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Abstract This work introduces and compares low-computational cost MPC-based algorithms
based on a reduced-order electrochemical model, the Equivalent Hydraulic Model (EHM), for
the fast charge and balance of a string of battery cells accounting for degradation-related
phenomena. The balance is carried out through a fully shunting grid. The shunting scenarios
are described in two different approaches, namely: binary variables and pulse with modulation
(PWM). Due to the complexity of solving nonlinear and non-convex constrained optimal
problems, we approximate the balancing grid configurations of the string as subsystems to
solve an optimization problem that follows the maximization over current and configuration of
the string, while minimizing the charging current of each subsystem. Numerical results show
that a PWM-based approach outperforms a mixed-integer approach, showing a charging time
three times lower.

Keywords: Li-ion battery packs, fast charge and balance, degradation awareness, equivalent
hydraulic model (EHM), model predictive control (MPC)

1. INTRODUCTION

A battery pack is a series-parallel arrangement of Li-ion
cells built to fulfill power and capacity demands. Theoreti-
cally, all the cells in the pack have identical characteristics;
thus their performance should be alike given any charging
current profile. However, cells might not react in the same
way during the charge, showing operational imbalances
that might come from manufacturing differences, localized
temperature changes across the pack, and different evolv-
ing degradation rates (Quinn and Hartley, 2013).

Current commercial balancing protocols equalize voltage
imbalances, within the pack, through dissipation of the
excess energy (passive balancing) or the re-distribution of
this energy (active balancing) from the over-charged cells
to the non-charged ones. Most of the current balancing
schemes depend on ad-hoc pre-defined balancing grids
that may include one or several resistors (in passive
balancing) or different types of transferring devices (in
active balancing).

The main criterion to choose between passive or active
balancing underlies on the implementation cost and the
balancing time, i.e., the time needed to transfer energy
from one cell to another. Although widely implemented
due to low implementation costs, passive balancing signifi-
cantly wastes the energy and may increase the temperature
of the pack (Cao et al., 2008). Instead, active balancing
re-distributes the excess of energy in one cell to another
(cell-to-cell approach) or to the battery pack (cell-to-pack

? This work is performed within the framework of the BATWAL
project (Convention 1318146, PE PlanMarshall 2.vert) financed by
the Walloon region.

approach). The re-distribution of energy requires a longer
balancing period than the dissipation. Theoretically, the
lowest active balancing time for a pack of N-cells can
be achieved with N− 1 transferring devices, and N(N−
1)/2 connections between cells (Quinn and Hartley, 2013),
whose implementation cost might be prohibitively high for
battery packs with a large number of cells.

Due to the wide range of balancing devices, and the differ-
ent battery pack configurations, literature mainly focuses
on comparing balancing strategies given a battery pack
topology (Cao et al., 2008; Gallardo-Lozano et al., 2014).
As the configurations effects the equalization protocol, the
literature as well focuses on comparing the performance
of balancing grids in cell-to-pack and cell-to-cell config-
urations (Preindl et al., 2013), and the impact of the
topologies between transferring devices and cells (Quinn
and Hartley, 2013)). Although a vast amount of contri-
butions on balancing grids can be found in the literature,
many of them are logic-based strategies that equalize the
cells accounting for voltage imbalances without taking
explicitly into account suitable models able to describe
the electrochemical phenomena inside of each cell nor
the effects of a varying charging current. The balance is
assumed to be done during an idle time of the charge,
where the current passing through the pack is fixed and
constant.

To suitably equalize the cells within the pack, while de-
creasing the balancing time, some contributions have de-
veloped policies within the framework of model predictive
control (MPC). In this sense, Altaf et al. (2016) introduce
an equalizing MPC-based strategy for the discharge of
the pack to maintain a given load, while avoiding voltage
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relaxations in the equalization. Instead of using voltage
imbalances, Samadi and Saif (2014) propose a nonlinear
MPC policy, solved using genetic algorithms, to equalize
SOC imbalances in two serially connected batteries by
switching the modes of a DC-DC converter. McCurlie et al.
(2016) introduce an MPC-based technique to reduce the
balancing time in a cell-to-pack/pack-to-cell configuration.
Preindl (2017) addresses the interaction between an MPC-
based re-distributive charging and balancing strategy with
an auxiliary power module, comparing the performance in
a centralized policy (charging and balancing in a policy)
and in a distributed scheme.

Although optimal balancing strategies have been devel-
oped, the fast charging and balancing problem accounting
for the electrochemical degradation phenomena inside of
the cells has not been totally addressed. Quite recently,
Pozzi et al. (2019) has introduced a nonlinear constrained
policy for the fast charge and balance of a string of Li-
ion cells accounting for degradation limits. This strategy
resorts to a complete shunting of the energy in each cell by
suitably manipulating switches. Therefore, an overcharged
or risky battery is by-passed to avoid further damage. To
avoid the complexity of a mixed-integer nonlinear opti-
mization problem, Pozzi et al. (2019) consider a pulse-
width modulation (PWM) approach for the performance
of the switches connected to each cell. Using the PWM
approach, both the duty cycle of each switch and the
string charging current are obtained by solving an optimal
constrained problem. Although outperforming commer-
cial balancing, the resulting nonlinear MPC-based policy
might be time consuming in cheap battery management
systems (BMSs), and challenging to solve at fast sampling
rates.

The goal of this work is to develop algorithms “light”
enough to be implemented in BMSs to charge and balance
(full shunting) the pack in the shortest time possible, while
accounting for the limits that may accelerate the aging
of each cell (plating in the anode and solvent oxidation
in the cathode). Despite the complexity of the resulting
MPC-based charging/balancing policies, we propose two
sub-optimal algorithms, addressing the shunting grid by
two different approaches: i) an integer (binary) approach
and ii) pulse-width modulation.

2. DESCRIPTION OF THE MODEL AND THE
DEGRADATION-AWARE CONSTRAINTS

To develop “light” algorithms to charge and balance faster
a battery pack, we require a model able to capture the
main electrochemical phenomena and the main degrada-
tion mechanisms in each cell within the battery, while
providing the lowest computational burden possible.

In the case of single cells, several kinds of models have
been used to characterize cell dynamics within charging
policies, ranging from RC-like models (equivalent circuit
models, ECMs) that characterize well the macroscopic
electrical performance of the cell (Hu et al., 2015), to elec-
trochemical models (EChMs) based on PDEs that capture
the inner electrochemical states of the cell (Perez et al.,
2017). Although EChMs provide a reliable framework to
characterize cell electrochemical dynamics, they are based
on partial differential equations and algebraic relations

that add computational complexity to the charging pol-
icy. Within the constrained control framework (Romag-
noli et al., 2019), a linear model derived from full-order
EChMs, called the equivalent hydraulic model (EHM),
has shown strong evidence of a good trade-off between
electrochemical meaning and computational complexity.
(Romagnoli et al., 2019),

2.1 The Equivalent Hydraulic Model

The Equivalent Hydraulic Model (EHM) (Milocco et al.,
2014) is an ODE model with linear dynamics and non-
linear output, which describes the main electrochemical
phenomena occurring inside the battery in terms of two
electrochemical states, namely: the state of charge (SOC)
and the critical surface concentration (CSC), which repre-
sent Li-ion concentrations in each of the cell electrodes.

During the charge of a cell, the current passing through
it generates overpotentials in the positive electrode (cath-
ode) and in the negative electrode (anode). The differ-
ence between both overpotentials oxidizes lithium in the
cathode generating Li-ions, which travel to the anode, de-
positing themselves within its carbon matrix. This lithium
transportation phenomenon in each cell electrode (seen as
a single particle, Fig.1(a)) is characterized by the EHM
in terms of hydraulic relations between the levels of two
tanks (q1 and q2 (Fig. 1(b)) that represent the lithium
concentrations in the core (χ fraction) and on the surface
(1-χ fraction) of the electrode, respectively. Thus the state
of charge (SOC) represents the average concentration in
the core and in the surface of the electrode (i.e. SOC=(1−
χ)q1 +χq2), and the critical surface concentration (CSC)
represents the average concentration only on the surface
of the electrode (i.e., CSC= q1).

(a) Electrode (b) EHM

Figure 1. Hydraulic analogy of the EHM.
Although the EHM states describe transportation phe-
nomena in both electrodes, the diffusion dynamics of the
cathode are typically much faster than the dynamics of
the anode, thus a linear relation between the cathode and
the anode can be assumed as

SOC+(k) =ρSOC(k) + σ (1a)

CSC+(k) =SOC+(k) (1b)

with ρ and σ positive scalars.

Therefore, the discrete-time evolution of the j-th cell
within the pack can be captured in terms of the state
vector of its anode (xj(k) = [SOCj(k)CSCj(k)]T

xj(k + 1) = Ajxj(k) + BjIj(k), (2)

where Ij(k) is the current applied to the j-th cell, and

Aj=

[
1 0

1− e−
gj

χj(1−χj)
ts
e
−

gj
χj(1−χj)

ts

]
, Bj=

[
−γjts

−γjψj

]
, (3)

ψj = ts +
e
−

gj
χj(1−χj)

ts − 1
gj

χj(1−χj)
+

1− e−
gj

χj(1−χj)
ts

gj
χj

, (4)

where gj , γj and χj are positive scalars that characterize
the diffusion phenomena in the j-th cell, which are ob-
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tained with a parameter estimation process using open-
loop input current/output voltage profiles. ts is the sam-
pling time of the system.

Each state equation (2) is complemented by a nonlinear
output equation that characterizes the only measured
variable in each cell: the output voltage. The voltage is
express in terms of the cell electrochemical states as

Vj(xj(k), Ij(k)) =∆Uj(xj(k)) + η+
js

(xj(k), Ij(k))

−η−js(x(k), Ij(k))−Rfj Ij(k), (5)

where ∆Uj(xj(k)) = U+
j (xj(k)) − U−

j (xj(k)) is the dif-
ference between the equilibrium potentials, a chemistry-
dependent nonlinear function that may be found in
the literature according to the battery chemistry. This
function is also called the open circuit voltage (OCV).
η±js(xj(k), Ij(k)) are the surface overpotentials given by the
Butler-Volmer equation

η±js(x(k), Ij(k)) =
RTref

αF
sinh−1

 ∓θ±j Ij(k)√
z±j (k)(1− z±j (k))

 ,(6)

where z−j (k) = CSCj(k), z+
j (k) = ρjSOC(k) + σj , with ρ,

σ, α θ±j , and Rfj as positive scalars. F is Faraday constant,
and R is the universal gas constant. Tref is the reference
temperature (298.15 K). θ±j represents the kinematics
of the Li-ion movement in each electrode, whereas Rfj
represents the ohmic resistance of the anode (Couto et al.,
2016).

2.2 Charging Constraints for Li-ion batteries

The main degradation phenomena that might accelerate
the loss of capacity and the growth of resistive film layers
in the cell electrodes are; i) the lithium plating in the
graphite-based anode, and ii) the solvent oxidation in the
lithium-based cathode (Hausbrand et al., 2015; Keil and
Jossen, 2016). Each of these degradation phenomena (or
side reactions) is triggered when the electrode overpoten-
tial reaches certain threshold (Chaturvedi et al., 2010).
Thus, constraints must be imposed to avoid that the
electrodes overpotentials reach the degradation thresholds
(i.e., ηsr

+ > 0 and ηsr
− < 0) such as

ηsr
+(k)=ηs

+(x(k), I(k))+U+(x(k))−Usr
+≤0, (7)

ηsr
−(k)=ηs

−(x(k), I(k))+U−(x(k))−Usr
−≥0, (8)

where U±
sr represent the side reaction equilibrium poten-

tials, that are defined in the literature according to the bat-
tery chemistry. In the case of graphite based anodes, the
plating is characterized by U−

sr = 0V (Chaturvedi et al.,
2010), and for the lithium-cobalt oxide (LiCoO2) cathodes
the solvent oxidation is characterized by U+

sr = 4.3V (Tang
et al., 2009).

Additionally, one must include the EHM limitations that
come from the fact that exists a maximum state of charge
and surface concentration that holds the linear relation
(1a) between the anode and the cathode. Since in equilib-
rium both concentrations are equalized, the upper bound
is common for both of them[

SOC(k)
CSC(k)

]
≤
[
SOCmax

SOCmax

]
(9)

The complement of the intersection of the overpotential
constraints (7)-(8) and the upper bound for the concentra-

tions (9) describes the charging admissible region for each
cell. Due to the nonlinearities of U± and η±s in (6)-(8),
the admissible region can be found by mapping relations
between the critical surface concentration (CSC) and the
charging current, which is characterized as the C-rate, i.e.,
C-rate= Current

Capacity ). The mapping of CSC-I relations can be

obtained by using a full electrochemical model and solv-
ing the inequalities (7)-(8) for a given constant charging
current to verify the conditions (CSC,V) at which each
constraint is violated.

For the case of cells with graphite-based anodes and LCO
cathodes, the admissible region, including constraint (9), is
illustrated in Fig. 2, where solvent oxidation (blue), plat-
ing (red), and overcharge/EHM limitations (orange) are
shown. Thus, the intersection of the areas (white+gray)
describes the admissible region for the charge and balance
of each cell within the pack.

Figure 2. Admissible charging and balancing region.

Fig. 2 shows that constraint (7) is always enclosed by the
upper bound (9). However, due to the plating constraint,
the admissible region is nonlinear and non-convex, thus
not allowing to ensure global optimality and recursive fea-
sibility. To alleviate this problem, a time-invariant convex-
ification can be implemented, transforming the admissible
region (7)-(9) into a more conservative time-invariant half-
plane defined by the linear constraint

Ij(k)≥mCSCj(k)+b, (10)

where the pair [m, b] = [7.2581,−6.7] describes the char-
acteristics the half plane shown in Fig. 2 (gray).

3. PROPOSED SOLUTION

A charge and balance policy should aim at charging
each cell as fast as possible, while equalizing SOC im-
balances among the cells and accounting for degradation
constraints. To perform this in a string Li-ion cells, we
consider an active balancing grid that is able to fully shunt
the energy of a cell through switches (Fig. 3).To achieve
the fast charge and balance, the following elements are
needed in the control scheme: i) an extended Kalman filter
(EKF) per cell to estimate the non-directly measurable
electrochemical states of the cell according to the proce-
dure of (Couto et al., 2016), and ii) a centralized MPC-
based policy to manage the charging current and to decide
whether the energy is passing or not through a cell.

3.1 Centralized Constrained Control Policy for the fast
charge and balance of a string of battery cells

The most widely implemented strategy, that deals with
optimal control problems subject to constraints, is the so-
called model predictive control (MPC). An MPC policy
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Figure 3. Theoretical balancing grid

computes, at each sampling time, a series of future control
actions (a control sequence) by solving an online optimiza-
tion problem defined by a cost function, and accounting
for the process constraints. Due to the receding-horizon
approach, only the first component of the control sequence
is applied, and the control sequence is re-calculated at the
next sampling time.

To describe the fast charge and balance of number (Nbat)
of serially-connected cells within the MPC framework is
necessary to characterize the scenarios where each battery
is connected to the balancing grid. As the energy passing
through each cell can be shunted through switches (Fig.
3), there exist two scenarios: i) the energy is shunted and
the battery is disconnected, and ii) the battery is being
charged. To represent both scenarios, an auxiliary binary
variable λj∈{0, 1}⊂Z+ can be defined per cell as{

λj =0, cell by-passed

λj =1, cell being charged.
(11)

Therefore, the charge can be suitably regulated by the
current of the string (Istring) and the connection of the
switches of each cell (δj)(11). As the objective is to reach
a desired state of charge (SOCref ) in the whole string in
the shortest time possible, we can define a cost function
that does not include any term related to the variations
of the charging current (∆Istring) nor the changes on the
charging scenarios (∆λj). Thus, the functions along with
constraints (9)-(10), and the prediction model (EHM, 1a-
6), builds the constrained policy

min
Istring,Λ

Nbat∑
j=1

N∑
i=0

(ŜOCj(k+i|k)−SOCref)
2 (12a)

s.t.[
ŜOCj(k+i+1|k)

ĈSCj(k+i+1|k)

]
=Aj

[
ŜOCj(k+i|k)

ĈSCj(k+i|k)

]
+Bjλj(k+i|k)Istring(k+i|k) (12b)[

ŜOCj(k+i|k)

ĈSCj(k+i|k)

]
≤
[
SOCmax

SOCmax

]
(12c)

λj(k+i|k)Istring(k+i|k)≥mĈSCj(k+i|k)+b . (12d)

Note that, although the admissible region for each cell is
convex (Fig. 2), the resulting MPC is a nonlinear and non-
convex mixed-integer problem due to the product λj(k+
i|k)Istring(k+i|k). This kind of problems is most likely to
be NP-hard, i.e. non-solvable in polynomial times, which
might be computationally prohibitive and impracticable
even for few cells.

A max-min sub-optimal algorithm to solver the mixed-
integer nonlinear MPC. As the topology of the string of
cells is known, all the possible balancing configurations in
the shunting grid can be a-priori defined, considering each

of them as a subsystem.If each balancing configuration is
considered as time-invariant during the prediction horizon,
i.e., λj(k + 1|k) = · · · = λj(k + N|k), one can assume
that there are no interconnected constraints between the
balancing configurations. Accordingly, by duality theory
(Boyd and Vandenberghe, 2004), the resulting optimiza-
tion problem follows the maximization over the current
(Istring) and the balancing configuration of the string
(Λstring = [λ1 · · · λNbat

]), while minimizing the charging
current of each of the balancing configurations (Is). This
is represented step-by-step in Algorithm 1.

Algorithm 1
A max-min mixed-integer algorithm.

1 DEFINE

S =

1 0 · · · 0

0 1 · · · 0

.

.

.

.

.

.
. .

.
.
.
.

1 1 · · · 1

 ,
whose rows Λs = [λ1 · · · λNbat

] represent all the binary configurations of

the balancing grid, i.e. s ∈ [1,Nconfig], with Nconfig = 2Nbat − 1) of the

string, i.e., Nconfig = 2Nbat − 1

2 MINIMIZE

Is=arg min
I

Nbat∑
j=1

N∑
i=0

(ŜOCj(k + i|k)−SOCref )
2

s.t.[
ŜOCj(k+i+1|k)

ĈSCj(k+i+1|k)

]
=Aj

[
ŜOCj(k+i|k)

ĈSCj(k+i|k)

]
+ Bjλsj I(k+i|k)[

ŜOCj(k+i|k)

ĈSCj(k+i|k)

]
≤
[

SOCmax

SOCmax

]
λsj I(k+i|k)≥mĈSCj(k+i|k)+b

∀Λs ∈ S

3 FIND the maximal charging current to be applied to the string (Istring)

Istring=arg max
I
|Is|

4 SELECT all the SIstring configurations with Is = Istring
IF SIstring = 1 APPLY Istring and ΛSIstring
OTHERWISE, FIND and APPLY Λapplied

Λapplied=arg min
Λ

Nbat∑
j=1

N∑
i=0

(ŜOCj(k+i|k)

∣∣∣
Istring

−SOCref )
2

A pulse width modulation (PWM) approach for the shunt-
ing switches. Instead of considering the ideal scenario,
where each cell is being charged, or disconnected, for
the whole k-th interval of time (11), one can consider a
pulse-width modulation (PWM) approach to characterize
the switches such as in (Pozzi et al., 2019). This PWM
approach considers that each cell is being connected or
disconnected during a fraction of the k-th interval of time.
The fraction of the time interval is described in terms of
the duty cycle of the switch (dj∈[0, 1]⊂R) as{

λj =0 k < t < k+djTs, cell by-passed

λj =1 k+djTs < t < k+1, cell being charged
(14)

By defining the duty cycle for each cell, the binary vari-
ables λj(k+ i|k) within the MPC formulation can be re-
placed by these duty cycles dj(k+i|k). Thus, the nonlinear
mixed-integer problem is transformed into a nonlinear
optimization problem. Although less complex and solv-
able, the resulting nonlinear MPC (due to product dj(k+
i|k)Istring(k+i|k)) might be time-consuming in the current
battery management systems, whose computational capa-
bilities are not able to solve complex optimal problems.

To reduce the computational burden of the nonlinear
optimization, each duty cycle may be seen as the fraction
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of charging current of the string passing through a cell

(dj =
Ij

Istring
). This assumption allows considering each cell

as an independent subsystem, if and only if the duty cycles
are assumed as time-invariant during the control horizon
(N) of the individual MPC policy (i.e. dj(k+1|k) = · · ·=
dj(k+N|k)). Although suboptimal due to this assumption,
the resulting optimization follows the maximization over
the string current (Istring), while minimizing the current
of each cell (Ij). This two-level optimization is detailed in
Algorithm 2.

Algorithm 2
A ratio-based PWM algorithm.

1 MINIMIZE

Ij=arg min
Ij

N∑
i=0

(ŜOCj(k + i|k)−SOCref )
2

s.t.[
ŜOCj(k+i+1|k)

ĈSCj(k+i+1|k)

]
=Aj

[
ŜOCj(k+i|k)

ĈSCj(k+i|k)

]
+ BjIj(k+i|k)[

ŜOCj(k+i|k)

ĈSCj(k+i|k)

]
≤
[

SOCmax

SOCmax

]
Ij(k+i|k)≥mĈSCj(k+i|k)+b

∀j-th cell∈ [1 Nbat]

2 FIND the maximal current of the string Istring

Istring=arg max
I
|Ij |

3 FIND dj by dividing each particular current Ij by the current of the

string, i.e.,

D=

[
I1

Istring

I2
Istring

· · ·
INbat

Istring

]
4 APPLY Istring and D

4. NUMERICAL IMPLEMENTATION

To evaluate each charging and balancing scheme, we con-
sider a serially-connected virtual string of four graphite-
LCO (lithium-cobalt oxide) cells of 160mAh. The common
EHM parameters, are reported in Table 1. According to

Table 1. Common cell parameters
SOCmax 0.62 [-] α 5.00×10−1 [-]

χ 7.00×10−1 [-] γ 5.45×10−6 [A−1s−1]
θ+ 3.75×10−3 [A−1] θ− 2.39×10−3 [A−1]
ρ 7.99×10−1 [-] σ 1.01 [-]

Zhang et al. (2014), cell parameters as the anode and
electrolyte Li-ion diffusion coefficients and the ohmic film
resistance may change along the lifespan. Therefore, to
consider the main differences between cells, we include
variations of ±50% on the EHM parameters (gj (4) and
Rfj (5)) related to these electrochemical changes.

Table 2. Main cell parametric differences
Cell 1 2 3 4

g [s−1] 2.13×10−2 4.27×10−2 4.27×10−2 6.40×10−2

Rf [Ω·m2] 8.47×10−4 8.47×10−4 4.23×10−4 8.47×10−4

To charge and balance the string of cell with these differ-
ence, four strategies are considered:

(1) Strategy 0: A centralized MPC technique without
balancing (as a benchmark).

(2) Strategy 1: A max-min mixed-integer balancing algo-
rithm (Algorithm 1) assuming ideal switches in the
shunting grid with different reconfiguration times.

(3) Strategy 2: A nonlinear MPC-based strategy assum-
ing pulse-width modulation for the shunting switches,
following the strategy presented in Pozzi et al. (2019).

This strategy does not consider temperature nor ag-
ing like Pozzi et al. (2019) does.

(4) Strategy 3: A ratio-based balancing technique (Al-
gorithm 2) assuming pulse-width modulation for the
shunting switches.

The strategies are simulated using a high-fidelity simulator
based on a full-EChM (Fast DFN, provided by Prof.
S. Moura and the eCAL Department of UC Berkeley),
considering a sampling time of 1 s, and over a prediction
horizon of N−0.05cm = −0.05cm10. Strategies 0, 1, and
3 use the multi-parametric optimization toolbox (Herceg
et al., 2013) with a sedumi solver. As the multi-parametric
optimization toolbox (Herceg et al., 2013) does not afford
nonlinear problems, the strategy 2 uses fmincon with
the sqp solver. We do not consider the efficiency of the
switches, i.e. energy losses, nor the circuitry for the average
current during the simulations.

All the cells within the string are initialized at 3.75V and
discharged till one of them reaches a minimal voltage of
3.1V, then the charge of the whole string starts. The charge
ends when all the cells reach a desired state of charge
equivalent to 97.5% of the maximum allowable state of
charge, i.e., SOCref =0.975SOCmax.

4.1 Results and analysis

With respect to a centralized charging policy without
balancing awareness (Strategy 0, Table 3), the max-min
mixed-integer policy charges all the cells within the pack,
ensuring the desired state of charge at the end of the
charge (Strategy 1, Table 3). However, the main disad-
vantage of implementing a mixed-integer algorithm is the
computational time required to execute the charge and
the balance simultaneously (Comp. Time, Table 3). Due
to the high number of configurations allowed in the string
(2Nbat−1), solving a max-min approach can scale up with
higher number of cells within the string. This issue can
be alleviated by keeping the balancing configuration for
longer times than the charging sampling time. As Table
3 shows, the balancing configuration can be held even
for a minute (Reconfiguration Time 60s), without any
significant impact on the charging time (less than 1 min),
when compared to the case where the charge and balance
are done simultaneously at each second (Reconfiguration
Time 1s). Therefore, this dramatically reduces the number
of reconfiguration changes, thus decreasing computational
time, which in the case of few reconfigurations (high
reconfiguration times) resembles the time required for a
centralized policy without balancing awareness.

In the case of a reconfiguration time of 1min (Reconf. Time
60s), one observes how the charge and balance algorithm
sequentially charges the cells from the lowest charged
(lowest SOC) to highest charged (Fig 4(a)). Although
outperforming a policy without balancing-awareness, the
connection and disconnection of cells (Fig. 4(b)) generates
a high number of voltage relaxations (Fig. 4(c)) that might
lead to stress in the battery or to failures in the battery-
pack management system (e.g. the switches).

The implementation of a pulse-width modulation approach
reduces the number of configurations changes: each cell
is disconnected only when it is fully charged (Figs. 5(a)
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and 5(b)). Accordingly, voltage relaxations decrease from
several to one per cell (Fig. 5(c)). The reduction of cell
connections/disconnections allows PWM approach to out-
perform the mixed-integer approach in terms of charging
time. As seen in Table 3, the charging time of the PWM
approach (Strategy 2) is almost three times less than the
one obtained by using a mixed-integer approach (Strategy
1), regardless the reconfiguration time.

Although the nonlinear PWM approach reduces the charg-
ing time, its maximal computational time doubles the
sampling time of the system, thus being prohibitive in
a real-time implementation. Instead, when implementing
the ratio-based algorithm (Strategy 3), the computational
time required (both average and maximal, Strategy 3,
Table 3) can be significantly reduced while achieving the
same performance in terms of charging time as the ob-
tained with the nonlinear policy (see charging time in
Table 3).

Although a PWM approach seems to be the best alterna-
tive to charge and balance the string of cells, there are
yet two open questions regarding its performance. The
first is if this performance will hold when coupling the
electrochemical model with a thermal model. The second
is which is the best approach to charge the string avoiding
to accelerate aging: a) charging the string from the lowest
charged cell to the highest one (Mixed-Integer approach),
or b) charging the whole string and disconnecting the
charged cells (PWM approach). According to Ecker et al.
(2014), cell degradation is a function of high SOC, thus
leaving some cells fully charged till the end of string charge
might not be a conservative/safe approach. However, to
address this, some life cycle simulations with an aging
model should be carried out with each algorithm, which is
beyond the scope of this contribution.
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management of modular battery using model predictive
control: Thermal and state-of-charge balancing. IEEE
Transactions on Control Systems Technology, 25(1), 47–
62.

Boyd, S. and Vandenberghe, L. (2004). Convex optimiza-
tion. Cambridge university press.

Cao, J., Schofield, N., and Emadi, A. (2008). Battery
balancing methods: A comprehensive review. In IEEE
Vehicle Power and Propulsion Conference, 1–6. IEEE.

Chaturvedi, N.A., Klein, R., Christensen, J., Ahmed, J.,
and Kojic, A. (2010). Algorithms for advanced battery-
management systems. IEEE Control Systems, 30(3), 49–
68.

Couto, L.D., Schorsch, J., Nicotra, M.M., and Kinnaert,
M. (2016). SOC and SOH estimation for Li-ion batteries
based on an equivalent hydraulic model. part i: SOC and
surface concentration estimation. In American Control
Conference (ACC), 4022–4028. IEEE.
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Table 3. Simulation Results.
Reconfiguration Charging SOCend [%] Computational Time [s] Reconfigurations

time [s] time [s] Cell 1 Cell 2 Cell 3 Cell 4 Average Max.

Strategy 0: MPC central without balance
- 5.93 39.68 70.83 86.98 97.52 0.073 0.192 -

Strategy 1: Max-min mixed-integer MPC-based algorithm
1 35.32 97.56 97.79 97.80 97.77 0.830 8.213 1937
15 35.58 97.55 97.99 97.90 97.83 0.127 1.491 132
30 35.63 97.55 97.91 97.84 97.78 0.099 1.450 67
60 36.40 98.79 97.53 99.81 97.75 0.048 0.900 35
120 36.70 97.56 99.86 99.80 97.74 0.041 0.876 18
300 40.93 100.00 99.84 100.00 97.53 0.046 0.694 9

Strategy 2: nonlinear MPC-based policy
- 12.72 97.53 100.02 100.02 100.02 0.228 2.027 -

Strategy 3: A ratio-based PWM algorithm (Algorithm 2).
- 12.72 97.53 100.00 100.00 100.00 0.179 0.324 0
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Figure 4. Performance of strategy 1: Max-min mixed-integer MPC-based algorithm (Algorithm 1, Reconfig. time=60s).
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Figure 5. Performance of strategy 2: nonlinear MPC-based policy.
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Figure 6. Performance of strategy 3: A ratio-based algorithm (Algorithm 2).
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