(z̄, w | z, v) (23)

represents the conditional probability, that the SA gives
the output w if being in state z and receiving the input v.

The aim of qualitative simulation is the calculation of
the probabilities Pr([x(k + 1)] = z̄) and Pr([y(k)] = w) for
each of the qualitative states z̄ ∈ X and qualitative
outputs w ∈ Y for a certain distribution of qualitative
inputs Pr([u(k)]=v), v ∈ U . This is realized as follows.

Definition 2.5. (Qualitative Simulation (Lunze, 1998)).
For a given probability distribution Pr([u(k)] = v), v ∈ U
of the inputs, the probabilities of the qualitative states

Pr([x(k + 1)] = z̄) (24)

=
N∑
z=1

M∑
v=1
F(z̄ | z, v) Pr([x(k)] = z) Pr([u(k)] = v) ,

and qualitative outputs

Pr([y(k)] = w) (25)

=
N∑
z=1

M∑
v=1
G(w | z, v) Pr([x(k)] = z) Pr([u(k)] = v) .

can be obtained for all z ∈ X and w ∈ Y. At time k = 0
the recursive equations (24), (25) are initialized with the
probability distribution of the qualitative states (20). If
the inputs are exactly known and given by a unique input
sequence like (12), then the probability of this unique input
at time k is one, i.e.

Pr([u(k)] = v(k)) = 1 . (26)

In this case, the summation over v in (24) and (25)
vanishes and the inputs can be directly indexed by v(k):

Pr([x(k + 1)] = z̄)=
N∑
z=1
F(z̄ | z, v(k)) Pr([x(k)] = z) , (27)

Pr([y(k)] = w)=
N∑
z=1
G(w | z, v(k)) Pr([x(k)] = z) . (28)

Remark 2.1. Note that strictly spoken, the state and
output probabilities are conditional probabilities. That
is, calculating the state and output probability distribu-
tions (24), (25) or (27), (28) for times k = 0, 1, . . . , T , the

state and output probabilities at time T depend on the
whole sequence of input distributions or unique inputs,
that have been occurred between k = 0 and k = T .

2.5 Storage Amount of Qualitative Models

The storage amount of qualitative models rises rapidly
with the number of qualitative inputs M , states N and
outputs Q. That is, the conditional probabilities of the
behavior relation L(z̄, w | z, v) have to be stored for all
combinations of inputs v ∈ U , outputs w ∈ Y, states and
successor states z, z̄ ∈ Z, what leads to a number of values
to be stored of

α = MN2Q . (29)

In the following, we introduce a model reduction method,
which is based on a tensor representation of the condi-
tional probabilities L(z̄, w | z, v), F(z̄ | z, v) and G(w | z, v).

3. TENSOR CALCULUS

In this section we give the basics of tensors and tensor
operations needed for the simulation with qualitative mod-
els in tensor representation. The standard definitions used
within this paper can be found in Cichocki et al. (2009);
Kolda and Bader (2009); Lee and Cichocki (2018).

3.1 Basic Definitions and Notations

Fig. 3 depicts a tensor of order three which is defined in
the following.
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Fig. 3. 3rd order tensor X ∈ R4×7×3 (Cichocki et al., 2009)

Definition 3.1. (Tensor (Cichocki et al., 2009)).A Nth or-
der tensor

X ∈ RI1×···×IN (30)

is a N -way array with elements x(i1, . . . , iN ) indexed
by ik ∈ {1, . . . , Ik} for tensor modes k = 1, . . . , N .

Table 1. Notations
w ∈ R ,x ∈ RI Scalar, Vector

Y ∈ RI×J ,Z ∈ RI1×···×IN Matrix, Tensor of order N

z(i1, . . . , iN ) ∈ R (i1, . . . , iN )th element of Z

z(:, i2, . . . , iN ) ∈ RI1 Mode-1 tensor fiber of Z, a vector

Z(:, :, i3, . . . , iN ) ∈ RI1×I2 Tensor slice of Z, a (sub)matrix

As Tab. 1 shows, the elements of a tensor are indexed
by comma separated values in brackets. Thus, x(i1, i2, i3)
denotes the (i1, i2, i3)th element of a third order ten-
sor X ∈ RI1×I2×I3 . In Figures, we also use standard sub-
script indices like xi1i2i3 = x(i1, i2, i3). In the tensor-
context, matrices are interpreted as tensors of order two,
vectors are first order tensors and scalars are tensors of or-
der zero (Kolda and Bader, 2009). Tensors of order N can
be transformed into lower order tensors, e.g. into matrices
or vectors and vice-versa. In this paper, only the so-called
vectorization, where a Nth order tensor is flattened into
a vector, is needed. To define the vectorization, we use a
multi-index notation.
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Definition 3.2. (Multi-index (Lee and Cichocki, 2018)).
The big-endian multi-index

i1 · · · iN = iN + (iN−1 − 1)JN + · ·+(i1 − 1)I2 · ·IN (31)

merges indices ik ∈ {1, . . . , Ik} for k = 1, . . . , N into a
single integer i1 · · · iN ∈ N.

Definition 3.3. (Vectorization (Lee and Cichocki, 2018)).
The vectorization of a tensor X ∈ RI1×···×IN is defined as

z = vec(X) ∈ RI1···IN , (32)

where the components of the vector z are given by

z(i1 · · · iN ) = x(i1, . . . , iN ) . (33)

The vectorization of a 3rd order tensor is shown in Fig. 4.

x111 x121 x131

x211 x221 x231

x112 x122 x132

x212 x222 x232

x111

z1

x121 x131 x211 x221 x231x112 x122 x132 x212 x222 x232

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12

vec

∈R12

= z

=( )

Fig. 4. Vectorization of a 3rd order tensor X ∈ R2×3×2

3.2 Tensor Products

In this subsection we define basic mathematical products
of linear and multi-linear algebra.

Definition 3.4. (Kronecker Product). The Kronecker prod-
uct of N vectors xn ∈ RIn , n = 1, . . . , N is defined as a
vector z = x1 ⊗ · · · ⊗ xN ∈ RI1···IN , (34)

with components

z(i1 · · · iN ) = x1(i1) · · ·xN (iN ) . (35)

Definition 3.5. (Outer Product (Kolda and Bader, 2009)).
The outer product of N vectors xn∈ RIn , n=1, . . , N gives
a tensor of order N

Z = x1 �• · · · �• xN ∈ RI1×···×IN , (36)

with elements defined by

z(i1, . . . , iN ) = x1(i1) · · ·xN (iN ) . (37)

The outer product yields a tensor of rank one, what is
denoted by rank(Z) = 1. Fig. 5 depicts the outer product
of three vectors.

x3
x2

x1

�• =

x1(2)

x1(1)
x2(1) x2(2) x2(3)

x3(1)

x3(2)

z111 z121

z211 z221

z112 z122

z212 z222

z131

z231

z132

z232

Fig. 5. The outer product of three vectors x1∈R2,x2∈R3

and x3∈R2 gives a 3rd order rank-1 tensor Z∈R2×3×2

Definition 3.6. (k-Mode Tensor Vector Product (Kolda
and Bader, 2009)). The k-mode product of a Nth order
tensor X ∈ RI1×···×IN and a vector y ∈ RIk , k = 1, . . . , N
gives a tensor of order N − 1

Z = X ×̄k y ∈ RI1×···×Ik−1×Ik+1×···×IN , (38)

with elements defined by

z(i1, . . , ik−1, ik+1, . . , iN ) =
IN∑
ik=1

x(i1, . . , iN ) y(ik) . (39)

Fig. 6 shows a 2-mode tensor vector product.

x111 x121 x131

x211 x221 x231

x112 x122 x132

x212 x222 x232
y3y2y1

z22

z12

z11

z21

×̄2 =

Fig. 6. 2-mode tensor vector product of a 3rd order
tensor X∈R2×3×2 and a 1st order tensor y∈R3. Sum-
ming up the products of the same-colored elements
gives the element z12 of the 2nd order tensor Z ∈ R2×2

Definition 3.7. (Contracted Tensor Product (Cichocki
et al., 2009)). The contraction along the last K modes
of a tensor X ∈ RI×J1×···×JK and each mode of a ten-
sor Y ∈ RJ1×···×JK is defined as a tensor of order one, i.e.
as a vector z =

〈
X |Y

〉
∈ RI , (40)

with components

z(i) =
J1∑
j1=1

· · ·
JK∑
jK=1

x(i, j1, . . . , jK) y(j1, . . . , jK) . (41)

Note that the contracted product can be defined for an
arbitrary number and combination of same-sized modes.
An example of a tensor contraction is depicted in Fig. 7.

x111 x121 x131

x211 x221 x231

x112 x122 x132

x212 x222 x232 y31y21y11

y32y22y12

z1

z2

=

Fig. 7. Contraction of a 3rd order tensor X ∈ R2×3×2

with a tensor of order two Y ∈ R3×2. Summing up
the products of the same-colored elements gives the
component z1 of the resulting 1st order tensor z ∈ R2

4. SIMULATION IN TENSOR REPRESENTATION

In this section we introduce the tensor representation
of qualitative models and how they can be used for
qualitative simulation. In a first step, the conditional
probabilities described by the behavior relation (19), the
transition relation (22) and the output relation (23) are
set up as the elements of corresponding tensors.

4.1 Behavior, Transition & Output Tensor Representation

Definition 4.1. (Behavior Tensor (Müller-Eping et al.,
2017)). The conditional probabilities (19) can be easily
stored in a 4th order behavior tensor

L ∈ [0, 1]N×Q×N×M , (42)

with elements defined by

l(z̄, w, z, v) = L(z̄, w|z, v) ∀ z̄, z∈Z, w∈W, v∈V . (43)

Definition 4.2. (Transition Tensor). The conditional prob-
abilities (22) can be represented a 3rd order transition
tensor F ∈ [0, 1]N×N×M , (44)

with elements given by

f(z̄, z, v) = F(z̄ | z, v) ∀ z̄, z ∈ Z, v ∈ V . (45)

Definition 4.3. (Output Tensor). The output tensor

G ∈ [0, 1]Q×N×M (46)

is of order three, with elements defined by the conditional
probabilities (23), such that

g(w, z, v) = G(w | z, v) ∀w ∈ W, z ∈ Z, v ∈ V . (47)
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4.2 Simulation in Tensor Representation

First, we introduce a vectorial representation of the inputs

pv(k) ∈ [0, 1]M with pv(k, v) := Pr([u(k)] = v) , (48)

outputs

pw(k) ∈ [0, 1]Q with pw(k,w) := Pr([y(k)] = w) (49)

and states

pz(k) ∈ [0, 1]N with pz(k, z) := Pr([x(k)] = z) , (50)

where pv(k, v), v ∈ U , pw(k,w), w ∈ Y and pz(k, z), z ∈ X
denote the components of these vectors. With this setting,
we introduce the simulation algorithm.

Lemma 4.1. (Simulation in Tensor Representation). For a
given input probability distribution pv(k) ∈ [0, 1]M , the
probabilities of the qualitative states

pz(k + 1) =
〈
F
∣∣ (pz(k)�• pv(k)

)〉
∈ [0, 1]N (51)

and qualitative outputs

pw(k) =
〈
G
∣∣ (pz(k)�• pv(k)

)〉
∈ [0, 1]Q (52)

are given by tensor contraction.

Proof 4.1. The element-wise notations of (51) and (52)
are given by

pz(k + 1, z̄) =
N∑
z=1

M∑
v=1

f(z̄, z, v) pz(k, z) pv(k, v) , (53)

pw(k,w) =
N∑
z=1

M∑
v=1

g(w, z, v) pz(k, z) pv(k, v) , (54)

what is equal to equation (24) and (25), resp.

Corollary 4.1. For a unique input sequence (12), equa-
tion (26) holds. That means, only the v(k)-th compo-
nent of the input vector (48) has the value one, while
all other components are zero. For such an unique input
sequence, the summation over the index v in the element-
wise notations (53) and (54) vanishes and the tensor ele-
ments f(z̄, z, v) and g(w, z, v) can be directly indexed by
this unique input given at time k:

pz(k + 1, z̄) =
N∑
z=1

f(z̄, z, v(k)) pz(k, z) , (55)

pw(k,w) =
N∑
z=1

g(w, z, v(k)) pz(k, z) . (56)

That is, for unique input sequences equation (51) and (52)
yield the same result as equation (27) and (28), resp.

Note that storing the conditional probabilities in a tensor
as specified in the Definitions 4.1–4.3 and using the tensor-
based simulation in Lemma 4.1 alone does not result in any
storage reduction, but it paves the way for it.

5. SIMULATION IN CP TENSOR REPRESENTATION

In this section, qualitative models are represented in a so-
called CP tensor, which already leads to a reduction in the
number of values to be stored and, in addition, allows the
use of modern mathematical methods for further model
reduction. Again, we first need some basic definitions.

Definition 5.1. (CP Tensor Representation (Kolda and
Bader, 2009)). The CP tensor representation is defined
as the expression of a tensor X ∈ RJ1×···×JN as a sum of
rank-1 tensors

X =
[[
λX; U1, . . . ,UN

]]
(57)

≡
RX∑
r=1

λX(r) u1(:, r)�• · · · �• uN (:, r) ∈ RJ1×···×JN ,

which are given by the outer products of the column
vectors un(:, r) ∈ RJn of the factor matrices Un ∈ RJn×RX

for n = 1, . . . , N and weighted by the elements λX(r) of a
vector λX ∈ RRX . Element-wise notation of (57) gives

x(j1, . . . , jN ) =
RX∑
r=1

λX(r)u1(j1, r) · · ·uN (jN , r) . (58)

The term [[·]] appearing in (57) is either called kruskal
tensor or CP tensor (Kolda and Bader, 2009). Fig. 8
depicts a third order CP tensor.

�•= +· ·+ �•

X ∈ R3×4×2

λX(1) λX(RX)

u1(:, 1)

u2(:, 1)

u3(:, 1)

u1(:, RX)

u2(:, RX)

u3(:, RX)

Fig. 8. Third order tensor X ∈ R3×4×2 constructed by a
sum of RX rank one tensors, each of which given by
three vectors of corresponding length

The variable R is called the CP rank of a tensor and
must not be confused with the tensor rank. The rank of
a tensor X ∈ RI1×···×IN , denoted by rank(X), is defined as
the smallest number RX of rank one tensors in (57), needed
to represent X exactly. While the storage complexity of
a Nth order tensor X ∈ RI1×···×IN is given by O(IN ),
for a CP tensor [[λ; U1, . . . ,UN]] = X ∈ RI1×···×IN it re-
duces to O(NIRX), where I = max{I1, . . . , IN} holds for
a worst case estimate (Cichocki, 2014). This shows, that
it is desirable to find a direct CP tensor representation
of the behavior tensor (42), the transition tensor (44)
and the output tensor (46), without generating their full
representations. How this can be realized is explained next.

5.1 Direct CP Representations of the Behavior, Transition
and Output Tensor

Definition 5.2. (CP Behavior Tensor). The conditional
probabilities (21) for which L(z̄, w | z, v) ≥ 0 holds true,
can be sorted and defined as components

λL(i)=L(z̄, w | z, v)i with λL(1) ≥ · · · ≥ λL(RL) (59)

of the weighting vector λL ∈ [0, 1]RL of a CP tensor

L =
[[
λL; A1,A2,A3,A4

]]
∈ [0, 1]N×Q×N×M (60)

with factor matrices A1 ∈ {0, 1}N×RL , A2 ∈ {0, 1}Q×RL ,
A3 ∈ {0, 1}N×RL ,A4 ∈ {0, 1}M×RL whose column vectors
are constructed by the qualitative values z̄, w, z, v in (59)
for all i = 1, 2, . . . , RL:

a1(:, i) = (a1(1) · · · a1(N))T with a1(j) =

{
1 for j= z̄
0 else,

a2(:, i) = (a2(1) · · · a2(Q))T with a2(j) =

{
1 for j=w
0 else,

a3(:, i) = (a3(1) · · ·u3(N))T with a3(j) =

{
1 for j=z
0 else,

a4(:, i) = (a4(1) · · · a4(M))T with a4(j) =

{
1 for j=v
0 else.

The storage amount αcp of the CP behavior tensor (60) is
given by

αcp = RL(M + 2N +Q+ 1) . (61)

Note, that this amount of values to be stored is lower than
in the full tensor representation in (42), as long as

RL < (MN2Q/M+2N+Q+1) (62)
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is true. Even if (60) is an exact representation of the
behavior tensor (42), it is in general not a minimal repre-
sentation. That means, the rank RL of the CP represen-
tation in (60) is usually higher than the rank of the full
tensor rank(L). Finding a minimal and exact CP represen-
tation with RL = rank(L) is a NP-hard problem (H̊astad,
1990). In practice, so-called low-rank or best rank-R ap-
proximations, for which RL < rank(L) holds, are of special
interest. This is introduced in Section 6.
Based on the CP behavior tensor (60), the CP representa-
tion of the transition and output tensor have to be derived
for qualitative simulation. Therefore, the k-mode tensor
vector product from Definition 3.6 is needed, but has to
be modified such that it can be applied to a CP tensor.

Proposition 5.1. (k-Mode CP Tensor Vector Product
(Bader and Kolda, 2008)). The k-mode product of a CP
tensor

X =
[[
λX; U1, . . . ,UN

]]
∈ RI1×···×IN (63)

with factor matrices Un ∈ RIn×RX , n = 1, . . . N , weighting
vector λX ∈ RRX and a vector y ∈ RIn , is defined as a CP
tensor Z =

[[
λZ; U1, . . . ,Un−1,Un+1, . . . ,UN

]]
,

with λZ = (UT
n y)~ λX ∈ RRX ,

(64)

which is of size I1 × · · · × In−1 × In+1 × · · · × IN . The CP
rank of the product tensor Z is given by RZ = RX.

Proof 5.1. Element-wise notation of Equation (64) and
rearranging gives

z =
RX∑
r=1

λZ(r)u1(i1, r) · · ·un−1(in−1, r)un+1(in+1, r)

· · ·uN (iN , r) with λZ(r) =
Jn∑
in=1

un(in, r) y(in)λX(r)

=
In∑
in=1

RX∑
r=1

λX(r)u1(i1, r) · · ·un−1(in−1, r)un(in, r)

· un+1(in+1, r) · · ·uN (iN , r) y(in)

=
In∑
in=1

RX∑
r=1

λX(r)u1(i1, r) · · ·uN (iN , r)︸ ︷︷ ︸
= x(i1,...,iN )

y(in)

=
In∑
in=1

x(i1, . . . , iN ) y(in) . (65)

Equation (65) represents exactly the element-wise notation
of the k-mode tensor vector product in Definition 3.6. �

Based on Proposition 5.1, the CP transition and output
tensor can be defined.

Definition 5.3. (CP Transition Tensor). Based on the fac-
tor matrices of the CP behavior tensor (60), the CP
transition tensor is given by the use of the k-mode CP
tensor vector product in Proposition 5.1:

F =
[[
λF; A1,A3,A4

]]
∈ [0, 1]N×N×M

with λF = (AT
2 1)~ λL ∈ [0, 1]RL and 1 ∈ {1}RL .

(66)

Definition 5.4. (CP Output Tensor). Based on the factor
matrices of the CP behavior tensor (60), the CP output
tensor is given by the use of the k-mode CP tensor vector
product from Proposition 5.1

G =
[[
λG; A2,A3,A4

]]
∈ [0, 1]Q×N×M

with λG = (AT
1 1)~ λL ∈ [0, 1]RL and 1 ∈ {1}RL .

(67)

5.2 Simulation in CP Tensor Representation

In this section the qualitative simulation based on the
CP representation of the transition (66) and output ten-
sor (67) is introduced. Therefore, we first need to modify

the contracted tensor product in Definition 3.7 for making
it applicable to CP tensors. In Kruppa (2018), the contrac-
tion of two CP tensors is described and proved, but not
for the combination of tensor modes needed here. Thus,
we build up on this previous work but introduce another
definition and proof as follows.

Proposition 5.2. (Contracted CP Tensor Product). The
contraction along the last K modes of a CP tensor

X =
[[
λX; S,U1, . . . ,UK

]]
∈ RI×J1×···×JK

with rank RX and all modes of a CP tensor

Y =
[[
λY; G1, . . . ,GK

]]
∈ RJ1×···×JK

with rank RY, results in a first order CP tensor〈[[
λX; S,U1, . . . ,UK

]]∣∣∣[[λY; G1, . . . ,GK

]]〉
=
[[
λz; E

]]
= z ∈ RI ,

(68)

where the weighting vector λz ∈ RRXRY and the factor
matrix E ∈ RI×RXRY are defined by

λz = vec
(
(UT

1 G1)~ · · ·~ (UT
KGK)

)
~ (λX ⊗ λY) , (69)

E = S⊗ 1T , with 1 ∈ {1}RY . (70)

Proof 5.2. The element-wise notation of the first order
tensor z ∈ RI in (68) is given by

z(i) =
RXRY∑
d=1

λz(d) e(i, d) , i ∈ {1, . . . , I}

and can be written equivalently as

z(i) =
RX∑
h=1

RY∑
t=1

λz(ht) e(i, ht) , (71)

where the multi-index notation ht ∈ {1, . . . , RXRY} for
indices h = 1, . . . , RX and t = 1, . . . , RY is used. Follow-
ing this, the element-wise notation of the weighting vec-
tor λz ∈ RRXRY in (69) is as follows

λz(ht) = λX(h)λY(t)
J1∑
j1=1

· · ·
JK∑
jK=1

u1(j1, h) g1(j1, t)

· · ·uK(jK , h) gK(jK , t) . (72)

The elements of the factor matrix E∈ RI×RXRY in equa-
tion (70) are calculated by

e(i, ht) = s(i, h) 1(t) = s(i, h) . (73)

Inserting (72) and (73) into (71) and rearranging gives

z(i) =
RX∑
h=1

RY∑
t=1

λX(h)λY(t)
J1∑
j1=1

· · ·
JK∑
jK=1

u1(j1, h) g1(j1, t)

· · ·uK(jK , h) gK(jK , t) s(i, h)

=
J1∑
j1=1

· · ·
JK∑
jK=1

RX∑
h=1

λX(h) s(i, h)u1(j1, h) · · ·uK(jK , h)︸ ︷︷ ︸
= x(i,j1,...,jK)

·
RY∑
t=1

λY(t) g1(j1, t) · · · gK(jK , t)︸ ︷︷ ︸
=y(j1,...,jK)

=
J1∑
j1=1

· · ·
JK∑
jK=1

x(i, j1, . . . , jK) y(j1, . . . , jK) . (74)

Equation (74) represents exactly the element-wise notation
of the contracted tensor product in Definition 3.7. �
With Proposition 5.2 the simulation algorithm for quali-
tative models in CP tensor representation is given.

Lemma 5.1. (Simulation in CP Tensor Representation).
For a given input probability distribution pv(k) ∈ [0, 1]M ,
the probabilities of the qualitative states

pz(k+1)=
〈[[
λF; A1,A3,A4

]]∣∣∣[[pz(k),pv(k)
]]〉

(75)
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and qualitative outputs

pw(k)=
〈[[
λG; A2,A3,A4

]]∣∣∣[[pz(k),pv(k)
]]〉

(76)

can be determined. Because of Proposition 5.2, Lemma 5.1
gives the same result as Lemma 4.1 or Corollary 4.1, if a
unique input sequence (12) is given.

6. MODEL REDUCTION AND COMPLETION

In this section, we introduce the mathematical background
of the CP tensor decomposition and completion and show
how these methods can be used for model reduction and to
solve the problem of structurally incomplete models. The
practical implementation of the following is realized by
using the Matlab R© Tensor Toolbox (Bader et al., 2019).

6.1 CP Tensor Decomposition and Completion

The term CP decomposition commonly refers to the fac-
torization of a tensor X ∈ RI1×···×IN into a CP tensor

X̂ =
[[
λX̂; U1, . . . ,UN

]]
∈ RI1×···×IN (77)

with fixed rank RX̂, which is in practice usually an approxi-
mation of the original tensor, such that X̂ ≈ X (Kolda and
Bader, 2009). In equation (77), λX̂ ∈ RRX̂ again denotes
the weighting vector and the factor matrices are given
by Uk ∈ RIk×RX̂ , k = 1, . . . , N . Here, the CP rank RX̂ is
referred to as rank of the decomposition. In the computa-
tion of the decomposition (77), RX̂ is an adjustable num-
ber that can be used to control the storage amount (61)
and the accuracy of the approximation. The higher RX̂ is
chosen, the higher the accuracy and the more values have
to be stored. Tensor completion algorithms are based on
tensor decomposition and represent a strong method for
recovering missing data (Acar et al., 2011). Decomposing
and recovering incomplete data of a tensor X ∈ RI1×···×IN
is realized by solving an optimization problem (Vervliet
et al., 2014)

min
λX̂,U1,...,UN

1

2

∥∥∥C~ (X− [[λX̂; U1, . . . ,UN

]])∥∥∥2

, (78)

where missing values in X are indicated by a same-sized
binary tensor C ∈ {0, 1}I1×···×IN with elements

c(i1, . . . , iN ) =

{
0 if x(i1, . . . , iN ) is missing ,
1 if x(i1, . . . , iN ) is present .

(79)

Note, that in general the elements of the factor matri-
ces Uk ∈ RIk×RX̂ are randomly chosen for the initializa-
tion of the optimization. Hence, each decomposition and
completion of a tensor may lead to different results, even
for the same decomposition rank RX̂.
Also CP tensors can be further reduced and completed.
That is, a CP tensor X = [[λX; F1, . . ,FN ]] ∈ RI1×···×IN
with CP rank RX is approximated by a completed CP ten-
sor X̂ = [[λX̂; U1, . . . ,UN ]] ∈ RI1×···×IN with usually lower
CP rank RX̂< RX , such that

X =
[[
λX; F1, . . . ,FN

]]
≈
[[
λX̂; U1, . . . ,UN

]]
= X̂ . (80)

In the Matlab R© Tensor Toolbox, the binary tensor C can
be a sparse tensor which enables an efficient computation.

6.2 Decomposition and Completion of Qualitative Models

Using tensor completion to overcome the problem of struc-
turally incomplete qualitative models means to set up a
binary tensor C ∈ {0, 1}N×Q×N×M , preferably in sparse
format, indicating the missing probabilities L(z̄, w | z, v) in
the CP tensor L=[[λL; A1,A2,A3,A4]] ∈ [0, 1]N×Q×N×M

in (60). The information about the probabilities which are

treated as missing values is given by condition (17). Hence,
the binary tensor C can be constructed as follows: For each
combination of qualitative states z ∈ X and inputs v ∈ U ,
check the condition∑N

z̄=1

∑Q
w=1L(z̄, w | z, v) = 0 (81)

and construct the binary tensor C ∈ {0, 1}N×Q×N×M with
elements

c(z̄, w, z, v) =

{
0 ∀z̄ ∈ X , w ∈ Y if (81) is true ,
1 ∀z̄ ∈ X , w ∈ Y if (81) is false .

(82)

Now, decomposing and completing the CP behavior tensor
of the qualitative model L=[[λL; A1,A2,A3,A4]] in (60)
with non-negative constraints on the elements of the factor
matrices and an appropriate decomposition rank RL̂< RL ,
gives the reduced CP behavior tensor

L̂=
[[
λL̂; B1,B2,B3,B4

]]
∈ RN×Q×N×M≥0 , (83)

with B1∈RN×RL
≥0 , B2∈RQ×RL

≥0 , B3∈RN×RL
≥0 , B4∈RM×RL

≥0

and λL̂∈R
RL̂
≥0 . For qualitative simulation the reduced CP

transition and output tensor
F̂ =

[[
λF̂; B1,B3,B4

]]
∈ RN×N×M≥0 , (84)

Ĝ =
[[
λĜ; B2,B3,B4

]]
∈ RQ×N×M≥0 , (85)

are derived by the use of equation (66) and (67). Due
to the fact, that the CP tensors (83), (84) and (85) are
approximations of the exact CP tensors, i.e. their elements
lie in R≥0, the probability vectors of the states and outputs
in Lemma 5.1 have to be normalized to a length of one after
each time step k and will also represent an approximation.

7. APPLICATION EXAMPLE

The system investigated is a room of a building heated by
a radiator as shown on the left-hand side of Fig. 9.

Radiator

TRoom

TReturnTSupply

TAmb

V̇

Fig. 9. Room scheme (left) and a section of the qualitative
trajectory of the state variable TRoom (right)

Model identification: The parameters of the qualitative
model are set up as follows: As inputs, the water sup-
ply temperature TSupply, the water volume flow of the
radiator V̇ and the ambient temperature TAmb are used.
The states are given by the water return temperature of
the radiator TReturn and the room temperature TRoom.
The room temperature TRoom is also used as output.
This setting corresponds to a typical consumer model,
where the radiator represents a heat sink which trans-
fers heat to the room (see Pangalos (2016)). The qua-
litative model of the system is generated via stochas-
tic qualitative identification (Section 2.3) and the use
of measurement data containing the months Dec. 2015,
Jan. 2016 and July 2016 for covering the heating and
non-heating period of the building. Thereby each input
is quantized into three intervals, while the two states
and the output are separated into five intervals. Be-
cause we have three inputs (m = 3), two states (n = 2)
and one output (q = 1), this gives M = 27 qualitative
inputs, N = 25 qualitative states and Q = 5 qualitative
outputs. Using Definition 4.1, this will lead to a full be-
havior tensor L ∈ [0, 1]25×5×25×27 with α = 84 375 values
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to be stored. However, the model identification only leads
to 333 different combinations of qualitative values z̄, w, z, v
for which the conditional probabilities L(z̄, w|z, v) are
non-zero. Storing only these non-zero probabilities and
using the direct CP behavior representation given in
Definition 5.2 with RL = 333, this gives an exact CP
tensor L=[[λL; A1,A2,A3,A4]] with A1 ∈ {0, 1}25×333,
A2 ∈ {0, 1}5×333, A3 ∈ {0, 1}25×333, A4 ∈ {0, 1}27×333and
λL ∈ [0, 1]333. Obviously condition (62) is fulfilled, because
the storage amount of the exact CP representation is given
by αcp = 27 639 values.
Model application: For demonstrating the application
of qualitative simulation, we use the measurement data
of the input variables of the whole year 2016 to simulate
the return TReturn and room temperature TRoom by the
application of Lemma 5.1. The qualitative state trajectory
of the room temperature TRoom is shown on the right-
hand side of Fig. 9. The red dots are the measurements
of the room temperature and the different gray shades
in the background represent the probabilities of the five
qualitative states, where a dark color indicates a high
probability. The boundaries of the qualitative intervals
are given by the blue lines and one discrete time step k
equals 40 minutes. That is, the plot shows a time range of
around 5.5 month (Jan. until mid-May 2016). As can be
seen, at time k = 4000 (mid-March) there are no non-zero
probabilities given by the qualitative simulation algorithm.
This is because the model is structurally incomplete due
to the set of training data consisting of only two month
of data from the winter period and one month from
summer. This problem will now be solved via tensor
completion (78).
Model completion: Checking equation (81) turns out
that there are 573 combinations of qualitative states z and
inputs v for which the condition is true, what leads to a
number of 71 625 values treated as missing data in the
binary tensor C in (82). This corresponds to a percentage
share of 85% of unobserved data. For solving the opti-
mization problem (78) a decomposition rank of RL̂ = 100
is chosen, what results in a CP tensor (83) consisting of
only 8800 values. The simulation results generated by the
use of (84), (85) and Lemma 5.1 are shown in Fig. 10.
As can be seen, the whole year 2016 could successfully
simulated with plausible results, although the qualitative
model was significantly incomplete and reduced by a factor
of 3.1 in comparison to the exact CP representation.

Fig. 10. Qualitative state trajectories TReturn and TRoom

8. CONCLUSION
As the paper shows, qualitative simulation models can
be successfully completed and reduced by modern tensor
decomposition algorithms. The provided simulation algo-
rithms for the CP representation of qualitative models
enable an efficient calculation of the state and and output
probability distributions. This gives hope for the real-
ization of qualitative supervisory control and predictive
maintenance applications in large discrete time systems.
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