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Abstract: Available feedback architectures with time delay based signal shapers are outlined
and studied with the objective to determine the channels in which the flexible mode compensa-
tion (by the shaper) takes place. As the main result, a systematic methodology for the robust
controller design is proposed and tested for three most common feedback architectures with
signal shapers. The validation is performed on a Gantry crane anti-sway problem, considering
four types of distributed delay shapers. It is demonstrated that for the selected robustness H∞
measure, the applicable parameter range is considerably reduced by placing the signal shaper
to the loop. Still, the obtained characteristics and responses of shaper feedback architectures
show that viable controller setting can well be found by the considered control design method.
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1. INTRODUCTION

Following the pioneering work by Smith (1958), input
shaping by time delay filters has become an established
technique to pre-compensate oscillatory modes of flexible
systems. The first results on Smith’s shaper (known as
posicast) were followed by Singer and Seering (1990);
Singhose et al. (1994) and other successors. A typical
application of input shaping is the pre-comensation of
flexible modes in crane systems, see e.g. Vaughan et al.
(2010); Singhose et al. (2008). An extensive review on
input shaping was reported by Singhose (2009).

Recently, alternative shaper forms with distributed delay
were proposed. In Vyhĺıdal et al. (2013), zero-vibration
shaper with equally distributed delay was proposed. The
structure of distributed delay shaper was relaxed by
Vyhĺıdal and Hromč́ık (2015) and the shaper parametriza-
tion was turned from numeric to analytic form. Next to
smoothing the response at its settling stage, the positive
feature of distributed delay shapers are retarded spectra
of zeros. This spectral property is advantageous if the
shapers are embedded within feedback loops, Vyhĺıdal
et al. (2016). Inclusion of the shaper to the feedback loop
is motivated by pre-compensation of the flexible modes in
responses induced by various disturbances, Smith (1958),
Hung (2003), Huey et al. (2008). The second motivation
for placing the shaper to a feedback loop is in handling
the effect of non-linearities, mainly the control input sat-
uration, Huey et al. (2008), Alikoç et al. (2017). How-
ever, once the shaper with time delays is included to the
feedback loop, the closed loop system becomes infinite
dimensional system. Designing a finite-order controller for
such a feedback is not a straightforward task. The first

attempts in this direction, Vyhĺıdal et al. (2016), Pilbauer
et al. (2017), Pilbauer et al. (2018), are further elaborated
in this paper, which is structured as follows. The purpose
and applicability of three feedback structures with shapers
are outlined in Section 2. The Section 3 then presents the
main result - the methodology on robust fixed structure
controller design. The proposed method is validated in
Section 4 on a typical case study example - Gentry crane
anti-sway problem. The main results are summarised in
Section 5.

2. SURVEY ON FEEDBACK INTERCONNECTIONS
WITH INPUT SHAPER

Three feedback configurations with shaper shown in Fig.
1-3 are considered. The controlled plant consists of two
subsystems. The first subsystem G(s) describes an actu-
ator dynamics which is a part of the velocity or position
feedback loop together with the controller C(s). The sec-
ond subsystem F (s) contains oscillatory mode determined
by the damping ξ and natural frequency ω, which is to be
targeted by the shaper.

The standard objective is to design the motion control
system in such a way that the flexible dynamics in F (s)
does not get excited due to the changing the reference w.
As will be shown, some of the schemes achieve the mode
compensation also to responses induced by measurement
noise n and output disturbance d. Note that also an
input disturbance acting on G(s) may be considered but
it can be transformed to an equivalent output signal d
without a loss of generality. Let us also note that it is
assumed that there is no back propagation of the output
ys back to the feedback loop. This assumption is quite
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common for motion systems with clearly separable rigid
and oscillatory dynamics and negligible interactions in the
load to actuator direction, Vyhĺıdal et al. (2016).
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Fig. 1. Feedforward shaper application

A common way to suppress the unwanted load-side os-
cillations is to employ a signal shaper S(s) to modify
the reference setpoint for the feedback loop (Fig. 1). The
advantage is that the shaper and feedback control parts
can be designed independently and the shaper dynamics
does not influence performance nor stability of the loop.
By analyzing the transfer function from the reference to
load-side output, we get

Tw,y(s) =
Y (s)

W (s)
= F (s)S(s)

C(s)G(s)

1 + C(s)G(s)
, (1)

from which one may see that the vibration due to the
reference w are canceled provided that the shaper zeros
match the oscillatory poles of F (s). On the other hand,
the remaining disturbance sources are not compensated
and they still excite the oscillatory dynamics, which can
be observed from the respective transfer functions

Tn,y(s) =
Y (s)

N(s)
= −F (s)

C(s)G(s)

1 + C(s)G(s)
,

Sd,y(s) =
Y (s)

D(s)
= F (s)

1

1 + C(s)G(s)
.

(2)

The oscillatory poles of F (s) get excited unless there is a
cancellation with open-loop poles or zeros in eq. (2).
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Fig. 2. Feedback loop with control-action shaper

Secondly, we consider the scheme with control-action
shaper shown in Fig. 2, in which the signal shaper gets
embedded directly in the feedback loop. The given scheme
was studied by Hung (2003) with a link to Smith’s Posi-
cast. Stability aspects were then analysed by Staehlin and
Singh (2003) and by Huey and Singhose (2009). Checking
the corresponding dynamics from all the external signals
yields

Tw,y(s) =
Y (s)

W (s)
= F (s)

C(s)S(s)G(s)

1 + C(s)S(s)G(s)
,

Tn,y(s) =
Y (s)

N(s)
= −F (s)

C(s)S(s)G(s)

1 + C(s)S(s)G(s)
,

Sd,y(s) =
Y (s)

D(s)
= F (s)

1

1 + C(s)S(s)G(s)
.

(3)

It is seen that the load-side oscillations are not excited
from the reference nor the measurement noise, reported
by Huey et al. (2008), but still the input or output
disturbance will cause unwanted resonance response.
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Fig. 3. Feedback loop with inverse shaper, Vyhĺıdal et al.
(2016)

The last structure under consideration is the scheme shown
in Fig. 3 with an inverse shaper. In this case, an inverse
implementation of the signal shaper 1/S is used in the
feedback path. The inverse shaper scheme proposed by
Vyhĺıdal et al. (2016) can be considered as a more efficient
alternative of the compensator-based feedback scheme
proposed already by Smith (1958). Both the Smith’s and
Vyhlidal’s schemes were designed with the aim to achieve
the flexible mode compensation in output (and input)
disturbance rejection responses.

Expressing the dynamics at the load-side output due to
the set-point and external disturbances lead to

Tw,y(s) =
Y (s)

W (s)
= F (s)

C(s)S(s)G(s)

S(s) + C(s)S(s)G(s)
,

Tn,y(s) =
Y (s)

N(s)
= −F (s)

C(s)G(s)

S(s) + C(s)S(s)G(s)
,

Sd,y(s) =
Y (s)

D(s)
= F (s)

S(s)

S(s) + C(s)S(s)G(s)
.

(4)

This structure is able to compensate the load-side vibra-
tions due to w and d but the feedback noise n excites the
oscillatory dynamics of F (s). Note that in Hromč́ık and
Vyhĺıdal (2017), Pilbauer et al. (2018), the inverse shaper
design was proposed for the coupled dynamics of the main
body and flexible subsystem.

The shaper S(s) is commonly designed as a time delay fil-
ter with a non-negative impulse response which projects to
non-decreasing character of the set-point response. Time
delays related to oscillation period also bring a natural
control-signal phasing in both the set-point and distur-
bance rejection responses. Thus the shaper has potential
to contribute to energetic-optimality of the control actions.
On the other hand, the shaper time-delays within the
feedback loop complicate analysis and synthesis of the
feedback controller C(s) due to the infinite order of the
resulting dynamics. Conventional design methods working
in the algebraic domain are difficult to employ due to the
infinite number of poles. This disadvantage is mitigated
in the frequency domain to some extent but still some
partial steps of the design process, e.g. check of closed-loop
stability, get complicated significantly. In what follows,
a systematic methodology for the design of the feedback
controller in the structures with embedded signal shapers
according to Fig. 1- 3 is proposed and validated on a case
study application.

3. FIXED-STRUCTURE ROBUST CONTROLLER
DESIGN

We assume that a fixed-structure low-order controller
C(s), e.g. a PD, PI(D) or lead-lag compensator defined
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by a set of two or three parameters, is to be designed and
implemented. For this sake, we employ an algorithm based
on recent results in H-infinity loop-shaping theory by the
authors, Schlegel and Medvecová (2018) and Goubej and
Schlegel (2019). For the sake of compactness, the proposed
H∞-region approach is briefly outlined here. The reader is
referred to the respective publications for a more thorough
explanation and derivation of the algorithm.

The starting point is an LTI plant model of the open-loop
system to be controlled

P1(s) = S(s)G(s), P2(s) =
G(s)

S(s)
, (5)

where G(s) denotes the actuator-side dynamics and S(s)
is the direct- or inverse-form shaping filter embedded in
the assumed control schemes from Fig. 2 and 3.

The goal is to find a feedback controller C(s) which
internally stabilizes the plant Pi(s) and fulfills a set of
design requirements formulated in the frequency domain
as loop-shaping inequalities

||H(s, k)||∞ < γ, (6)

where H corresponds to an arbitrarily chosen closed-
loop transfer function defined as a frequency-weighted
transfer function between a chosen penalized output and
generalized input

H(s, k)
∆
= W (s)S∗(s), (7)

with S∗(s) denoting one of the closed-loop sensitivity
functions (e.g. the sensitivity, complementary-, input-
and controller-sensitivity) and W (s) introduces the user-
defined frequency-dependent scaling.

Each of the design constraints can be transformed to the
parametric space of the fixed-structure compensator. In
case there are two controller gains to be tuned, the result
of this transform defines a set of admissible controllers
in the 2D plane. Full derivation of this transform was
given in Schlegel and Medvecová (2018) for the particular
case of PI controller. It was shown that the boundary of
each H∞ region can be computed by analyzing roots of a
quadratic polynomial whose coefficients are linked with the
transfer function of the controlled plant. Multiple design
constraints can be combined by analyzing an intersection
of their corresponding H∞ regions. The resulting set of
admissible controllers is then obtained as the intersection
of all the H∞ regions. In case it is non-empty, a particular
controller may be obtained by forming a secondary perfor-
mance criterion. An example of such secondary objective
which is often used for the PI controller (C(s) = Kp +
Ki/s) is the maximum integral gain condition which is
known to minimize the Integral error criterion

IE =

∫ +∞

0

e(t)dt =
1

Ki
. (8)

The H∞ regions method can be applied directly to the
formulated design problem of a motion system. It is
assumed that the location of the flexible mode of F (s)
is known and a proper input shaper S(s) is designed
in the first step, either in the direct or inverse form
according to the given feedback structures. Therefore, the
controller C(s) can be derived for the modified plant given
by (5). The advantage is that the admissible regions in
the parametric space of the fixed structure controller can

x

y

Fig. 4. Gantry crane anti-sway problem

be obtained in the same manner even for an infinite-
order system which is formed by embedding a time-delay
signal shaper in the loop. Moreover, the shape of the H∞
regions resulting from the individual design constraints
can give an important insight to the problem. The user
can see which requirements are contradictory and how the
insertion of the shaper in the loop affects the admissible
set of controllers and therefore influence the achievable
closed-loop performance and stability.

The proposed methodology is summarized in Algorithm 1:

Algorithm 1 H∞ loop-shaping controller design

Input: Plant model G(s),F (s)
Output: Fixed-structure controller C(s), shaping filter

S(s)
1: Design the signal shaper S(s) based on the flexible

modes model in F (s)
2: Construct the augmented plant P1(s) or P2(s) in (5)

based on the chosen feedback structure
3: Formulate closed-loop design requirements for C(s) via

loop-shaping inequalities (6)
4: Compute the corresponding H∞ regions
5: Find the intersection of all regions to derive admissible

set of controllers
6: Choose particular controller from the admissible set

based on a secondary performance criterion, e.g. (8)

4. CASE STUDY: GANTRY CRANE APPLICATION

A case study is given to demonstrate the proposed ap-
proach to the design of the signal shaper-based feedback
structure. A hoist-crane control problem from Fig. 4 is
considered which fits the generic control setup assumed in
Fig. 1-3. The actuator-side dynamics G(s) is represented
by the closed velocity loop of the hoist drive, whereas the
load-side part F (s) comes from the inherently oscillatory
dynamics of the suspended load. The goal is to design the
position controller C(s) which is assumed to be of a PD
type compensator

C(s) =
U(s)

E(s)
= (Kp+Kds), E(s) = L{e(t) ∆

= x∗(t)−x(t)},

(9)
where x∗ stands for the position reference variable.

The actuator dynamics is given as
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G(s) =
X(s)

V ∗(s)
=

K(s+ a)
2∏
i=1

(s2 + 2ξiωis+ ω2
i )

s
4∏
j=1

(s2 + 2ξjωis+ ω2
j )

, (10)

where X(s) = L{x(t)} denotes the hoist position and
V ∗(s) = L{v∗(t)} is a velocity setpoint. The model pa-
rameters were obtained from an experimental identifica-
tion of a small-scale crane setup used at authors’ depart-
ment: K = −13775, a = −149.2, ωi = {154, 201}s−1,
ξi = {0.55, 0.059}, ωj = {38.1, 98, 155, 163}s−1, ξj =
{0.92, 0.57, 0.3, 0.07}. This part governs the dynamics of
the hoist actuated by an AC induction motor including
closed current and velocity control loops implemented in a
frequency inverter unit. The load-side dynamics describing
the transfer from hoist position to load sway angle is given
as follows:

F (s) =
Θ(s)

X(s)
=

−3.06s2

s2 + 0.087s+ 30.1
(11)

with the mode determined by ξ = 0.008 and ω =
5.49s−1 to be targeted by the shaper. The parameters were
obtained experimentally from the physical setup as well.
The goal is to design the controller C(s) from (9) for the
three different shaping filter architectures introduced in
Fig. 1-3.

Following shaper types were considered for comparison:

(1) Distributed-delay Zero-vibration shapers with the
transfer function given in the form of

Si(s) = A+ (1−A)Gi(s)e
−τs, i = 1..4 (12)

where Gi(s) is a dynamics related to the filter delay
distribution. Four distinct filter structures proposed
in Vyhĺıdal and Hromč́ık (2015) were examined:
• DeZV shaper with equally distributed delay

G1(s) =
1− e−sT

sT
• DtZV shaper with triangular delay distribution

G2(s) =
4(1− 2e−sT/2 + e−sT )

s2T 2

• DcZV shaper with trigonometric distribution

G3(s) =
4π2(1− e−sT )

sT (s2T 2 + 4π2)

• DtaZV shaper with asymmetric triangular shape

G4(s) =
2(sT − 1 + e−sT )

s2T 2

(2) Conventional IIR single-mode notch-filter

S5(s) =
s2 + 2ξωs+ ω2

s2 + 2ωs+ ω2
(13)

Let us note that shapers with distributed delay are selected
to prevent undesirable neutrality of the closed loop which
is likely to happen for classical lumped delay shapers,
Vyhĺıdal et al. (2016).

The shapers were tuned to match the resonance of the
oscillatory part of the system in (11) by setting T = π

ω =
0.574s. The design requirement for the controller C(s) is
imposed as a maximum closed-loop sensitivity constraint
defining a desired robustness margin

||Sfk(s)| |∞ < MS , k = 1..3, (14)
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Fig. 5. Calculated H∞ regions defining the sets of admis-
sible PD controllers for the inverse shaper structure
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Fig. 6. Calculated H∞ regions for the control-action shaper
feedback structure

where Sfk(s) corresponds to the three assumed control
architectures from figures (1-3):

Sf1 =
1

1 + CG
, Sf2 =

1

1 + CSG
, Sf3 =

1

1 + CS−1G
.

(15)

It may be observed that the formulated control design
problem is equivalent to the synthesis of a PI controller
C̄ for a modified plant Ḡ as follows:

C̄(s)
∆
= C(s)/s = Kd +

Kp

s

∆
= K̄p +

K̄i

s
, Ḡ(s)

∆
= G(s)s.

(16)
Therefore, previous results derived in (Schlegel and Med-
vecová, 2018) for the PI controller case can be applied
directly for the pair C̄, Ḡ and the PD controller in (9) for
the original problem formulation is obtained from simple
substitution of gains from (16). The maximum integral
gain which minimizes the IE criterion (8) was chosen as
a secondary objective for the selection of a particular
controller from the derived admissible sets.

4.1 Achieved results

Figures 5 and 6 show the results of the computed H∞
regions of the PD controller corresponding to the feedfor-
ward, control-action and inverse shaper structures from
Figs. 1-3. The first observation is that the inclusion of
the shaper in the loop significantly reduces the range of
applicable gains which affects the achievable closed-loop
bandwidth. The dynamics of the shaper has to be taken
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Table 1. Derived parameters of S,C in direct
{Kd

p ,K
d
d} and inverse {Ki

p,K
i
d} structure

Filter type τ A Kd
p Kd

d Ki
p Ki

d

DeZV 0.286 0.395 8.841 3.142 23.3 0.465
DtZV 0.287 0.454 10.364 3.01 30.26 0.697
DcZV 0.287 0.465 10.542 2.93 32.42 1.15
DtaZV 0.39 0.436 9.656 2.93 26.13 1.16
notch - - 7.4 1.51 38.53 2.56
S = 1 - - 20.55 0.77 - -
S = 1 - - - - 68.86 2.16
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Fig. 7. Open-loop Nyquist plot for the inverse-shaper
structure and optimal PD controllers (Kp → max)

into consideration in the phase of feedback compensator
design. Otherwise, the resulting performance may be in-
ferior. The derived controller and shaper parameters are
listed in Table 1.

Figure 7 shows the Nyquist plots for the optimal PD
controllers chosen from the computed admissible regions as
the points with the maximum proportional gain, according
to the secondary objective in (8) and substitution in
(16). The maximum sensitivity limit in the loop-shaping
constraint (14) was set to be MS = 2 for the inverse shaper
structure and MS = 1.2 for the control-action shaper case.
It can be seen that the design requirement is met exactly,
confirming correct functionality of the controller synthesis
algorithm.

Figures 9 and 11 show the load-side response to the unit
step reference position change. Comparable performance
is observed for all the studied shaper types. However, a
significant difference appears on the actuator-side posi-
tion response shown in Fig. 8, which reveals much more
oscillatory behavior when using the conventional notch-
filter. This may advocate the employment of more com-
plex distributed-delay shapers which are able to maintain
almost monotonous actuator response.

Figures 10 and 12 demonstrate the load-side response to
the step change in the output disturbance d. The control-
action shaper cannot suppress the induced vibrations as
shown in the previous section. The residual oscillations
are even higher than in the case without the shaper. On
the other hand, the inverse-shaper structure is able to cope
with the disturbance and generate well damped response
at the load-side. The achieved performance is better with
the notch filter at the cost of higher actuator effort as in
the previous case.
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Fig. 8. Closed-loop actuator-side position response to step
reference change, inverse shaper structure
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Fig. 9. Closed-loop load-side position response to step
reference change, inverse shaper structure
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Fig. 10. Closed-loop load-side position response to step
output disturbance change, inverse shaper structure

5. CONCLUSIONS

A systematic approach to design a controller for feedback
loops with signal shapers was proposed and tested on a
Gantry crane anti-sway problem. The proposed control
design method is based on application of recently proposed
H∞ region approach. The method determines regions in
the controller parameter space where the desired require-
ment on the robustness is satisfied. A crucial advantage of
the method is that its applicability is not limited by the
system order. Thus, it can be efficiently applied to infinite
order time delay systems. Moreover, a complete set of
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Fig. 11. Load-side response to step reference change,
control-action shaper structure
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Fig. 12. Load-side position response to step output distur-
bance, control-action shaper

admissible controllers is derived directly in the parametric
space from the robustness conditions.

For the Gantry crane application, four types of distributed
delay shapers, proposed by Vyhĺıdal and Hromč́ık (2015)
were tested. It is shown that the applicable parameter re-
gions for which the desired robustness level is achieved are
considerably smaller compared to the region for shaper free
closed loop. Still, a reasonably fast and robust controller
setting can be determined for all the considered cases.
The performance of time delay shaper architectures is also
compared with performance of architectures with conven-
tional IIR single-mode notch-filter. Despite the design task
is considerably simpler for this finite order option, the
obtained responses confirm that time delay based signal
shapers should be preferred due to ability to distribute the
control actions with respect to oscillatory mode period.
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(2017). Mixed-sensitivity design of a dynamic controller
for systems pre-compensated by input shapers. IFAC-
PapersOnLine, 50(1), 1304–1309.
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