
New Heuristic For Single Machine
Semi-online Total Completion Time

Minimization

H. Nouinou ∗ T. Arbaoui ∗ A. Yalaoui ∗

∗ Logistics and Industrial Systems Optimization team, Charles
Delaunay Institute, FRE CNRS 2019, University of Technology of

Troyes, 12 Rue Marie Curie, 10004 Troyes, Cedex, France
(e-mails: {hajar.nouinou; taha.arbaoui; alice.yalaoui}@utt.fr).

Abstract: This paper addresses a semi-online setting of the minimization of the total
completion time scheduling problem on a single machine, where jobs arrive over-time, i.e, each
job has a corresponding release date at which it becomes available for processing. In this study,
the case where the release dates of the jobs are known at the beginning of the decision process
is considered while processing times remain unknown. A semi-online algorithm that makes use
of the available information in order to produce better schedules compared to its online peers
is presented. A numerical analysis is established, showing the impact of having this information
about release dates.

Keywords: Total completion time, Semi-online scheduling, Numerical analysis.

1. INTRODUCTION

The problem of minimizing the total completion time
on a single machine with release dates is a fundamental
problem that received considerable attention during the
last decade. In offline settings, characteristics of jobs are
all available at the beginning of the decision process. An of-
fline algorithm must define a proper sequence of these jobs
in order to optimize the objective function. However, even
if all information are available in advance, the decisions
can be very hard to make since the problem is classified
as NP-hard (Lenstra et al., 1977). On the other hand,
when preemption is allowed, the problem can be solved
in polynomial time using the SRPT (Shortest Remaining
Processing Time) algorithm (Lawler et al., 1993).

In online settings, a sequence of n jobs arriving over
time must be scheduled on the machine. Each job Jj has
a release date rj at which it becomes available and a
processing time pj . Job’s characteristics become available
for the decision maker when the job actually arrives. The
goal is to minimize the total completion time

∑
Cj , where

Cj is the completion time of job Jj . The problem can
be denoted 1|rj , online|

∑
Cj in the Graham’s notations

(Graham et al., 1979). The quality of an online algorithm
is often measured by the value of the competitive ratio. An
online algorithm is ρ-competitive if for any instance, the
value of the objective function of the schedule obtained
by this algorithm is not worse than ρ times the value
obtained by the optimal offline algorithm. List scheduling,
with the objective to minimize the makespan, is the first
problem studied by competitive analysis (Graham, 1966).
For the online problem of minimizing the total completion
time on a single machine with release dates, Mao et al.
(1995) proved that SPT (Shortest Processing Time) has a

performance guarantee of n, where n is the total number
of jobs. SPT consists in choosing a job with the smallest
processing time among all available and unscheduled jobs.
However, the problem can be solved optimally using SPT
if release dates of jobs are equal.

The online problem of minimizing the total completion
time on a single machine with jobs arriving over time
was later studied by Hoogeveen and Vestjens (1996). They
presented an online algorithm called D-SPT with a com-
petitive ratio of 2. They also proved that their algorithm
is the best possible by deriving a lower bound of 2 on the
competitive ratio of any online algorithm. In the classi-
cal D-SPT algorithm, when an available job Jj with the
smallest processing time denoted by pj is selected, it must
verify pj ≤ t in order to be scheduled, with t the current
decision time. This decision making prevents the algorithm
from performing too bad compared to the offline schedule.

Between offline and online models, we find the semi-
online models where some information about incoming
jobs is available in advance. A Recent survey of semi-
online models was presented by Tan and Zhang (2013) for
the problem of minimizing the total completion time on a
single machine. For the objective of minimizing makespan
on parallel machines, many semi-online models were con-
sidered. Information about some of the models can be
found in recent surveys (Albers, 2013; Tan and Zhang,
2013; Epstein, 2018).

Some semi-online models can be found in literature where
an information about processing times is known in ad-
vance. Liu et al. (2012) studied the problem with de-
teriorating jobs. They provided a semi-online algorithm

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10820

Table 1. Existing online and semi-online algo-
rithms

Reference Added information Algorithm

Hoogeveen and
Vestjens (1996)

Non D-SPT

Tao et al. (2009) pmax
pmin

≤ γ αD-SPT

Liu et al. (2012) pj = ajt D-SGR

Hall et al. (2009) Tk for k ∈
{1, ...,m}

CSWPT

Section 2 rj for j ∈ {1, ..., n} VD-SPT

called D-SGR (Delayed Smallest Growth Rate) with a
competitive ratio of 1+amax, where amax = maxJj∈l{aj},
and aj ≥ 0 and t are the deteriorating rate and start time
of processing of jobs, respectively. Tao et al. (2009) stud-
ied the problem denoted as 1|rj , online, pmax

pmin
≤ γ|

∑
Cj ,

where pmax and pmin denote the longest and the shortest
processing times, respectively, and γ ≥ 1 is a problem’s
data known at the beginning of the decision process.
They presented a semi-online algorithm called αD-SPT,
which is a modified version of D-SPT. The condition to
verify in order to schedule an available job is pj ≤ αt

where α =
1+
√

1+γ(γ−1)
γ−1 . They proved that αD-SPT is

1 + 1
α competitive. Hall et al. (2009) presented a semi-

online algorithm for the problem of minimizing the aver-
age weighted completion time on a single machine. They
considered an online planning period scheduling problem
which means that they know the possible arrival times,
denoted Tk, with k ∈ {1, ...,m} and m refers to the total
number of potential arrival times. However, they do not
necessarily know if a job is going to be released at this
arrival time or how many jobs are going to be released
(Table 1).

The D-SPT algorithm makes decisions in an online man-
ner, which means that no information regarding the in-
coming jobs are available at the beginning of the deci-
sion making, which justifies the need to define a fixed
waiting time that depends only on the processing time
of an available job and the value of the current decision
time. However, in this article we study the semi-online
variant of the problem where release dates of incoming
jobs are known in advance. The first advantage of adding
this information is that the semi-online algorithm does not
always have to wait. For example, if some jobs are available
and we know that no more jobs are going to be released
in the future, a semi-online algorithm will no longer insert
idle time and jobs will be scheduled by SPT order which is
optimal in this case. The answer to the question: are more
jobs going to be released in the future? becomes crucial in
this case. Another example displaying the importance of
having this information about release dates is when some
jobs are available and the next release date is greater than
the sum of the processing times of these available jobs and
the current decision time. In this case, jobs can also be
scheduled in an offline manner without inserting any idle
time since we know that the next release date will not
interfere with the scheduling of available jobs.

We present in this paper a new algorithm, called VD-SPT
(Variable Delayed Shortest Processing Time) which is a

result of the reflections described above. It makes use of the
information in hand, which is the release dates of incoming
jobs.

The paper is organised as follows: In Section 2 we present
the proposed approach for designing the semi-online al-
gorithm denoted VD-SPT. In Section 3 an experimental
study is presented by implementing both the proposed
semi-online algorithm and the online algorithm D-SPT.
Conclusions are presented in Section 4.

2. THE PROPOSED APPROACH

In designing a semi-online or an online algorithm, the same
logic is used as for designing an offline algorithm. The main
difference lays on the amount of information used in the
execution of the algorithm. An online algorithm is allowed
to use only information available at the current decision
time, while an offline algorithm has all the information
needed to construct a good schedule. However, in the
design of VD-SPT we make use of an existing information
which is the release dates of jobs which implies that we also
know the number n of jobs that are going to be released.

2.1 Definition of tmax

For the semi-online problem of minimizing the total com-
pletion time, a semi-online algorithm must answer the
following questions: If some job is available, is it better
to wait or to schedule immediately the available job?
and if it chooses to wait, then for how long? Since we
have an information about release dates, we must use this
information in the construction of our algorithm.

Hoogeveen and Vestjens (1996) proved that D-SPT is the
best possible algorithm for the problem 1|rj , online|

∑
Cj

by deriving a lower bound on the competitive ratio of
any online algorithm. The lower bound was achieved by
considering a set of instances that represent the worst
case scenario for any online algorithm and for which no
online algorithm can guarantee an outcome strictly less
than twice the optimum. In order to find these instances,
the adversary method was employed. In this method, the
worst case is obtained by playing role of adversary that
tries to make the online algorithm perform as bad as
possible compared to its own performance when serving
the same instance in an offline manner. The instances can
be described as follows: a first job arrives at time 0 with
a processing requirement p. The first scenario is when the
online algorithm decides to schedule the first job at time S
while the adversary releases no more job in the future. The
second scenario is when n − 1 small jobs with processing
times equal to 0 are released immediately after the online
algorithm decides to schedule the first job.
By intuition and based on Hoogeveen and Vestjens (1996)
demonstration of lower bound, we can imagine two possi-
ble cases that represent the worst case scenarios for a semi
online algorithm that has the advantage of knowing release
dates of jobs. First, among available and unscheduled jobs,
a job with the smallest processing time is chosen, denoted
by p. Moreover, two possible worst cases might occur.
The first case will be when the adversary releases a great

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10821

number of jobs with small processing times after the online
algorithm decides to schedule a long job. The second case
is when the algorithm decides to wait for next released jobs
and they turn out to have the same processing time as the
first. These two case are studied in order to determine the
value of tmax, which is the maximum time that a semi-
online algorithm can afford to wait in order to have some
sort of a compromise between these two worst cases.
We must note that in these two cases, we only focus on
the jobs arriving in the scheduling time interval]t, t + p[,
with t is the current decision time, since jobs released later
than t+p will not affect the decision making regarding the
current job. We denote by t′ the arrival time of n′ jobs,
such as t′ ∈]t, t+p[and 1 ≤ n′ ≤ n−1 where n denotes the
total number of jobs. As a result of studying the following
two worst cases, the value of tmax is determined. It depends
on the number of jobs n′ to be released and the time t′ at
which they will be released. In the following, C∗j refers to
the completion time of job Jj in the offline schedule.

Case 1: The semi-online algorithm decides to schedule
immediately the available job with processing time p at
time t and the adversary releases n′ jobs with processing
time equal to 0 at time t′ (Figure 1). Hence, the total
completion time of the semi-online algorithm becomes:∑

Cj = t+ p+ n′ (t+ p) (1)

⇔
∑

Cj = (n′ + 1) (t+ p) (2)

Since we study the worst case, which is a bad decision
made by a semi-online algorithm compared to the offline

algorithm, we consider that t′ < n′

n′+1p+t, which is the case
where the offline algorithm decides to wait for small jobs
since its cost will be better than the online one (Figure
1), while on the opposite case, the adversary will make
the same decisions as the semi-online algorithm. Hence,
Equations (3) and (4) are only valid if t′ verifies this
inequality. ∑

C∗j = n′t′ + t′ + p (3)

⇔
∑

C∗j = (n′ + 1) t′ + p (4)

Hence the ratio of the two objective values is∑
Cj∑
C∗j

=
(n′ + 1) (t+ p)

(n′ + 1) t′ + p
(5)

Fig. 1. Schedules for case 1

Case 2: For this second case, the semi-online algorithm
decides to wait for the n′ jobs arriving at time t′ and the
adversary releases these jobs with processing time p equal
to the processing time of the first job (Figure 2). then the
total completion time of the semi-online algorithm will be
as follows

∑
Cj = t′ + p+

n′ (n′ + 1)

2
p+ n′ (t′ + p) (6)

⇔
∑

Cj = (n′ + 1) (t′ + p) +
n′ (n′ + 1)

2
p (7)

The offline algorithm will obviously schedule the first
job immediately since any waiting time would be wasted
(Figure 2).∑

C∗j = t+ p+
n′ (n′ + 1)

2
p+ n′ (t+ p) (8)

⇔
∑

C∗j = (n′ + 1) (t+ p) +
n′ (n′ + 1)

2
p (9)

Hence the ratio of the two objective values is∑
Cj∑
C∗j

=
2t′ + (n′ + 2) p

2t+ (n′ + 2) p
(10)

Fig. 2. Schedules for case 2

Equation (5) is a decreasing function with respect to
t′ while equation (10) is an increasing function with
respect to t′. In order to find tmax which represents the
compromise between these two cases we have to study the
equality of these two functions. In the following, let tmax
be the value of t′ that results from studying the equality.

(n′ + 1) (p+ t)

(n′ + 1) t′ + p
=

2t′ + (n′ + 2) p

2t+ (n′ + 2) p
(11)

It can be seen from equation (13) below that the value of
tmax depends on three parameters, n′ as the number of
jobs to be released, t as the current decision time and p as
the smallest processing time of an available job. In what
follows, a semi-online algorithm is presented making use
of the expression of tmax.

2 (n′ + 1) t2max + ((n′ + 1) (n′ + 2) + 2) ptmax −
(
n′2 + 5n′ + 4

)
tp− (2n′ + 2) t2 − n′ (n′ + 2) p2 = 0 (12)

tmax =
−(2+(n′+1)(n′+2))p+

√
(2+(n′+1)(n′+2))2p2+8(n′+1)[(n′2+5n′+4)tp+(2n′+2)t2+n′(n′+2)p2]

4(n′+1) (13)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10822

2.2 VD-SPT algorithm

In the case studied in subsection 2.1, we assumed that n′

jobs could arrive at t′. Now, in order to use the previous
result, we are going to consider not only the next n′ jobs
which are going to arrive at the next release date, but
the n′′ jobs which are going to be released in the interval
]t, t+p[. Hence, in the following, equation (13) will be used
using n′′ instead of n′ and for t = 0 in the expression of
tmax, while the maximum time that VD-SPT can afford to
wait is t+tmax(n′′, p). Moreover, t+tmax will be compared
to the last release date in the interval]t, t + p[, denoted
rn′′ , in an iterative manner, such as if the condition is
not verified, the last job is deleted and is replaced by the
antecedent one if it exists.

In step 1 of algorithm VD-SPT, an available job with the
smallest processing time pm is selected. Then in step 2,
set A is filled with the n′′ jobs released in the interval
]t, t + pm[, we sort and denote release dates of these jobs
by A = {R1, ..., Rn′′}. In case no job is released within the
considered interval, we schedule immediately the selected
job (with minimum processing time pm) and update the
value of the current decision time (t = t + pm). In step 3
we compute the value of tmax(n′′, pm). If the time we can
afford to wait for the last job in set A is greater than or
equal to the release date of this last then we wait, otherwise
we update set A by deleting the last job. We repeat the
above procedure until set A is empty or the decision to
wait is made and the value of t is updated.

Step 0: Set t at the first release date, N the set of jobs
available at time t, and N ′ the set of jobs with release
dates greater than t.

Step 1: Set A = ∅. At time t, among jobs in N , choose a
job J0 with the smallest processing time, denote it pm.

Step 2: If some jobs are released in the interval]t, t+ pm[,
then add the release dates of these jobs to the set A and
denote them as A = {R1,..., Rn′′} sorted in an increasing
order and go to step 3. Else go to step 6.

Step 3: Compute tmax for n′′ and pm, and go to step 4.

Step 4: If Rn′′ ≤ t + tmax then add jobs in A to set N
and delete them from set N ′, then go to step 5. Else delete
Rn′′ from A and update the set with n′′ = n′′−1. If A = ∅
then go to step 6, else go back to step 3.

Step 5: If the first job in A can be completed before Rn′′

then schedule it immediately and delete it from set N ,
else go to the next job until all except the last job in A are
verified. Finally, update the decision time with t = Rn′′

and go to step 1.

Step 6: Schedule job J0 at time t and put t = t + pm. If
N = ∅ and N ′ 6= ∅ then set t at the next release date and
go to step 1. If N 6= ∅ then go to step 1. If N = ∅ and
N ′ = ∅ then Stop.

Consider the instance in table 2 as an example to apply
VD-SPT algorithm. Release dates are known but the
processing time of a job only becomes known when the

Table 2. Instance example

j 1 2 3 4

rj 0 0 1 2

pj 8 6 0 4

current decision time t is greater than or equal to the
release date of that job. In step 0, we put t = r1 = 0,
N = {J1, J2}, and N ′ = {J3, J4}. Next, in step 1, the
smallest job J2 is chosen and is denoted J0 with processing
time p2 = pm = 6. In step 2, we find that in the interval
]t, t+ pm[=]0, 6[there are n′′ = 2 jobs released, we denote
their release dates A = {R1, R2} = {r3, r4} = {1, 2}. In
step 3, we find the value of tmax = 2.8 for n′′ = 2 and
pm = 6. In step 4, we compare Rn′′ = 2 to t+ tmax = 2.8,
and since the second is greater than the first then we
update sets with N = {J1, J2, J3, J4} and N ′ = ∅ and
go to step 5. Since the first job in A with release date
R1 = 1 can be completed before Rn′′ then we schedule it
and update set N = {J1, J2, J4}. Moreover, we update the
decision time with t = Rn′′ and go to step 1. The same
procedure is repeated and as a result job J3 is scheduled
first at t = 1 followed by J4, J2 and J1 starting from t = 2.

3. COMPUTATIONAL EXPERIENCE

In the following, a numerical analysis is presented by
implementing four different algorithms D-SPT, VD-SPT,
SPT and SRPT. The online algorithm D-SPT is compared
to our semi-online algorithm VD-SPT. SRPT is used as a
lower bound on the objective value of an optimal offline
algorithm for the problem and thus an upper bound on
the competitive ratio for each algorithm can be computed.
Moreover, SPT allows to display cases where no waiting
strategy is better and thus identify which of the two
algorithms inserts less idle time. Firstly, an average case
study is presented where instances generated by probabil-
ity distributions are tested. Secondly, a worst case analysis
is presented by testing an instance where jobs with long
processing requirements arrive followed by jobs with small
processing requirements.

Many experimental studies can be found in literature. A
recent work proposed by Albers (2013) focused on online
scheduling algorithms for minimizing the makespan on
parallel machines. They analysed algorithms on various
job sequences. Some of them were generated by probability
distributions, while others were real world data. Hall
and Posner (2001) provided specific proposals for the
generation scheme of a variety of machine scheduling
problems including the problems with release dates.

3.1 Average case analysis

VD-SPT, D-SPT, SPT, and SRPT were tested on prob-
lems with 10, 15 and 20 jobs. For processing times, we
generate for each job, an integer processing time pj from
the uniform distribution U [0, 10]. Furthermore, since range
of release dates is likely to influence the effectiveness of the
algorithms, release dates are integers generated as follows
(Hall and Posner, 2001):

r1 = 0 and rj = rj−1 +Xj , j = 2, ..., n

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10823

Where Xj is a random variable generated from a uniform
distribution U [0, 10]. For each value of n, 10 instances were
generated, producing a total of 30 problems.

The algorithms were coded in C++ on Microsoft Visual
Studio and run on a 1, 7 GHz i5-8350U intel CPU.

Figures 3, 4 and 5 display the upper bounds on the compet-
itive ratios resulted from running 10 instances on the algo-
rithms SRPT, SPT, D-SPT, and the semi-online algorithm
VD-SPT. Figure 3 shows results for the 10-jobs problems
while Figures 4 and 5 show results for the 15 and 20-jobs
problems, respectively. For the 10-jobs problem, it can be
seen that the semi-online algorithm VD-SPT yields a bet-
ter performance than the online one D-SPT, while in some
cases such as instance 9 of Figure 3, the three algorithms
have approximately the same performance. However, for
the 15-jobs problem (Figure 4), we notice that for some
instances D-SPT guarantees a slightly better performance
than VD-SPT. Figure 5 shows that the performance of the
four algorithms maintains relatively the same level, while
for some instances such as instances 4 and 7, we can see
that VD-SPT yields a better performance than D-SPT.

Overall, from Table 3, it can be seen that on average VD-
SPT yields a better performance than D-SPT for 10, 15,
and 20 jobs problems. Furthermore, For a small number of
jobs we can notice a large difference in the performance of
the three algorithms while the difference decreases when
tested on bigger sized problems. It must be noted that
approximately for all instances, SPT yields the best per-
formance, which means that the strategy of not waiting
proves better than other strategy when an average case
study is conducted. This is due to the fact that online
or semi-online algorithms are inserting waiting times in
order to avoid worst case instances such as described in
previous sections. Therefore, however tempting it is to
apply SPT for its better performance on average, one worst
case instance might make us regret the decision.

Fig. 3. Upper Bound on the competitive ratio for 10-jobs
problem

3.2 Worst case analysis

In order to show the advantage of the proposed algorithm
VD-SPT, a special instance is tested for which VD-SPT

Fig. 4. Upper Bound on the competitive ratio for 15-jobs
problem

Fig. 5. Upper Bound on the competitive ratio for 20-jobs
problem

Table 3. Mean UB over 10 instances

10 jobs 15 jobs 20 jobs

VD-SPT 1, 03 1, 02 1, 02

D-SPT 1, 08 1, 05 1, 03

SPT 1, 01 1, 01 1, 01

Table 4. Instance characteristics

Number of
jobs

Release
dates

Processing
times

1 22 22

11 23 ε

1 45 45

7 46 ε

1 91 91

9 92 ε

algorithm presents a clear advantage. The instance is char-
acterised by jobs with long processing requirements which
are released followed by jobs with small processing require-
ments (Table 4). Considering that the D-SPT condition is
verified for long jobs, i.e, pj ≤ t, the online algorithm
decides to schedule immediately a long job once it arrives.
This means that small jobs will have to wait until the long
job is completed since preemption is not allowed (Figure
7). On the other hand, as shown in Figure 6, VD-SPT will
choose to wait for small jobs to arrive since the condition
of tmax is verified, which will give it the advantage on its
online peer.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10824

Fig. 6. Schedule by VD-SPT for worst case instance

Fig. 7. Schedule by D-SPT for worst case instance

Figure 8 below shows the variation of the objective func-
tion values when the instance is tested on both the online
and the semi-online algorithms and by considering that
ε, the processing times of small jobs, tend to 0. We can
see that D-SPT yields a very bad performance compared
to VD-SPT. Moreover, the schedule showed in Figure 6 is
the schedule constructed by VD-SPT for the considered
instance, which also represents the optimal schedule in an
offline setting. Therefore, for this type of instances the
proposed semi-online algorithm VD-SPT presents a better
performance than D-SPT by constructing a schedule close
the optimal one.

Fig. 8. Total completion time by VD-SPT and D-SPT for
worst case instance

4. CONCLUSION

In this article, a semi-online algorithm called VD-SPT is
presented where release dates are known at the begin-
ning of the decision process. Furthermore, a numerical
analysis is presented for average cases where instances
are generated by a probability distribution, we saw that
the performance of VD-SPT algorithm remains close to

other algorithms while it yields slightly better performance
compared to D-SPT in most cases. In addition, a worst
case analysis is presented where VD-SPT and D-SPT
algorithms were evaluated on a special instance and for
which VD-SPT guarantees a clear advantage on its online
peer. An interesting approach for future research would be
to characterize the instances for which VD-SPT guarantees
the best performance and to test the online and the semi-
online algorithm on real-world data in order to evaluate
their performances in practice. In addition, the semi-online
scheduling problem on parallel machines where release
dates are known in advance can also be considered.

REFERENCES

Albers, S. (2013). Recent advances for a classical schedul-
ing problem. In International Colloquium on Automata,
Languages, and Programming, 4–14. Springer.

Epstein, L. (2018). A survey on makespan minimization in
semi-online environments. Journal of Scheduling, 21(3),
269–284.

Graham, R.L. (1966). Bounds for certain multiprocessing
anomalies. Bell System Technical Journal, 45(9), 1563–
1581.

Graham, R.L., Lawler, E.L., Lenstra, J.K., and Kan, A.R.
(1979). Optimization and approximation in determin-
istic sequencing and scheduling: a survey. In Annals of
discrete mathematics, volume 5, 287–326. Elsevier.

Hall, N.G. and Posner, M.E. (2001). Generating exper-
imental data for computational testing with machine
scheduling applications. Operations Research, 49(6),
854–865.

Hall, N.G., Posner, M.E., and Potts, C.N. (2009). Online
scheduling with known arrival times. Mathematics of
Operations Research, 34(1), 92–102.

Hoogeveen, J.A. and Vestjens, A.P. (1996). Optimal
on-line algorithms for single-machine scheduling. In
International Conference on Integer Programming and
Combinatorial Optimization, 404–414. Springer.

Lawler, E.L., Lenstra, J.K., Kan, A.H.R., and Shmoys,
D.B. (1993). Sequencing and scheduling: Algorithms
and complexity. Handbooks in operations research and
management science, 4, 445–522.

Lenstra, J.K., Rinnooy Kan, A.H., and Brucker, P. (1977).
Complexity of machine scheduling problems. In Annals
of discrete mathematics, volume 1, 343–362. Elsevier.

Liu, M., Zheng, F., Wang, S., and Huo, J. (2012). Optimal
algorithms for online single machine scheduling with
deteriorating jobs. Theoretical Computer Science, 445,
75–81.

Mao, W., Kincaid, R.K., and Rifkin, A. (1995). On-
line algorithms for a single machine scheduling problem.
In The impact of Emerging Technologies on Computer
Science and Operations Research, 157–173. Springer.

Tan, Z. and Zhang, A. (2013). Online and semi-online
scheduling. Handbook of combinatorial optimization,
2191–2252.

Tao, J., Chao, Z., and Xi, Y. (2009). A novel way to
analyze competitive performance of online algorithms.
In Proceedings of the International MultiConference of
Engineers and Computer Scientists, volume 1.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10825

