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Abstract: This paper proposes a state-feedback control of both grid and circulating current in modular 

multilevel converters (MMCs), which ensures that the input-coupled dynamics of the two currents to be 

controlled within a multi-input–multi-output (MIMO) approach. A systematic design procedure is 

detailed and the strategy is validated on a comprehensive MATLAB®/Simulink® model of a three-phase 

MMC. Simulation results show that, compared with the conventional control featuring two separate 

control loops, the proposed control shows better performance under unbalanced grid conditions. 
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

1. INTRODUCTION 

Voltage-source-converter (VSC)-based high-voltage DC 

(HVDC) transmission is an attractive technique for large 

offshore wind power plants (Sharifabadi et al., 2016). In 

2002, a new type of multilevel converter, the modular 

multilevel converter (MMC), was proposed (Marquardt et al., 

2002). It represents a shift in the power electronics converters 

technology, which consists in multiplying number of layers 

containing switching devices. Operation at a switching 

frequency lower than in previous topologies is thus possible. 

Lower losses and higher operating efficiency also are 

obtained. Due to its modularity, scalability, high efficiency 

and low harmonic distortion, in addition to all other merits of 

VSCs, MMC has earned increasing attention during these 

years, being the preferred solution in the field of high-voltage 

DC power transmission for offshore wind power plants. 

Instead of a large DC-side capacitor, MMCs have many 

lower-capacity capacitors, behaving like a sort of spatially 

distributed energy storing capacity. The MMC as a plant is 

complex due to the high number of submodule capacitors 

(SM) and strongly nonlinear as output current and internal 

circulation current are coupled and this calls for control 

strategies that are more complex than those for traditional 

two- or three-level converters. In particular, the submodules 

capacitors are difficult to balance as they are charged from 

the DC bus and discharged by the AC bus simultaneously. It 

is important to maintain the SM voltage ripple between 

boundaries for stability purpose; during unbalanced 

conditions this becomes an important challenge. Use of 

advanced control strategies to reduce the SM voltage ripple 

appears thus necessary. 

Unbalanced fault condition is a common fault in grid-

connected converters and during this condition both AC 

output current and the DC circulating current have to be 

controlled to their references (Yazdani and Iravani, 2006). In 

addition, the SM capacitor ripple has to be limited in order to 

avoid a parasitic trip of the converter on SM DC overvoltage 

condition. Most of the MMC control methods reported in 

literature consider a balanced operating condition and deal 

with balancing the capacitor voltages during transients. Pou 

et al. (2015) propose a SMs voltage ripple reduction method 

by injecting AC component in the circulating current, but 

three-phase unbalanced grid conditions are not considered. A 

circulating current controller of MMC based on components 

and able to operate under unbalanced conditions was 

proposed by Zhou et al. (2013) and Moon et al. (2013), but 

the consequences over the SMs voltage ripple are not 

analyzed in detail. Leon and Amodeo (2017) propose an 

energy-based control method that can improve the internal 

performance of MMC under unbalanced grid conditions, but 

this method contains many imbricated control loops whose 

tuning is quite difficult. The passivity-based control approach 

has also been recently proposed, that exploits the natural 

property of converters of storing and dissipating energy 

(Bergna et al., 2015). Feedback-linearization-based control 

solutions relying upon average models have been proposed 

(Yang et al., 2017); however, the intrinsic under-actuated 

nature of the dynamic system is difficult to handle. 

This paper proposes a new control strategy based on a MIMO 

state-feedback control of both output (grid) and circulating 

current, whose tuning relies upon the balanced-grid model, 

but it is shown to also perform well during unbalanced 

conditions. This paper is organized as follows. Section 2 

summarizes the balanced-grid three-phase MMC model, 

which is further used to design the proposed control strategy 

in Section 3. Section 4 discusses the numerical simulation 

results obtained on a comprehensive MATLAB®/Simulink® 

model. Conclusion is presented in Section 5, the final one. 
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2. MODELLING OF MMC UNDER BALANCED GRID 

AND CONVENTIONAL CONTROL 

Figure 1 presents the configuration of a three-phase MMC, 

where submodule capacitors are denoted by SM and phases 

by a, b and c. Usual notations are introduced, namely: DC-

link variables (current and voltage) are denoted by subscript 

“d”, AC output variables by subscript “s”, upper-arm 

variables are denoted by subscript “u” and lower-arm 

variables by subscript “l”. N is the number of submodules in 

an arm, and R and L are the arm resistance and inductance, 

respectively. Lg is the grid inductance and vga,b,c are grid 

voltages on each phase. 

 

Fig. 1. Topology of a three-phase MMC, introducing 

notations of variables of interest. 

On a single phase, for SMi its voltage is noted i
l,cuv  for 

upper/lower arm and its insertion index is defined as i
l,un =1 

if SMi is inserted and 0 otherwise. Voltage on an arm results 

as  


N

i

i
l,cu

i
l,ul,u vnv

1
. Sum of capacitor voltages on an arm 

is defined as  

 
N

i

i
l,cul,cu vv

1
. Insertion index in an arm is 

defined as   


N

i

i
l,ul,u nNn

1
1 . Supposing that all capacitor 

voltages are equal and combining the above expressions, one 

gets  l,cul,ul,u vnv . Output (grid) current is and output 

voltage vs result as, respectively: 

lus iii  ,   2uls vvv   (1) 

Circulating current ic and internal voltage vc are defined as: 

  2luc iii  ,   2ulc vvv   (2) 

Ideally, 3dluc iiii   and 2dc vv  . vs is sinusoidal 

between 2
clv  and 2 cuv . Conventional control of 

circulating current ic and output current is is based on their 

dynamic equations: 

     
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By replacing vs from (1) and vc from (2) into (3), one obtains 

that ic obeys a first-order DC-circuit dynamic and is respects a 

first-order AC-circuit dynamic: 

  dccc vLLviLRi 


21  (4) 

asss vLvLiLRi 


22  (5) 

By taking vc in (4) and vs in (5) as control inputs, the two 

currents can be separately controlled by using proportional-

integral (PI) and proportional-resonant (PR) linear controllers 

(Sharifabadi et al., 2016). Thus, ic must be kept at a constant 

reference, meanwhile rejecting its double-grid-frequency 

(2) ripple, and is must track a grid-frequency () sinusoidal 

reference. 

Conventional control also comprises an upper-level, slower 

arm energy controller. Energy accumulated in the 

upper/lower arm’s capacitors is noted by l,uW . Energy sum is 

defined as lu WWW   and energy difference is 

lu WWW  . W  obeys a DC-circuit dynamic and must be 

controlled at NvCW d
2

0  , while W  is controlled in AC 

at 0. To this end, ic is used as control input, with two 

components: a DC one to control W  and an AC one to 

control W . These slower control loops thus provide *
ci : 

      tcosWLPFKWLPFWKi*c   0 , (6) 

with LPF{} standing for low-pass filtering. *
ci  contributes 

to forming reference *
ci  for the lower-level, faster ic control 

loop based on (4) (Sharifabadi et al., 2016). Gains K  and 

K  are selected to ensure desired bandwidths. 

3. STATE-FEEDBACK CONTROL DESIGN 

The new control design resumes the state equations (4) and 

(5) characterizing the dynamics of the two currents on a 

single phase. Note that these dynamics are coupled at the 

input level: upper- and lower-arm voltages, vu and vl, 

respectively, intervene in both, they will be now the control 

inputs. The DC voltage vd acts as a constant disturbance on 

the second-order system (1), while voltage va is perceived as 

a grid-frequency sinusoidal disturbance. Note that vd also 

contains a double-grid-frequency ripple. 

     


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A full-state feedback can be designed for the MIMO plant (7) 

in order to place a desired closed-loop dynamics and also to 

ensure a constant-reference tracking for the DC-component 

of ic, an -sinusoidal-reference tracking for is, as well as a 

2-sinusoidal disturbance rejection on ic. To ensure zero-

steady-state-error reference tracking and disturbance 

rejection, five additional integral states are defined: 

lai

uai

l,SM1

l,SM 2

l,NSM

u,SM1

u,SM2

u,NSM
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where *-notations denote references. That is, states xi1 and xi2 

correspond to a resonant integrator on , state xi3 is that of an 

ordinary integrator and, finally, states xi4 and xi5 belong to a 

resonant integrator on 2. A MIMO extended plant with 

 Tiiiiisce xxxxxii 54321x  as states, 

 Tlue vvu  as vector control input and  Tadp vvu  as 

disturbance input is thus obtained; it is described by the state-

space equation ppeeeee uBuBxAx 


, where state 

matrix Ae and input matrices Be and Bp are as follows: 
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After checking controllability of matrix pair (Ae, Be), a full-

state feedback control of form eee xKu   can be 

computed such as the closed-loop system 

  eeeee xKBAx 


 to have a desired seven-order 

dynamics (Sobel et al., 2011). To this end, two of the new 

poles correspond to render faster the original second-order 

dynamic of the two currents, ic and is, by imposing that grid 

current is behaves faster than ic in closed loop. Indeed, such a 

requirement corresponds to the necessity that AC power 

exchange to be faster than evolution of internal variables. The 

other remaining five poles – corresponding to the integral 

states – should be placed sufficiently far away (at least a 

decade) in relation to the accelerated second-order dynamic 

of the two currents, such as to not become dominant, as their 

role is to ensure zero steady-state error. Vector control input 

is  *
l

*
ue vvu . Internal voltage   2*

l
*
u

*
c vvv   and grid 

voltage   2*
u

*
l

*
s vvv   are further computed. *-notation is 

used because these variables are send as references to the 

modulation process, in order to obtain the desired upper- and 

lower-arm insertion indices,    cu
*
s

*
c

*
u vvvn  and 

   cl
*
s

*
c

*
l vvvn , respectively. Figure 2 shows the extended 

system’s poles placement in relation to the original second-

order dynamic for the three-phase MMC whose parameters 

are given in the Appendix. Thus, is closed-loop dynamic is 

imposed to be five times faster than the original one, while ic 

closed-loop dynamic remains the same as in open loop. 

Dynamics of integral states are placed at much higher 

frequencies. The open-loop and imposed closed-loop poles, 

as well as the resulted gain Ke are given in the Appendix. 

Fig. 2. Open-loop vs. imposed closed-loop dynamics. 

The three-phase block diagram of the proposed control is 

given in Fig. 3, where three-phase variables are involved. 

Vector gain Ke_3phase is the three-phase extension of single-

phase gain Ke. Note that, as an external reference cannot be 

imposed for the circulating current, another solution is 

achieved in practice. This consists in generating *
ci  based on 

low-pass filtering the measured current, ic (Sharifabadi et al., 

2016), as the prevailing goal is to smooth ic. 

 

Fig. 3. Three-phase block-diagram implementation of the proposed MIMO full-state feedback control. 

Original dynamic  

of both ic and is 

Imposed five-time 

accelerated dynamic of is 

Imposed dynamics of 

integral states 
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Note also presence of a component *
ci  coming from the 

energy control loop according to (6) and added to result in the 

final circulating current reference. 

4. NUMERICAL SIMULATION RESULTS 

The proposed control strategy is validated on a 

comprehensive MATLAB®/Simulink® model of a three-

phase MMC, whose parameters are given in Appendix A. A 

comparison with the conventional control solution, habitually 

implemented in practice and based on multiple cascaded 

control levels (Sharifabadi et al., 2016), is here discussed. 

Namely, the global multiple-level-based control approach is 

here preserved, with the difference that the proposed state-

feedback controller replaces the two separate control loops of 

ic and is. Thus, energy control level, as well as capacitor 

voltage balancing and modulation implementation, is left in 

place, aiming at showing that improved performance can be 

achieved with little adaptation effort. 

A scenario of 1.3 seconds is chosen for illustration, with an 

unbalance in the grid conditions occurring at time 0.7 s and 

ending at time 1.1 s. While balanced grid is characterized by 

grid voltage positive sequence vg_pos = 1 p.u. and by grid 

voltage negative sequence vg_neg = 0 p.u., an unbalance in the 

grid is indicated by values different from these ones. Here, 

the unbalance is characterized by vg_pos = 0.8 p.u. and vg_neg = 

0.2 p.u. 

Figure 4 shows the internal control results when conventional 

control of ic and is is in place. In this case, two separate loops 

are respectively in charge with controlling the two currents. 

Note that the control is no longer effective once the voltage 

unbalance takes place. As a consequence, increasing-

magnitude oscillations in both three-phase circulating current 

(second plot) and sum of capacitor voltages, 
l,cuv , (first plot) 

can be noted. For these latter, overpassing 10% of the rated 

value may result in MMC decoupling to avoid capacitors 

damage. Control of energy sum W  (third plot) is slow and 

exhibits a quite important steady-state error. Energy 

difference W  control has quite large variations from zero, 

its reference. 

 

 

Fig. 4. Numerical simulation results obtained for the conventional internal control, based on separate loops for ic and is, under 

unbalanced grid conditions occurring at time 0.7 s and lasting 0.4 s (vg_pos = 0.8 p.u. and vg_neg = 0.2 p.u.). 

Results of internal control by state feedback are presented in 

Figure 5, where evolutions of the same variables as in 

Figure 4 can be seen. Circulating current ic and output grid 

current is are now controlled according to the block diagram 

in Figure 3. Note that the closed-loop behaviour is no longer 

oscillating once the voltage unbalance takes place. 

Circulating currents on two of the phases stabilize at quite the 

same values, while on the third phase the ic steady-state value 

is larger. Control of energy sum W  is here faster – with 

some overshoot at transients between normal and unbalanced 

grid, and inversely – and has reduced steady-state error, while 

the energy difference is well maintained around zero. 

Figure 6 shows the grid control results when conventional 

control of ic and is is in place. Occurrence of the grid voltage 

unbalance can clearly be identified on the first plot. The 

second and the third plot present the closed-loop performance 

of d and q components of output current positive and 

negative sequence, respectively. The fourth plot displays 

active and reactive power evolutions, where oscillating 

behaviours can be noted during the grid fault. 

Figure 7 shows the grid control results when state-feedback 

control of ic and is is in place. One can note that the proposed 

control results in an improvement of positive and negative 

sequences of grid current control, in terms of both precision 

and transients between faulted and normal grid conditions 

(second and third plot, respectively), which positively 

impacts power evolution (fourth plot). 
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Fig. 5. Numerical simulation results obtained for the MIMO state-feedback internal control of both ic and is, under unbalanced 

grid conditions occurring at time 0.7 s and lasting 0.4 s (vg_pos = 0.8 p.u. and vg_neg = 0.2 p.u.). 

 

 

Fig. 6. Numerical simulation results obtained for the grid variables control when ic and is are controlled by separate loops, 

under unbalanced grid conditions occurring at time 0.7 s and lasting 0.4 s (vg_pos = 0.8 p.u. and vg_neg = 0.2 p.u.). 

 

5. CONCLUSION 

A MIMO state-feedback control of both grid and circulating 

current in MMCs has been proposed, which allows that the 

input-coupled dynamics of the two currents to be controlled 

together. Thus, imposing desired closed-loop reference 

tracking and disturbance rejection dynamics of the two 

currents is stated as a MIMO pole-placement problem. The 

design procedure is detailed and the strategy is validated on a 

comprehensive MATLAB®/Simulink® model of a three-

phase MMC. Under unbalanced grid conditions, simulation 

results show improved performance against the conventional 

control featuring two separate control loops. The proposed 

control method shows a good stability and accurate control of 

DC circulating current during the unbalanced-grid fault, still 

remaining based on the balanced-grid model of MMC. The 

submodule capacitor voltage ripple is thus maintained within 

admissible limits (10% around rated) despite the fault, 

which is not the case for the conventional control. Control of 

grid currents is also improved. Well-performing internal 

control also allows reducing time response and precision of 

upper-level control loops, such as energy control. Future 

work will aim at confirming the numerical-simulation-proved 

effectiveness on a real MMC setup. 
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Fig. 7. Numerical simulation results obtained for the grid variables control when ic and is are MIMO state-feedback controlled, 

under unbalanced grid conditions occurring at time 0.7 s and lasting 0.4 s (vg_pos = 0.8 p.u. and vg_neg = 0.2 p.u.). 
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Appendix A. THREE-PHASE MMC PARAMETERS USED 

IN SIMULATION 

Electrical parameters 

Rated apparent power Srated=150 MVA; DC-link voltage 

vd=200 kV; output voltage amplitude Vs_max=100 kV; output 

current amplitude Is_max=1 kA; grid frequency =250 rad/s; 

number of submodules N=12; arm resistance R=1.6 ; arm 

inductance L=50.9 mH; submodule capacitance C=450 F; 

grid resistance Rg=0.1 ; grid inductance Lg=3.2 mH; initial 

value of circulating current Ic0=250 A. 

Open-loop poles: –31.4159, –31.4159 (rad/s) 

Control parameters 

Imposed closed-loop poles: –31.4159, –157.0796, –628.3185, 

–1570.8, –2199.1, –2513.3, –1256.6 (rad/s) 

Full-state feedback control gain on each phase Ke= 















00110164831025000040656410018000240

0010002030979000040621210018000240
105

.......

.......

Arm energy controller gains on each phase: 00050.K  , 

0010.K  . 

 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12580


