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Abstract: Determination of active constraints forms an essential part of the multiparametric
MPC approach for linear systems. An analysis of KKT conditions to identify active constraints
provides piecewise affine control laws and their corresponding critical regions (CRs). However,
an extension of multiparametric MPC for nonlinear systems requires overcoming significant
challenges: predictions are nonlinear and so are constraints, in which case the MPC problems
takes the form of a nonlinear program (NLP). Application of KKT conditions show that, in
general, the MPC control law for nonlinear systems is piecewise, implicit, nonlinear function
of the state. Moreover, the CRs have nonlinear boundaries. In this work, we propose an offline
combinatorial approach to identify all active sets of constraints for the nonlinear MPC problem
a priori. The offline approach uses implicit enumeration of the constraints based on feasibility of
KKT conditions and a primal criteria. Thus, the offline step provides all the admissible CRs as
well as the corresponding nonlinear system of KKT equations corresponding to each CR. The
online MPC implementation uses a region-free approach, wherein the CR corresponding to the
current state as well as the control action is determined by solving the nonlinear system of KKT
equations online. The method is demonstrated using a numerical example from literature.
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1. INTRODUCTION

Explicit model predictive control (e-MPC) was developed
as an approach to obtain optimal, parameter (that is,
state) dependent control law for linear systems. The con-
trol law takes the form of a piecewise affine (PWA) solution
with each piece being defined over a polytopic region in
the state space called the critical region (CR). The control
law and the CRs are obtained via an offline analysis of
the Karush-Kuhn-Tucker (KKT) conditions of the con-
strained optimal control problem. In e-MPC, the online
MPC optimization problem is replaced with an online
function evaluation problem (Bemporad et al., 2002). In
context of nonlinear systems, the constrained optimal con-
trol problem takes the form of a Nonlinear programming
(NLP). While a number of advances continue to be re-
ported for linear systems (for example, Sun et al. (2019);
Mönnigmann (2019)), solutions for nonlinear e-MPC (e-
NMPC) are relatively scarce.

Methods for e-NMPC in (Dominguez and Pistikopoulos,
2011; Grancharova and Johansen, 2002; Johansen, 2002)
use first order approximation of the KKT conditions or
linear interpolation of the solution of the NLP obtained
at different parametric realizations. These methods are
approximate solutions of the multiparametric nonlinear
program (mp-NLP) and, therefore, not exact. An attempt
to provide an exact solution to the mp-NLP problem is
presented in (Charitopoulos and Dua, 2016), wherein the

parameter dependent KKT conditions are solved symbol-
ically to yield an explicit e-NMPC control law. However,
it is well-known that symbolic computations cannot be
scaled to higher dimensional systems, particularly where
inversion of symbolic matrices is involved. Robust tube
based framework for e-NMPC, by decomposing the state-
space into hyper-rectangles, has been reported in (Bayer
et al., 2016).

In (Mönnigmann et al., 2015), the NLP is solved online
and an implicit “regional control law” is determined cor-
responding to its “region of validity” characterized by the
active set. If the active set indeed changes relative to the
previous instant, then the original MPC problem is solved
implicitly. However, in this approach the change in active
set is “discovered” online and not known a priori. In this
paper, we present an offline methodology to determine all
optimal active sets of the NLP parameterized by the initial
state, which also prescribes the regions of validity. The of-
fline technique is an extension of the implicit enumeration
approach given in (Gupta et al., 2011) for multiparametric
NLP (mp-NLP).

Notation: Let R,Z, and Z+ denote the set of real num-
bers, integers and non-negative integers, respectively. | · |
is cardinality of a set and k ∈ Z+. χN , (x(1), . . . , x(N))
represents a sequence of predictions for the nonlinear sys-
tem defined later. For an initial condition x(0) at k = 0,

UN , (u(0), . . . , u(N − 1)) represents a sequence of length
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N ∈ Z+. U∗N represents an optimal solution and u∗(0) is its
first element. GA is the constraint matrix corresponding
to an index set A and refers to a matrix comprising of
specific rows of G as identified in A.

2. PRELIMINARIES AND MULTIPARAMETRIC
NONLINEAR MPC PROBLEM

Consider the discrete-time nonlinear system,

x(k + 1) = f(x(k), u(k)) (1)

x(k) ∈ X ⊂ Rn and u(k) ∈ U ⊂ Rq represent states and
inputs, respectively. Constraints X and U are non-empty,
convex, polyhedral, compact and contain the origin in their
interiors. f(·, ·) : Rn × Rq → Rn in (1) is assumed to be
twice continuously differentiable and f(0, 0) = 0. It is also
assumed that all states are measurable.

Problem 1. Nonlinear MPC Problem: For an initial
condition x(0) ∈ X, solve the following optimization
problem with horizon N ,

J0(x(0)) , min
UN ,χN

{V (x(N)) +

N−1∑
i=0

L(x(i), u(i))} (2a)

Eq(1), x(k) ∈ X, u(k) ∈ Ux(N) ∈ XT ⊂ X (2b)

where N ∈ Z≥1,V (x(N)) = xT (N)PTx(N) is the terminal
cost, L(x(i), u(i)) = xT (i)Qx(i)+uT (i)Ru(i) is the cost of
ith stage, PT � 0, Q � 0, R � 0 are matrices of appropri-
ate sizes, and XT is a terminal set. The MPC Problem 1
is nonlinear in nature and the optimal solution (U∗N , χ

∗
N )

is obtained for an initial condition x(0). u∗(0) is injected
as control input into system Eq. (1) and MPC Problem
1 is solved again for the next sampling instant. Next, we
discuss the nonlinear optimization problem resulting from
Problem 1.

2a. Multiparametric Nonlinear Programming

It is readily seen that MPC Problem 1 takes the form of
the following NLP problem.

Problem 2. mp-NLP Problem

J(x(0)) , min
z

1

2
zTHz (3a)

F(z, x(0)) = 0 (3b)

Gz − b ≤ 0 (3c)

where z ,

[
χN
UN

]
, z ∈ RN(n+q) and let the number of

polyhedral (hence linear) constraints in (3c) be p. G ∈
Rp×N(n+q), b ∈ Rp, H ∈ RN(n+q)×N(n+q). Assume that
the objective function is convex, that is, H � 0. The the
n×N equality constraints F = 0 in (3b), representing the
system predictions, are assumed differentiable with their
Jacobian being full rank ∀x(0) ∈ X. The above parametric
NLP represents point of departure from the conventional
mp-QP treated in the literature, which has a simpler form,

min
UN

1

2
UTNHUN + xT (0)FUN (4a)

GUN ≤ S + Ex(0) (4b)

with parameter x(0) and all matrices, defined analogously,
are constant arising from the MPC formulation of LTI
systems. Next, active sets and KKT conditions required
for Problem 2 are introduced.

Definition 1. Active and Inactive Sets: Let M ,
{1, 2, 3, ..., p} be the set of indices of all constraints in
(3c). For a given z and x(0), the elements of M can be
categorized into two sets as follows:

(i) an active set A(z, x(0)), is one for which the equality
in (3b)-(3c) holds, that is

A(z, x(0)) , {i ∈M|F(z, x(0)) = 0, Giz = bi} (5)

(ii) the corresponding inactive set for active set in (i)
is J (z, x(0)), where strict inequality holds among
constraints in (3c),

J (z, x(0)) ,M\A(z, x(0)) (6)

Note that indices of equality constraints (3b) are not
included in A but implicitly assumed in the remainder of
the paper for simplicity of notation. It is clear from (5) that
the number of active sets A that could be constructed from
M is related to the cardinality of the power set ofM and
hence p. Before going further we recall some definitions.

Definition 2. Linear Independence Constraint Qual-
ification (LICQ) Nocedal and Wright (2006): Given
the optimal point z = z∗ and corresponding active set
A(z∗, x(0)), we say that LICQ holds if the set of active

constraint gradients

[
OzF(z∗, x(0))

. . .
GA

]
are linearly indepen-

dent, that is,

[
OzF(z∗, x(0))

. . .
GA

]
has full row rank.

Remark 1. The case that some constraints in GA and
OzF(z∗, x(0)) form an dependent set is excluded from
this work. Thus, the assumption of Jacobian OzF(z∗, x(0))
being full rank ∀x(0) ∈ X entails that the rank condition
now depends on independence of the constraints GA.

KKT Conditions: Among the candidate active sets
in (5), we restrict our attention to optimal active sets
A(z∗, x(0)), where the optimized decision variable z∗ is
obtained by solving the following KKT conditions corre-
sponding to the mp-NLP Problem 2,

Hz + OzF(z, x(0))Tµ+GTAλA = 0 (7a)

F(z, x(0)) = 0 (7b)

GAz − bA = 0 (7c)

GJ z − bJ + sJ = 0 (7d)

λA ≥ 0, sJ ≥ 0 (7e)

µ ∈ RNn and λA ∈ R|GA| are column vectors of La-
grange multipliers corresponding to constraints in (3b) and
{Giz = bi|i ∈ A(z, x(0))}, respectively. Slack variables sJ
correspond to inactive constraints J (z, x(0)).

Definition 3. Strict Complementarity Slackness No-
cedal and Wright (2006): Given the KKT pair (z∗, λ∗),
SCS holds if exactly one of λ∗i and Giz

∗ − bi is zero for
each i ∈M, that is λ∗i > 0, for each i ∈M

⋂
A(z∗, x(0)).

The exponential increase in the candidate active setsA due
to p constraints in Problem 2 makes it computationally
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costly to verify satisfaction of KKT conditions for all
candidate active sets, even for a small p. For conventional
mp-QP, (Gupta et al., 2011) proposed an offline, implicit
enumeration strategy based on pruning, in order to deter-
mine the optimal active sets A (and equivalently J ). In
this work, the enumeration approach is presented to obtain
solutions of the mp-NLP posed in Problem 2.

3. OFFLINE: IDENTIFYING OPTIMALLY ACTIVE
AND INACTIVE CONSTRAINTS

To identify the set of optimally active constraints for the
mp-NLP Problem 2 in (3a)-(3c), we extend the combina-
torial method of (Gupta et al., 2011), which was limited
only to conventional mp-QP in (4a), to mp-NLP Problem
2. Enumerate all candidate active sets for the mp-NLP
Problem 2 in (3a)-(3c) from the power setM in the order
of increasing cardinality from 0 to N(n+q), the size of the
decision variable z. The upper bound arises from the fact
that only a maximum of N(n+q) out of Nn+p linearly in-
dependent constraint (Nn constraints correspond to (3b))
can be strongly active at the optimal solution (Nocedal
and Wright, 2006). For each such candidate active set,
a feasible solution to the KKT conditions in (7a)-(7e) is
sought that satisfies strict primal and dual feasibility con-
ditions (sJ > 0, λA > 0) for some value of the parameter
x(0) ∈ X. Obtaining such a parameter x(0) implies that
the candidate set A(z, x(0)) is optimally active for some
admissible value of the parameter, and this is equivalent
to obtaining a critical region in the conventional mp-QP
solution. This KKT analysis is achieved by solving the
following NLP, which will be referred to as the “Dual
Feasibility NLP”.

Problem 3. Dual Feasibility NLP

max
t,z,x(0),µ,λA,sJ

t (8a)

te1 ≤ λA, te2 ≤ sJ (8b)

Hz + OzF(z, x(0))Tµ+GTAλA = 0 (8c)

F(z, x(0)) = 0 (8d)

GAz − bA = 0 (8e)

GJ z − bJ + sJ = 0 (8f)

λA ≥ 0, sJ ≥ 0, t ≥ 0 (8g)

x(0) ∈ X (8h)

where t is an epigraphic scalar variable and e1 and e2
in (8b) are vectors of ones of appropriate dimensions
corresponding to the vector of lagrange multipliers λA
and slacks sJ . The KKT conditions, active and inactive
constraints are enforced through (8c), (8e), and (8f), re-
spectively, while the primal, dual feasibility and positivity
of t are enforced by (8g). The enumeration begins with
the candidate active set of smallest cardinality namely,
the empty set {} as the root node and then active sets
of successively increasing cardinality with a maximum
cardinality of N(n + q) as successive levels of the combi-
natorial tree are considered. Before presenting the pruning
criterion to reduce the enumerations in fathoming the tree,
a conjecture is made in the following remark.

Remark 2. Note that in view of Remark 1, LICQ failure
can occur if GA is not full row rank. In case of linear
constraints in conventional mp-QP, it has been shown that

provided a rank condition is satisfied, LICQ failure results
in lower dimensional critical regions (Tøndel et al., 2003).
We conjecture that for a candidate active set A in Problem
2, failure of LICQ due to rank deficiency in GA will
also result in lower dimensional CRs, whose solutions are
subsumed by the full dimensional CRs. Thus, all supersets
of A will also exhibit LICQ failure and will similarly result
in lower dimensional CR.

Pruning Criterion: A two-fold pruning criteria is pre-
sented that speeds up the process of determining optimal
active sets: (i) Pruning based on rank of GA: The matrix
GA is independent of (z∗, x(0)) and its row rank can be
easily checked for LICQ failure. Now consider a candidate
active set A(z, x(0)), then from the conjecture in Remark
2, it is clear that Problem 3 corresponding to candidate
active set, A(z, x(0)), need not be solved.
(ii) Pruning based on primal infeasibility: Infeasibility
of Problem 3 could arise from two situations 1) primal
infeasibility: the candidate active (and corresponding in-
active) constraints cannot be simultaneously satisfied for
the range of parameters considered, that is, infeasibility
of (8e)-(8h), or 2) dual infeasibility: constraints exhibit
primal feasibility but KKT conditions in (8c) along with
dual variable λA > 0 cannot be simultaneously satisfied.
To identify primal infeasibility, an associated NLP is solved
that examines feasibility of only those constraints which
are involved with the active and inactive constraints of
Problem 2. This NLP is formed by excluding all con-
straints arising from the optimality condition (namely, all
constraints that include the term λA).

Problem 4. Primal Infeasibility NLP

max
t,z,x(0),sJ

t (9a)

te2 ≤ sJ (9b)

F(z, x(0)) = 0 (9c)

GAz − bA = 0 (9d)

GJ z − bJ + sJ = 0 (9e)

sJ ≥ 0, t ≥ 0 (9f)

x(0) ∈ X (9g)

If Problem 4 is found infeasible, it is clear that the
same problem will be infeasible for all supersets of the
candidate active set A (Gupta et al., 2011). Thus A and
all its supersets can be pruned from the combinatorial
tree from further examination. A graphical illustration of
the combinatorial enumeration strategy and the involved
pruning process is given in the form of a combinatorial tree
diagram in Fig.1. The above is summarized in following
proposition.

Proposition 1. Consider a candidate active set A(z, x(0))
of the mp-NLP in Problem (2) and its corresponding
inactive set J (z, x(0)). Also assume that LICQ condition
holds for Dual Feasibility NLP Problem 3 as well as
primal Infeasibility NLP Problem 4, then the following
statements, given as cases, considering all candidate active
sets A′

such that A′ ⊃ A are true:

(1.a) For a given candidate active set A(z, x(0)), if the
Primal Infeasibility NLP Problem 4 is infeasible with
respect to A, the Dual Feasibility NLP Problem 3
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is infeasible with respect to all candidate active sets
A′

. Moreover the mp-NLP in Problem 2 will also be
infeasible for all candidate active sets A′

,∀x0 ∈ X.

(1.b) For a given candidate active set A(z, x0), if t = 0 is
the optimal solution to Dual Feasibility NLP Prob-
lem 3, then the mp-NLP Problem 2 exhibits Strict
Complimentary Slackness (SCS) failure with respect
to active set A(z, x(0)).

(1.c) For a given candidate active set A(z, x(0)), existence
of a local solution to Dual Feasibility NLP Problem 3
with t > 0 implies that A(z, x(0)) is an optimal active
set with respect to the mp-NLP Problem 2.

Proof. (1.a) This case is divided into three parts as given
below. i) Infeasibility of Problem 4 with respect to can-
didate active set A(z, x(0)) implies infeasible Problem 3
with respect to candidate active set A(z, x(0)); ii) Infea-
sibility of Problem 4 with respect to candidate active set
A(z, x(0)) implies infeasibility of Problem 4 with respect

to all candidate active sets A′ ⊃ A; and iii) Infeasibility of
Problem 4 with respect to a candidate active set A(z, x(0))
implies infeasibility of mp-NLP Problem 2 with respect to
active set A(z, x(0)). The proof for three part statement
is given below.
i) Note that Problem 4 involves constraints (9b)-(9g) that
distinctly appear in Problem 3. However, Problem 3, along
with constraints te1 ≤ λA has additional equality con-
straints involving λA in (8c). Then, for a fixed λ

′

A ≥ 0,
the feasible space of Problem 3 is a subset of Problem 4.
Thus, for a candidate active set A(z, x(0)) if Problem 4 is
infeasible then, Problem 3 is also infeasible with respect to
A(z, x(0)). ii) Now consider all A′ ⊃ A then, the feasible
space of Problem 4 with respect to A will shrink further
as additional constraints become active in A′

relative to
A. Thus, infeasibility of Problem 4 with respect to A
also implies infeasibility of Problem 4 with respect to A′

.
The result given in part (i) of (1.a) therefore assures that

Problem 3 is infeasible with respect to all active sets in A′
.

iii) Since constraints of Primal Infeasibility NLP Problem

4 with respect to A′
are a part of the KKT conditions

of mp-NLP Problem 2, infeasibility of the former problem
implies infeasibility of mp-NLP Problem 2 with respect to
A′

.
(1.b) An optimal solution t = λ∗Ai

= 0 of the Dual

Feasibility NLP Problem 3 implies that for ith con-
straint is weakly active weak active due to failure of
SCS condition. Now construct another candidate active
set A′

(z, x(0)) = A(z, x(0)) \ i and its corresponding

J ′
(z, x(0)) = J (z, x(0))

⋃
i. Then s∗J ′

i

= 0 for the newly

constructed candidate active set A′
(z, x(0)) implies that

i ∈ J ′
(z, x(0)) is a constraint that is weakly inactive.

Thus, the feasibility Problem 3 with respect to constraint
set A′

will also have an optimal solution t = min(s∗J ′ ) = 0.

Hence, it becomes clear from Definition 3, that both A and
A′

will exhibit SCS failure.

(1.c) Let t∗ > 0 be the optimal solution of Problem 3. The
KKT conditions for Problem 2 are also the constraints

Fig. 1. Tree showing the active set based pruning criterion

(8c)-(8f) for Problem 3. Thus, an existence of a locally
optimal solution to Problem 3 implies that ∃ λ∗A > 0,
s∗J > 0 for which (8e) holds with A(z, x(0)) being the
optimal active set.

Remark 3. Since Problem 3 is a non-convex NLP (due to
Eq. (3b)), the outcome of the proposition is dependent on
the choice of the solver: local or global. If a local solver
is used, then case (1.c) may be misclassified as case (1.b).
On the other hand, if a local solution results in case (1.c),
it will not lead to misclassification.

Occurrence of cases (1.b) and (1.c) is characterized by fea-
sibility of KKT conditions in (7a)-(7e), which ensures that
there exist parameter values for which the set A(z, x(0))
is optimally active. However, the nonlinearity of (7a) and
(7b) in the KKT conditions restricts the possibility of
having an explicit control law. In conventional mp-QP
given by (4a)-(4b), the KKT matrix M is constant and can
therefore be inverted in the offline step, while the parame-
ter x(0) appears linearly on the right side in P (x(0)). This
inversion gives an explicit parametric solution as follows,[

UN (x(0))
λ(x(0))

]
= M−1P (x(0)) (10)

However, in case of mp-NLP Problem 2, an attempt to find
parameter-dependent solution UN (x(0)) has two conse-
quences: (1) the fully explicit solution for the MPC control
law for nonlinear systems will take the form of piecewise,
implicit, nonlinear function of x(0) and obtaining it ex-
plicitly is, generally, not possible, (2) the critical region,
that is, the largest set of the parameter x(0) for which the
optimally active set A∗(x(0)) remains unchanged, is also
nonlinear and hence not polyhedral. These consequences
motivate use of approaches for which storage of critical
regions and control laws is not required as discussed next.
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4. ONLINE REGION-FREE SEARCH ALGORITHM

In the enumeration approach discussed in Section 3, all
optimal active sets are determined independent of the
critical region boundaries or the control law. In (Kvasnica
et al., 2015), this feature is used in combination with
region-free e-MPC for LTI systems (Borrelli et al., 2010),
for an online solution of the conventional mp-QP in
(4a), that, did not require construction and storage of
critical regions offline. Corresponding to each optimal
active set that is obtained in the offline step, the constant
matrix Mi (or equivalently M−1i ) and Pi(x(0)) needed
in (10), is stored. The online step gives the optimal

active set for a current value of parameter, say x
′
(0), by

verifying if the primal and dual feasibility conditions in
(7e) are satisfied. This approach has been termed as region
free because explicit computation and storage of critical
regions becomes redundant (Kvasnica et al., 2015). The
region free approach can be used to overcome inability to
obtain critical region boundaries and control law explicitly
due to nonlinearity of the KKT conditions (see (7a) and
(7b)). Note that in (Borrelli et al., 2010; Kvasnica et al.,
2015), the motivation is to reduce memory footprint using
region-free approach for e-MPC of LTI systems since only
the constant factors M−1i , Pi(x(0)) for each optimally
active set need to be stored. However, the region-free
approach plays a decisive-role in enabling implementation
of e-MPC for nonlinear systems. Next, we present the
region-free approach in context of mp-NLP Problem 2.

Assume that a total of NA optimally active sets Ā =
{A1,A2, . . . ,ANA}, and equivalentlyNA inactive sets J̄ =
{J1,J2, . . . ,JNA}, were obtained in the offline step by
solving the Dual Feasibility NLP Problem 3 in (8a)-
(8h) corresponding to mp-NLP Problem 2. In order to
obtain a parameter dependent solution z(x(0)) online for a

parameter say x
′
(0), (7a)-(7d) are solved simultaneously.

Now, the dual and primal feasibility (namely, λAi
≥ 0,

sJi
≥ 0) is verified to identify the optimal set pair

(Ai,Ji) at x
′
(0). In this work, we implement a simple

sequential search algorithm that evaluates the primal
and dual variables λAi and sJi for optimal active sets

A∗i (x
′
(0)) and corresponding inactive sets Ji(x

′
(0)), i =

1, . . . , R as identified in the offline step sequentially until
feasibility of λAi , sJi is obtained.

Remark 4. Since the online step requires solution of non-
linear equations, this is potentially time consuming and
may be afflicted with multiple admissible solutions. In
terms of CRs, multiple solutions may manifest as over-
lapping regions. This issue has not been explored.

5. EXAMPLE

The proposed offline and online steps of explicit NMPC
are demonstrated for the nonlinear plant in (Mönnigmann
et al., 2015) given by,

x1(k + 1) = x1(k) + 0.1x2(k) + 0.1(0.5 + 0.5x1(k))u(k)
(11a)

x2(k + 1) = x2(k) + 0.1x1(k) + 0.1(0.5− 2.0x2(k))u(k)
(11b)

−2 ≤ (x1(k), x2(k)) ≤ 2 (11c)

−2 ≤ u(k) ≤ 2 (11d)
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Fig. 2. Nonlinear system control input and output profile

Here P =

[
5.9353 5.2774
5.2774 5.9353

]
, Q =

[
0.05 0

0 0.05

]
and R = 0.1

All offline and online computations were performed in
MATLAB R©(R2015b).

Table 1. Number of optimal active sets and
constraint indices

Ai Constraints
1 {5}
2 {11}
3 {2,3}
4 {5,6}
5 {6,11}
6 {11,12}
7 {2,3,4}
8 {2,3,6}
9 {2,3,11}
10 {3,4,11}
11 {2,3,4,11}
12 {2,3,6,11}
13 {}

Table 2. Offline: Variation of number of NLPs
P3 and P4 with horizon N and number of

constraints p

Max Pruned (P4 + P3:
Solved

P4:
Solved

N p NLPs LICQ) NLPs NLPs (Infeas,
Feas)

2 12 2510 2413 97 (8,43)

Table 3. Offline: Information about infeasible
candidates, SCS failures and optimal active

sets

P4: t value
N p (Infeas, t = 0, t > 0)
2 12 (80, 0, 13)
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Determining number of optimal active sets(Offline):
In this step, the NLP Problem 2 for N = 2 i.e for 12
constraints and 6 decision variables is solved. The theoret-
ical maximum number of Dual Feasibility NLP problems,
represented by (8a)-(8g), which would need solutions if
the pruning criterion is not implemented is 2510 and cor-
responds to implicit enumeration of the active sets in (5).
The number of Dual Feasibility NLPs to Problem 3 that
resulted in case (1.c) of Proposition 1 corresponds to the
total number of optimally active sets (or critical regions)
and was found to be NA = 13 corresponding to N = 2.
These optimal active sets include active constraints (7c)
and equality constraints (7b) are always active. Table 1
shows the indices of active constraints pertaining to (3c)
corresponding to each of the 13 optimal active sets. Table 3
gives information regarding infeasible candidate sets, the
candidates corresponding to SCS failure and optimal ac-
tive sets determined by solving Problem 3. The function
fmincon was used for solving Problem 3 and Problem 4.
Multiparametric NMPC implementation(Online):
The Problem 2 was solved for 150 sampling instants using
sequential search for initial condition x(0) = (0.1, 0.1).
Fig.2a) shows the control input to the plant and Fig.2b)-
2c) shows that the nonlinear system given by (11a)-(11b)
reaches the origin. Fig.3a) shows the switching of the
optimal active sets for two separate initial conditions. For
the initial condition (1, 0.025) the switching sequence for
first two sampling instants corresponds to the active sets
Ai, i = 6, 2 (see Table 1) and subsequently the null set is
persistently in the null set A13. Similarly for (0.05,−2) the
switching sequence for the first sampling instant is 4 and
then the null set A13 applies for further instants. Function
fsolve was used to implement the sequential search.

6. CONCLUSION

A novel technique for determining the optimal active and
inactive constraints for nonlinear systems is presented. The
possible optimal active sets are identified in the offline
step by solving a Dual Feasibility NLP and a pruning
criterion to overcome the exponential number of NLPs
that would need solutions. Simulation results show that

the number of NLPs that are actually solved is a tiny
fraction of the theoretical maximum thereby achieving a
practical method for problems of moderate size. The online
step uses a simple region free sequential approach to obtain
the implicit regional state dependent control law.
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