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Abstract: In aerial robotics, path following constitutes a popular task requiring a vehicle to
pursue a given trajectory. Resting upon the fulfillment of a desired time law, trajectory tracking
techniques often turn out to be ineffective in presence of external disturbances, favoring the
adoption of maneuver regulation strategies wherein the desired trajectory is parameterized
in terms of the path-variable. In this scenario, this work proposes a new delay-compensating
maneuver regulation controller for fully actuated aerial vehicles, whose aim is to guarantee the
perfect tracking of a given path in the shortest time interval. The innovative aspect of such a
solution relies on the introduction of a recovery term that compensates for possible delays in
the task execution. The dual-quaternion formalism is adopted to model the dynamics of the
aerial platforms allowing feedback linearization of the whole system, including both position
and attitude, with a single controller. The tests conducted in Gazebo physics simulator show
that the proposed controller outperforms the popular trajectory tracking PID regulators.
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1. INTRODUCTION

Thanks to their high versatility and maneuverability,
nowadays Unmanned Aerial Vehicles (UAVs) have become
a mature technology for a wide range of applications
in civil, military and industrial contexts (Valavanis and
Vachtsevanos, 2015). In most of these ones the platforms
are required to accomplish a path following task, i.e., to fly
along a given trajectory. The most popular path following
solutions consist in either linear or nonlinear trajectory
tracking controllers that force the given vehicle to follow
a timed reference state (see, e.g., (Lee and Kim, 2017)
and the references therein). Since at each time instant
the UAV is required to minimize the error between its
actual state and the desired one, the performance of the
majority of these solutions degrade in presence of external
disturbances as, e.g., unknown wind patterns, air flows due
to exogenous sources or other vehicles/objects proximity
effects. An unexpected disturbance could unpredictably
modify the UAV dynamics, causing, for example, the ac-
tuators saturation or an abrupt deviation from the desired
path. To overcome these drawbacks, maneuver regulation
approach can be exploited. This aims at reducing the
distance between the current state and the entire desired
path, i.e., at following a geometric reference profile without
a predefined time scheduling (Spedicato et al., 2016a,b).

In (Hauser and Hindman, 1995) it is proved that for feed-
back linearizable systems a (stable) maneuver regulation
control law can be derived from a stable trajectory track-
ing control law. Inspired by these results, several authors
have compared the performance of these two path follow-
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ing approaches by accounting for different systems and
control tasks. For instance, in (Al-Hiddabi and McClam-
roch, 2002) attention is focused on the hovering control
of a vertical takeoff and landing (VTOL) aerial vehicle,
while in (Spedicato et al., 2016b) experimental tests are
conducted on a VTOL quadrotor required to pursuit a pla-
nar circular path. In both cases, the maneuver regulation
controller causes the VTOL platform to converge to the
desired path in a smooth way with much smaller transient
errors than for the trajectory tracking controller.

Along the same research line, our previous paper (An-
tonello et al., 2018) copes with the maneuver regulation
for generic rigid bodies acting in 3D space, in contrast with
traditional trajectory tracking solutions. The present work
aims at extending the achieved results in two directions:
(i) focusing on the class of fully-actuated aerial vehicles
and (ii) accounting for the possible delays emerging in the
path following task execution. In detail, by adopting the
dual quaternion formalism, a dynamic model is initially
provided for multi-rotor platforms having an arbitrary
number of propellers, spinning around generically tilted
axes (Michieletto et al., 2017). Then, similarly to (An-
tonello et al., 2018), the derived equations of motion are
linearized through the input/output feedback linearization
method, allowing the design of a maneuver regulation con-
troller that, using the dual quaternion convention, seeks
at stabilizing both the attitude and position of the given
UAV. Note that control strategies based on dual quater-
nion pose representation are not very popular, however
this approach provides a unified solution for the attitude
and position tracking problem in 3D space (Filipe and
Tsiotras, 2013). Finally, the designed maneuver controller
is enriched through the introduction of a recovery term

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 9451



that accounts for delay emergence allowing the path fol-
lowing task execution in the shortest time interval. The
validity of the proposed delay-compensating maneuver
regulation controller is confirmed by the results of the
simulation campaign conducted in realistic virtual envi-
ronment based on a real-time physics engine.

The rest of the paper is organized as follows. Sec. 2 summa-
rizes the principal aspects of the dual quaternion algebra.
In Sec. 3 the linearized model for the dynamics of fully-
actuated multi-rotors is derived. Sec. 4 describes our dual-
quaternion delay-compensating maneuver regulation con-
troller, whose performance are discussed in Sec. 5 through
simulative results. Sec. 6 recaps the main conclusions.

2. MATHEMATICAL PRELIMINARIES

A (single) quaternion q, belonging to the quaternion set
Q, constitutes an extension of a complex number to R4.
Formally, this is defined as

q = q0 + q1i+ q2j + q3k (1)

with i2 = j2 = k2 = ijk = −1 and q0, q1, q2, q3 ∈ R.
Hereafter the more convenient vector-based representation

q = [q0 q̄]
>

is used, where q0 ∈ R and q̄ = [q1 q2 q3] ∈ R3

identify the scalar and the vector part of q, respectively.

Being 0̄ = [0 0 0] ∈ R3, qI =
[
1 0̄

]>
,qN =

[
0 0̄

]> ∈ Q
indicate the identity and null quaternions, respectively. In
addition, given p,q ∈ Q, the principal operations in the
quaternion algebra are the following:

conjugation q∗=[q0 − q̄]
>
, (2)

cross product p×q=[0 p0q̄+q0p̄ + p̄× q̄]
>
, (3)

multiplication p⊗q=[p0q0−p̄ · q̄ p0q̄+q0p̄+p̄×q̄]
>
.(4)

When ‖q‖2 = q20 + q̄ · q̄ = 1, i.e., the quaternion q belongs
to the hypersphere Qu embedded in R4, this is called unit
quaternion and can be used to describe a rotation in 3D
space. In detail, accounting for two coordinates system FX

and FY such that FX is rotated of an angle θ ∈ (−π, π]
about a unit vector n̄ ∈ R3 w.r.t. FY , their relative
orientation can be represented by the unit quaternion

qXY =
[
cos θ2 sin θ

2 n̄
]> ∈ Qu. (5)

A dual quaternion q̂ ∈ D, with D denoting the dual quater-
nion set, represents a generalization of a dual number.
Introducing the nilpotent dual unit ε so that ε2 = 0, ε 6= 0,
this is indeed defined as

q̂ = qr + εqd, (6)

where the (single) quaternions qr,qd ∈ Q denote the real
and dual part of q̂, respectively.

Similarly to the quaternions case, a dual quaternion q̂ is
called unit dual quaternion if ‖q̂‖ = q̂∗ ⊗ q̂ = qI + εqN ,
where q̂∗ = q∗r + εq∗d is the conjugate of q̂ and the symbol
⊗ indicates the multiplication operation in D, defined as
follows for two generic dual quaternions p̂, q̂ ∈ D

p̂⊗ q̂ = pr ⊗ qr + ε(pr ⊗ qd + pd ⊗ qr). (7)

A unit dual quaternion belongs to the unit dual quaternion
set Du and can be used to describe both rotation and
translation in 3D space. Indeed, given two coordinates
systems FX and FY , their relative roto-translation can

be expressed through q̂XY ∈ Du: this dual quaternion
derives from the combination of the unit (single) quater-
nion qXY ∈ Qu, representing the relative orientation
between the two coordinates systems, and the vector pY =

[0 p̄Y ]
> ∈ R4, with p̄Y ∈ R3, indicating the position of the

origin of FX in FY . Formally, it holds that

q̂XY = qXY +
ε

2
pY ⊗ qXY . (8)

The time derivative of the dual quaternion in (8) is then
given by the differential equation

˙̂qXY =
1

2
q̂XY ⊗ ω̂ωωX , (9)

where ω̂ωωX is the so-called dual velocity, expressed in FX .
This is the combination of the linear and angular velocities.

Specifically, let ωωωX = [0 ω̄ωωX ]
>
,vX = [0 v̄X ]

> ∈ R4 be
such that ω̄ωωX , v̄X ∈ R3 are the angular velocity of FX

w.r.t. FY and the linear velocity of the origin of FX ,
respectively, both expressed in FX . Then, it follows that

ω̂ωωX = ωωωX + εvX . (10)

To conclude, note that all the dual quantities can
be represented as eight-dimensional vectors, e.g., q̂ =

[qr,0 q̄r qd,0 q̄d]
>

, where qr,0, qd,0 ∈ R and q̄r, q̄d ∈ R3.

3. DUAL QUATERNION MULTI-ROTOR MODEL

In this section, a linearized dynamic model is provided for
the class of generically tilted multi-rotor UAVs introduced
in (Michieletto et al., 2017), adopting the dual quaternions
formalism to represent the vehicle state. A platform in
this class is a UAV whose dynamics depends on n ≥ 4
lightweight propellers spinning around rotation axes that
could be generically oriented. Generally speaking, a given
aerial vehicle could be either an under-actuated or a
fully actuated system (Ryll et al., 2016), according to
the number n of rotors and the mutual orientation of
their spinning axes. In the rest of the paper, the analysis
is focused on multi-rotor platforms with six controllable
degrees of freedom, i.e., on fully actuated UAVs.

3.1 Kinematic and Dynamic Equations

To describe the kinematics and dynamics of the afore-
mentioned aerial vehicles, two coordinates systems are
introduced: the global world frame FW and the local body
frame FB attached to the platform so that its origin OB
coincides with the UAV center of mass (CoM). The state
of a multi-rotor UAV is thus defined in term of position
and attitude through the unit dual quaternion q̂BW ∈ Du,
that specifies both the position p̄W ∈ R3 of OB in FW

and the orientation qBW ∈ Qu of FB w.r.t. FW .

According to (9), the kinematics of the UAV is driven by

˙̂qBW =
1

2
q̂BW ⊗ ω̂ωωB , (11)

being ω̂ωωB the dual velocity introduced in (10), namely

ω̂ωωB = ωωωB + εvB , (12)

with ωωωB = [0 ω̄ωωB ]
>

, vB = [0 v̄B ]
> ∈ R4, where ω̄ωωB , v̄B ∈

R3 respectively denote the angular velocity of FB w.r.t.
FW and the linear velocity of OB in FW , both expressed
in the local frame FB .
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The dynamics of the vehicle can be derived using the stan-
dard Newton-Euler approach by considering the actuation
effect of the propellers. While rotating, each propeller,
whose CoM is at p̄i ∈ R3 in FB , exerts a thrust force
f̄i ∈ R3 and a drag moment τ̄ττ i ∈ R3, both applied at p̄i and
oriented along the direction defined by its spinning axis.
The overall effect of the set of actuators (expressed in the
body frame), results in the total control force f̄ cB =

∑
i f̄i ∈

R3 and the total control torque τ̄ττ cB =
∑
i(p̄i× f̄i+τ̄ττ i) ∈ R3,

both acting at the platform CoM. In particular, for fully
actuated platforms the total control force and the total
control torque can be independently assigned in a subset
of R3 containing the origin. This is for instance the case
of tilted hexarotor described in (Ryll et al., 2019).

By introducing, then, the dual force f̂ cB = f cB + ετττB , with

f cB =
[
0 f̄ cB

]>
, τττ cB = [0 τ̄ττ cB ]

> ∈ R4, and by adopting the
vector notation introduced at the end of Sec. 2 for dual
quantities, the dynamics of a given multi-rotor UAV is

( ˙̂ωωωB)S = M−1(f̂ cB + f̂ gB − ω̂ωωB ×M · (ω̂ωωB)S), (13)

where the (dual quaternion) swap operation (·)S is defined

so that q̂S = (qr+εqd)
S = qd+εqr and the term f̂ gB = f gB+

εqN , with f gB = q−1BW⊗[0 0 0 −mg]
>⊗qBW ∈ R4 accounts

for the gravity action. The dual inertia matrix proposed
in (Filipe and Tsiotras, 2013) is used in (13): this is

M =

 1 01×3
03×1 m I3×3

04×4

04×4
1 01×3

03×1 JB

 ∈ R8×8, (14)

where I3×3 indicates the three-dimensional identity ma-
trix, 0i×j represents a (i× j) zero matrix, m ∈ R+ is the
mass of the platform and JB ∈ R3×3 is its inertia matrix
computed about its center of mass and expressed in FB .
Under the hypothesis of perfect balancing and a suitable
choice for FB , JB is assumed to be a diagonal matrix
whose non-zero entries are J1, J2, J3 ∈ R+.

3.2 Dynamics Linearization

The derived dynamic model (13) can be linearized through
the standard input-output state feedback linearization
method proceeding as in (Antonello et al., 2018). Note
that differently from our previous work, the gravity action
is considered in (13). In the following it will show that it is

possible to dropping out the term f̂ gB and considering the
system introduced in (Antonello et al., 2018), i.e.,

( ˙̂ωωωB)S = M−1(f̂ cB − ω̂ωωB ×M · (ω̂ωωB)S), (15)

and then proving that the derived control input linearizes
the original system (13) through to the introduction of an
additional feedback component (Lemma 1).

According to (Antonello et al., 2018), system (15) can be
rewritten in state-space form defining the state, input and
output vectors as follows

x = [q̂BW ω̄ωωB v̄B ]
> ∈ R14, (16)

u =
[
τ̄ττB f̄B

]> ∈ R6, (17)

y = [q̄r q̄d]
> ∈ R6. (18)

The output accounts only for the vector components of
the real and dual part of q̂BW (represented as an eight-

dimensional row vector in (16)), since the scalar compo-
nents qr,0, qd,0 can be retrieved through the unit norm
property. Moreover, because of the fully actuation assump-
tion, the input coincides with the vector components of
both the total control force and total control torque. The
choice (16)-(18) allows to identify the maps f(x) ∈ R14,
g(x) ∈ R14×6 and h(x) ∈ R6 that are needed to rewrite
the system (15) as follows

ẋ = f(x) + g(x)u, y = h(x), (19)

and then to determine the feedback-linearizing control
input u in terms of the new input µµµ ∈ R6 as

u = −E−1(x)D(x) + E−1(x)µµµ, (20)

where the expression of E(x) ∈ R6×6 and D(x) ∈
R6 is the same provided in (Antonello et al., 2018).
Considering then the change of coordinates given by

T (x) =
[
w> z>

]> ∈ R14, w = [qr,0 qd,0]
> ∈ R2, z =[

q̄r q̄d ˙̄qr ˙̄qd
]> ∈ R12 with ˙̄qr = [q̇r,1 q̇r,2 q̇r,3], ˙̄qd =

[q̇d,1 q̇d,2 q̇d,3]
> ∈ R3, the system (19) can be written as

ẇ = ς(w, z) (21)

ż = Az + Bµµµ, (22)

y = Cz, (23)

where ς : R2 × R12 → R12 and

A =

[
06×6 I6×6
06×6 06×6

]
, B =

[
06×6
I6×6

]
, C = [I6×6 06×6]. (24)

Although system (22)-(23) corresponds to the linearized
form of (15), the following lemma ensures that the original

system (13), accounting for the gravity term f̂ gB(x), can be
stabilized by introducing an additional feedforward term
in the control input (20).

Lemma 1. Let uf (x) be the feedback linearizing control
law (20) for the system (15). Then the following input
vector ensures the linearization of the system (13)

ug(x) = uf (x)− [02×1 f gB(x)>]>. (25)

Proof. System (19) can be modified in order to account
for the gravity force, namely to correspond to the state-
space form of system (13). In detail, it results to be

ẋ = f(x) + g(x)u + fg(x) (26)

where the additional term fg(x) ∈ R14 embeds the gravity
action so that fg(x) = [010×1 m

−1f gB(x)>]>. The choice
u = ug(x) in (25) compensates for the term fg(x) and
system (26) reduces to

ẋ = f(x) + g(x)uf (x). (27)

Through the variables change (21), this turns out to be
linear by the assumption on uf (x). �

4. DUAL QUATERNION MANEUVER REGULATION

This section presents a delay-compensating maneuver reg-
ulation controller for the UAVs introduced in Sec. 3. First,
the linearized form of the dynamic equations, namely
system (22)-(23), is taken into account designing an ex-
ponentially stable maneuver regulation scheme proceeding
as in (Antonello et al., 2018). Then the proposed solution
is extended by adding a recovery term that allows to cope
with delays emergency in path following task execution.
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4.1 Maneuver Regulation Control Design

Given a path following task, the trajectory tracking ap-
proach consists in designing a control law ensuring that at
each time instant the current vehicle state coincides with
a desired one. Differently, when the maneuver regulation
approach is considered, the vehicle is not required to chase
a virtual target, but just to stay on the desired path.

Formally, a maneuver is defined as a set of trajectories
in the state-control space that are consistent with the
system dynamics. Hence, given the system (22)-(23) and
considering the manuever {zd(τ),µµµd(τ)} with τ ∈ R+

0 , the
maneuver regulation control goal consists in designing a
time mapping function σ : R+

0 → R+
0 , t 7→ τ , such that the

feedback control law µµµ = β(z, zd(σ(t)),µµµd(σ(t))), β : R12×
R+

0 → R6 is exponentially stabilizing. In particular, the
function σ(·) needs to be defined in order to select the
appropriate time warping that, depending on the current
vehicle state, minimizes a specified cost (see the approach
proposed in (Al-Hiddabi and McClamroch, 2002; Hauser
and Hindman, 1995; Spedicato et al., 2016a)).

Given these premises, let introduce the error vector e(t) =
z(t)− zd(τ

∗) ∈ R12, where τ∗ ∈ R+
0 is the time to be used

in the maneuver regulation, which depends on the current
state. A good choice is to select τ∗ = σ(t) = γ(z(t)) so
that γ : R12 → R+

0 minimizes the gap between the current
state and the entire timespan of the trajectory, according
to the norm induced by a suitable positive definite matrix
P ∈ R12×12. Formally,

τ∗ = γ(z(t)) = arg min
τ∈R+

0

‖z(t)− zd(τ)‖2P. (28)

In particular, the matrix P in (28) can be selected ac-
counting for the following theorem about the convergence
of maneuver regulation architecture.

Theorem 2. ((Hauser and Hindman, 1995)). Given a lin-
ear system ẋ(t) = Az(t) + Bµµµ(t) and a desired state-
input trajectory {zd(·),µµµd(·)}, consider a feedback control
law µµµ(t) = µµµd(t) + K(z(t) − zd(τ

∗)) with τ∗ computed
as in (28) so that the closed-loop error dynamics, namely
ė(t) = Ace(t) with e(t) = z(t) − zd(τ

∗) and Ac = A +
BK, assures uniform asymptotic tracking. Assume that
there exists a constant c ∈ R+ such that the function
γ(·) in (28) is well defined on the time-dependent set
Γ = {z(t) | ‖z(t) − zd(τ

∗)‖2P < c} by choosing the
positive definite matrix P so that the resulting matrix
−(A>c P + PAc) is positive definite. Then exponentially
stable maneuver regulation is provided by the control law

µµµ(t) = µµµd(γ(z(t))) + K(z(t)− zd(γ(z(t)))). (29)

In the light of Thm. 2, given a desired trajectory zd(·)
for system (22)-(23), to design an exponentially stable
maneuver regulation controller it is sufficient to define
a gain matrix K = [Kp Kd] ∈ R6×12, with Kp =
diag({kp,i}) ∈ R6×6, Kd = diag({kd,i}) ∈ R6×6, selecting
the scalar gains kp,i, kd,i, i = 1 . . . 6, in order to ensure
the stability of the full-state feedback system, governed by
Ac = A −BK ∈ R6×6, with A and B as in (24). Hence,
recalling (29), the maneuver regulation control law is

µµµ(t) = µµµ(z(t), zd(τ
∗)) = −K(z(t)− zd(γ(z(t)))), (30)

with γ(·) as in (28) and P fulfills the assumption of Thm. 2.

Observation 1. Note that, when the mapping function γ(·)
is not take into account, the design control law (30) corre-
sponds to the implementation of a (stable) PD trajectory
tracking controller for the linear system (22)-(23).

4.2 Recovery Term Extension

A drawback of maneuver regulation approach emerges
when the trajectory travel time is set as high-priority
control requirement. Implementing the solution proposed
in the previous section, indeed, the vehicle is required to
track the given path without a time scheduling, hence
its dynamics could become very slow, especially in the
presence of disturbances. In this case, the accrued delay
remains unchanged until the end of the task, even with
the actuators being far from the saturation threshold. This
behavior is evident, for example, in the plots reported
in (Antonello et al., 2018) where the considered vehicle
experience a temporary stop. In the following, a solution
to this issue is proposed modifying the control law (30) to
guarantee the minimization of the accumulated (curvilin-
ear) offset, according with the vehicle actuation limits.

The proposed delay-compensating strategy is based on the
introduction of an additional term, hereafter referred to as
recovery term, to the result of the optimization (28). This
is defined as a function ρ(·) of the current vehicle state
and the desired vehicle state at τ∗ as follows

τ rc = ρ(z(t), zd(τ
∗))(t− τ∗). (31)

The function ρ(·) accounts for the actuation limits, that in
case of multi-rotor platforms translate into limitations on
the maximum propellers spinning rate imposed by the used
motors. In detail, let denote with µmax ∈ R the maximum
attainable intensity of control input vector (30) due to
actuators saturation limits. In order to guarantee that
‖µµµ‖2 ≤ µmax while optimizing the vehicle performance
in case of delay, it is suitable to select

ρ(z(t), zd(τ
∗)) = krc|‖µµµ(t)(z(t), zd(τ

∗))‖2 − µmax| (32)

where the recovery gain krc ∈ R is a tunable parameter.

In the next section, it will be shown that the introduction
of the recovery term (31) ensures the path following task
execution in the shortest time interval even in case of a
completely temporary stop of the vehicle.

5. SIMULATION RESULTS

This section is devoted to the validation of the delay-
compensating maneuver regulation solution introduced in
Sec. 4, by presenting the results of a simulation campaign
carried out exploiting Robotic Operating System (ROS)
and Gazebo multi-robot simulator to approximate the real-
world environment. In particular, the aerial vehicle dy-
namics is simulated employing the rotorS libraries (Furrer
et al., 2016), which allow for realistic flight simulations,
including propeller dynamics and actuation limits, while
the control law is implemented in Simulink and interfaced
with ROS through the Robotics Toolbox blocks.

The considered fully actuated multi-rotor vehicle is the
hexarotor platform depicted in Fig. 1. This is designed
tailoring the AscTech Neo 11 model available from rotorS
that introduces the possibility to tilt the propellers, guar-
anteeing the UAV full actuation (Michieletto et al., 2018).
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Fig. 1. Fully actuated hexarotor platform.

For this platform, the main control goal consists in a
path following task where the vehicle is required to track
an outward spiral path, with constant tangential velocity
and a given attitude profile. Formally, the desired position
trajectory is defined by the function α : [t0, tf ]→ R3,

t 7→


x = r(1 + κt) cos(ζt+ θin) + x0
y = r(1 + κt) sin(ζt+ θin) + y0
z = z0,

(33)

where r ∈ R+ represents the initial radius of the spiral, ζ ∈
R is the angular velocity, θin ∈ (−π, π] is the initial offset
angle, κ ∈ R+ is the spiral rate and p̄0 = [x0 y0 z0] ∈ R3

is the starting point of the curve in the inertial frame FW .
In addition, denoting by (φ, θ, ψ) the roll, pitch and yaw
angle of the vehicle, a sinusoidal trend is imposed for the
rotation both along the x and y-axis.

In detail, the conducted test consists of different phases. At
the beginning, the vehicle is required to hover at p̄0, while
being parallel to the ground. Then, at t0 = 5s, the position
and attitude trajectory (33) is imposed as reference. To
highlight the benefits of the delay-compensating maneu-
ver regulation control strategy, a fictious disturbance is
introduced at t = 9s. This consists of a complete stop of
the vehicle, for a total duration of 7s, mimicking adverse
wind gust conditions. When the disturbance is removed,
the vehicle is allowed to move and the controller resumed.
The disturbance introduction allows to compare the re-
sponse of three control laws: the PD trajectory tracking
method mentioned in Observation 1 for which the control
law results to be µµµ(t) = −K(z(t) − zd(t)), the maneuver
regulation approach (30) (recalled from (Antonello et al.,
2018)) and, thirdly, the control law (30) modified through
the introduction of the the recovery term (31).

To better appreciate the differences in controllers perfor-
mance, two metrics are introduced: λ(t) ∈ R, measuring
the gap between the actual position p̄(t) ∈ R3 and its
projection p̄⊥(t) ∈ R3 on the desired path, and ∆(t) ∈ R,
consisting in the curvilinear distance along the goal path
between the desired position p̄d(t) ∈ R3 and p̄⊥(t). For-
mally, these are given by

λ(t) = ‖p̄(t)− p̄⊥(t)‖2, (34)

∆(t) =

∫ s2

s1

|α′(ϕ(p̄))ϕ′(p̄)| dp̄, (35)

where ϕ : [p̄0 p̄f ] → [t0 tf ] is a one-to-one and onto map
such that p̄0, p̄f ∈ R3 are the starting and final point
of the desired trajectory and s1 = ϕ(p̄⊥(t)) and s2 =
ϕ(p̄d(t)). In detail, the metric in (34) provides a measure
of the capability of the controller to ensure the desired
path tracking, whereas (35) allows to quantify the delay
accumulated by the controlled vehicle. It is desirable thus

to guarantee the lowest possible values for both metrics
throughout the whole dynamics.

The results of the simulation are reported in Fig.s 2 and
3. In particular, Fig. 2(a) shows the trajectories of the
vehicle in 3D space, for the three different control policies,
Fig. 2(b) provides an insight of the controllers performance
and Fig. 3 depicts the behavior of the metrics (34)-(35).
The time window during which the disturbance is acting
is highlighted in gray.

Before the disturbance introduction, the three path fol-
lowing solutions exhibit similar properties, although the
adoption of maneuver regulation control law (30) implies
the emergence of a slight delay, mainly caused by non
idealities in the simulation. The real advantages of the
delay-compensating maneuver regulation controller is in-
stead clear after the disturbance action. As expected, the
trajectory tracking method allows to zero the accumu-
lated offset (Fig. 3-top). However, this strategy does not
necessarily comply with the path following requirements:
a spike is observable in Fig. 3-bottom. This could be a
potential problem when no-fly zones are introduced in the
scenario or when it is mandatory to follow the planned
path. On the other hand, the real-time computation of the
optimal path following solution is performed through the
maneuver regulation approach via law (30). This allows
for a full compliance to the path, as can be appreciated
in the near-zero behavior of the λ-metric. However, this
comes at the price of accumulating a delay confirmed by
the increasing trend of ∆-metric in Fig. 3-top. This plot
shows also the benefits deriving from the introduction of
the recovery term (31) that allows to quickly compensate
for the delay caused by the disturbance, similarly to the
trajectory tracking solution. Nonetheless, note that this
control method ensures also near-zero path following error
(Fig. 3-bottom), thus maintaining all the advantages of
maneuver regulation approach.

A video of the described path following comparison is
available at https://youtu.be/UD5dayCKrhk.

6. CONCLUSIONS

Within aerial robotic context, this work copes the path
following task for fully actuated multi-rotor platforms
whose dynamics is modeled exploiting the Euler-Newton
approach by adopting the dual quaternion formalism to
describe the vehicle state. The proposed solution follows
the maneuver regulation paradigm described in (Antonello
et al., 2018) focusing on the compensation of possibly
emerging delays. This issue is managed through the intro-
duction of a recovery term in the time optimization that
accounts also for the actuation saturation limits. The effec-
tiveness of the designed delay-compensating maneuver reg-
ulation control is assessed through a simulative campaign
conducted in a virtual environment that approximates the
real-world scenario employing a Gazebo-ROS architecture.
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