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Abstract: Event-based communication and state estimation offer the potential to improve
resource utilization in networked sensor and control systems significantly. Sensor nodes can
trigger transmissions when data are deemed useful for the remote estimation units. To improve
the estimation performance, the remote estimator can exploit the implicit information conveyed
by the event trigger even if no transmission is triggered. The implicit information is typically
incorporated into the measurement update of a remote Kalman filter. In this paper, event-
triggered transmissions of input data are investigated that enter the prediction step of the remote
estimator. By employing a stochastic trigger, the implicit input information remains Gaussian
and can easily be incorporated into the remote Kalman filter. The proposed event-based scheme
is evaluated in remote tracking scenarios, where system inputs are transmitted aperiodically.

Keywords: Kalman Filtering, Event-based Estimation, Stochastic Triggering, Networked
Estimation, Gaussianity-preserving Triggers.

1. INTRODUCTION

Cheap integrated sensors have widely permeated industries,
from consumer products over transportation systems to
manufacturing processes. Sensor data can be acquired
ubiquitously and pervasively through wide-area networks.
The transmission and processing of sensor data are closely
interrelated aspects of effective resource allocation in wire-
less networks. Recent trends in networked data processing
indicate a paradigm shift from time-periodic to data-driven
or event-based transmission schedules. In this regard, event-
based state estimation techniques have become a major
subject of current research endeavors (Sijs and Lazar, 2012;
Shi et al., 2016; Battistelli et al., 2018). The underlying
mechanism to trigger an event evaluates how useful current
sensor readings are for the remote estimation unit. Sijs and
Lazar (2012) propose the use of send-on-delta triggering
rules, and Trimpe and D’Andrea (2014) employ event
triggers that rely on the predicted error variance of the
measurements. As discussed by Wu et al. (2013), finding a
trade-off between estimation quality and communication
rate is decisive for the effectiveness of event-based esti-
mation. For this reason, Molin et al. (2015) consider a
joint objective function that comprises both the estimation
error and a communication penalty. Trimpe (2014) and
Bian et al. (2018) discuss the estimation stability under
event-based transmissions in more detail. Sijs and Noack
(2017) study the impact of imperfect communication links
on the estimation quality at the remote estimation system.
Solutions to such open issues are key to leverage the full
potential of event-based estimation for resource-efficient
sensor data processing.

The gist of event-based estimation is the design of event-
triggering criteria that are the tool to mediate between
energy saving and estimation accuracy. Sijs et al. (2014)
study different event-triggering criteria with respect to
estimation errors and communication resources. Lowering
the communication rate does not imply a proportional
degradation of the estimation quality. On the contrary, the
event trigger itself conveys information about the data and
can be exploited by the remote estimation system even
when no transmission has been triggered. More precisely,
Sijs et al. (2013, 2015) have demonstrated that the remote
estimator can interpret the absence of sensor data as
implicit—also called negative—measurement information.
The estimator can hence perform time-periodic measure-
ment updates (Sijs and Lazar, 2012) though sensor data
are transmitted aperiodically. The herein used implicit
information assumes a deterministic trigger design, which
features a set-membership representation of the actual sen-
sor signal. Sijs et al. (2013, 2015) and Shi et al. (2016) apply
hybrid state estimators to incorporate the set-membership
implicit information. These hybrid concepts embody an
amalgamation of Kalman filtering with ellipsoidal calculus
(Noack et al., 2012). Such bounding techniques are also
exploited by Dormann et al. (2018) and Battistelli et al.
(2018) in distributed Kalman filtering to derive data-driven
fusion algorithms. However, the inherent set-membership
nature of deterministic triggers calls for a more complex
estimator design.

A viable alternative to deterministic triggers is a stochastic
trigger design that allows for a Gaussian representation of
the implicit measurement information. Han et al. (2015)
study open- and closed-loop trigger mechanisms, where the
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latter requires the remote system to feed back its estimates
to the sensor. Weerakkody et al. (2016) extend event-
based estimation to multi-sensor data fusion with stochastic
triggers, and Mohammadi and Plataniotis (2017) provide
a Gaussianity-preserving formulation in the information
form of the Kalman filter. Andrén and Cervin (2016) let
the sensor predict the system behavior to further reduce
the communication rate without information loss at the
receiver. The trigger decision proposed by Wu et al. (2016)
rests upon a local Kalman filter, which compares the current
estimate with the prediction from the last event. Schmitt
et al. (2019) employ an FIR filter for the local prediction
at the sensor, which is more resilient towards outliers and
initialization errors.

Research on event-based estimation has in common that the
remote estimator incorporates implicit information in the
measurement update of a Kalman filter or related filtering
concepts. For this purpose, Andrén and Cervin (2016)
express the measurement update in terms of probability
density functions, and implicit measurements relate to the
likelihoods used in Bayes’ theorem. The purpose of this
paper is to introduce event-based estimation for sensor
readings that are used in the prediction step of a Kalman
filter. An example is an external tracking system for a
mobile robotic platform; the onboard IMU provides data at
a high rate that needs to be accessed by the remote tracking
system for state prediction. To reduce the communication
rate between platform and tracking system, we examine the
use of stochastic trigger mechanisms. In the prediction step
of the remote Kalman filter, implicit information about
the input data, e.g., IMU measurements, can be exploited
when no transmission occurs. We point out that implicit
input information can easily be incorporated into a linear
Kalman filter due to the stochastic trigger design. The
proposed event-based estimator is also evaluated in two
tracking scenarios. In both scenarios, a mobile platform
transmits its sensor readings of forces driving the system
to a remote tracking system.

The organization and contributions of this paper can be
summarized as follows: Our goal is to model implicit input
information as measurements of the actual input. For this
purpose, we first study how measured inputs enter the
time update of the Kalman filter. In particular, the best
linear unbiased estimate of the actual input is used, and
the noise characteristics of the measured input represent
an additional error covariance matrix. Second, we discuss
how the implicit information retrieved from the stochastic
event trigger is translated into a measurement of the actual
input, which can then be exploited in the time update
according to the preceding considerations.

2. GAUSSIANITY-PRESERVING TRIGGERING

This section introduces the notations used throughout this
paper and gives an overview of Gaussianity-preserving
trigger designs.

2.1 System Model & State Estimation

Discrete-time linear system and measurement models are
considered, which are governed by

xk+1 = Ak xk + Bk uk + wk , (1)

zk+1 = Ck+1 xk+1 + vk+1 , (2)

where xk ∈ Rnx is the state at time step k ∈ N,
and zk+1 ∈ Rnz denotes the observation. The time-
variant process and measurement matrices are given by
Ak ∈ Rnx×nx and Ck+1 ∈ Rnz×nx , respectively. The
process noise wm ∼ N (0,Qm) and measurement noise
vn ∼ N (0,Rn) are white and mutually uncorrelated for
arbitrary m,n ∈ N. Inputs uk ∈ Rnu affect (1) through
Bk ∈ Rnx×nu . To estimate the state, a discrete-time
Kalman filter is considered. The time update or prediction
step yields

x̂k+1|k = Ak x̂k|k + Bk uk , (3)

Pk+1|k = AkPk|kA
T
k + Qk , (4)

where Pk+1|k is the covariance of the estimation error
x̂k+1|k − xk+1. The measurement update with the observa-
tion zk+1 is obtained by

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
zk+1 −Ck+1 x̂k+1|k

)
, (5)

Pk+1|k+1 =
(
I−Kk+1 Ck+1

)
Pk+1|k , (6)

Kk+1 = Pk+1|kC
T
k+1

(
Ck+1Pk+1|kC

T
k+1 + Rk+1

)−1

,

where Kk+1 is the Kalman gain. The zero-mean error
x̂k+1|k+1− xk+1 has the covariance matrix Pk+1|k+1.

2.2 Stochastic Triggering

Let y
k
∈ Rny represent the sensor data for which a trigger

decision is to be made. The variable γk = 1 denotes
that an event is triggered, and zk is sent to the receiver.
For γk = 0, no transmission is triggered. To determine
γk, an independently and identically distributed random
variable ξk is generated, which is uniformly distributed
over [0, 1]. The decision scheme is given by

γk =

{
1, ξk > φ(y

k
− ck) ,

0, ξk ≤ φ(y
k
− ck) ,

with φ(y
k
− ck) = exp

(
− 1

2 (y
k
−ck)T Z−1

k (y
k
−ck)

)
to

compare y
k

against a chosen ck ∈ Rny . The matrix Zk is a
design parameter to tune the transmission rate. Due to the
design of φ(·) and the properties of ξk, the transmission
probability given y

k
yields

Pr
{
γk = 1

∣∣y
k

}
= 1− φ(y

k
− ck) ,

Pr
{
γk = 0

∣∣y
k

}
= φ(y

k
− ck) . (7)

The likelihood Pr
{
γk = 0

∣∣y
k

}
is exploited in the following

to infer information about y
k

when the sensor does not
trigger a transmission.

3. TRIGGERING ON INPUT INFORMATION

Stochastic triggering has been investigated against the
background of the measurement update in event-based
Kalman filtering. In many localization and navigation
tasks, inputs are noisy sensor readings, and their noise
characteristics are modeled as part of the process noise.
The input information is often provided by onboard sensors
like inertial measurement units (IMU) and needs to be
transmitted to remote systems if an external tracker is
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used. For the sensor readings of inputs, a corresponding
measurement model

z
(u)
k = C

(u)
k uk + v

(u)
k (8)

is considered, where C
(u)
k is the measurement mapping

with rank(C
(u)
k )=nu and v

(u)
k ∼ N (0,R

(u)
k ) is an additive

noise term. The mapping C
(u)
k is typically assumed to be

the identity matrix if the input is measured directly. In
the following, we examine how z

(u)
k is incorporated in the

prediction step and how implicit information on z
(u)
k can

be exploited between triggering events.

3.1 Estimates of Uncertain Inputs

For the typical case C
(u)
k = I, the intuitive and common

way to incorporate measured inputs is to interpret them
directly as inputs in (1) and the measurement noise as part
of the process noise wk. To extend this intuition to implicit
input information, this subsection sheds more light on the
estimation of and with uncertain inputs. Such problems
have been studied against the background of unknown
biases affecting the system. Friedland (1969) has suggested
to augment the state vector by the bias term and formulated
the corresponding filtering equations. The measurement
equations considered therein rely upon a feedthrough of the
bias term. Gillijns and Moor (2007) consider the problem
of simultaneous input and state estimation, which they
tackle by a best linear unbiased estimate (BLUE) of the
uncertain inputs and which corresponds to a weighted least-
squares estimate. Like in the case of bias estimation, the
inputs are supposed to be unknown quantities that need
to be inferred from the state observations in (2). Bai et al.
(2018) estimate time-varying nonlinear uncertain dynamics
affecting the process model by using the state observations
and an augmented state representation. These concepts
strive for the simultaneous estimation of input and state
information.

In the case considered in this paper, measurements of input
information are available through (8). For this reason, we
can directly infer estimates of the actual inputs, which
circumvents the need for simultaneous input and state
estimation. We also see that the input estimate naturally
arises out of the best linear predictor.

By exploiting the measurement equation (8), the BLUE
of uk yields

ûk = Lk z
(u)
k (9)

with covariance matrix

P
(u)
k = LkR

(u)
k LT

k =
((

C
(u)
k

)T(
R

(u)
k

)−1
C

(u)
k

)−1

(10)

and gain matrix

Lk =
((

C
(u)
k

)T(
R

(u)
k

)−1
C

(u)
k

)−1(
C

(u)
k

)T(
R

(u)
k

)−1
, (11)

which represents a weighted least squares estimate of uk.
For C

(u)
k = I, the estimate simplifies to ûk = z

(u)
k with

P
(u)
k = R

(u)
k . The input estimate ûk is used in the

prediction formula (3) in place of the actual input while
P

(u)
k enters (4) as an additional noise covariance. This result

can also be obtained directly by striving for a best linear
prediction given ûk, which is discussed in Appendix A.
Either way, the prediction step of the Kalman filter is
altered to

x̂k+1|k = Ak x̂k|k + Bk Lk z
(u)
k

(9)
= Ak x̂k|k + Bk ûk ,(12)

Pk+1|k = AkPk|kA
T
k + Q

′

k (13)

with

Q
′

k = BkP
(u)
k BT

k + Qk ,

and the input estimate ûk is directly used in the prediction.

By introducing an event-based trigger mechanism at the
sensor, the measurements in (8) are only available at event
times. In the following subsection, we discuss the input
estimation in the case event-triggered Kalman filtering. In
particular, input estimates need to be retrieved from the
implicit information conveyed by the trigger decision when
not event occurs.

3.2 Kalman Filtering with Implicit Input Information

The use of event triggers implies that two cases need to be
distinguished. Either the input measurement is available
for state prediction, i.e., γk = 1, or no event has been
triggered, i.e., γk = 0, and the estimator is ignorant about
the actual measurement z

(u)
k .

The first case (γk = 1) has been discussed in the previous
subsection, and z

(u)
k is used directly. The corresponding

likelihood yields

Pr
{
z

(u)
k

∣∣uk} =
1√

(2π)nz det
(
R

(u)
k

) ·
exp

(
−1

2

(
z

(u)
k −C

(u)
k uk

)T(
R

(u)
k

)−1(
z

(u)
k −C

(u)
k uk

))
which encompasses the probabilistic representation of
the measurement model (8). More precisely, the input
estimate (9) with covariance (10) is the maximum likelihood
(ML) estimate for Pr

{
z

(u)
k

∣∣uk}.

In the second case (γk = 0), we can infer information
about the input if the estimator is aware of the trigger
likelihood (7), i.e.,

Pr
{
γk = 0

∣∣ z(u)
k

}
= φ(z

(u)
k − ck)

for chosen triggering constant ck. As a result,

Pr
{
γk = 0

∣∣uk} =

∫
Rnz

Pr
{
γk = 0, z

(u)
k

∣∣uk}d z
(u)
k

=

∫
Rnz

Pr
{
γk = 0

∣∣ z(u)
k ,uk

}
· Pr

{
z

(u)
k

∣∣uk}d z
(u)
k

= a ·
∫
Rnz

exp

(
−1

2

(
z

(u)
k − ck

)T
Z−1
k

(
z

(u)
k − ck

))
·

exp

(
−1

2

(
z

(u)
k −C

(u)
k uk

)T(
R

(u)
k

)−1(
z

(u)
k −C

(u)
k uk

))
d z

(u)
k

= a·exp

(
−1

2

(
ck−C

(u)
k uk

)T(
Zk+R

(u)
k

)−1(
ck−C

(u)
k uk

))
can be computed with constant terms being summarized
in a and by exploiting that γk is independent of uk given
z

(u)
k . Accordingly, an ML estimate can be computed for

Pr
{
γk = 0

∣∣uk} that yields

ûγk = Lγk ck (14)

with covariance matrix

Pγk = Lγk
(
Zk + R

(u)
k

) (
Lγk
)T

=
((

C
(u)
k

)T(
Zk + R

(u)
k

)−1
C

(u)
k

)−1

(15)
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Fig. 1. Simulation results for near-constant-velocity model.

and gain matrix

Lγk =
((

C
(u)
k

)T(
Zk + R

(u)
k

)−1
C

(u)
k

)−1

·(
C

(u)
k

)T(
Zk + R

(u)
k

)−1
.

The estimate (14) is inferred from the triggering variable ck.
The send-on-delta trigger scheme, for instance, sets ck to
the last received z

(u)
klast

during the most recent triggering
event. It can also be observed that Pγk −P

(u)
k ≥ 0 is

positive semi-definite, i.e., Zk in (15) inflates the covariance
matrix. Between triggering events, the resulting formulas
for the prediction step are then given by

x̂k+1|k
(14)
= Ak x̂k|k + Bk û

γ
k , (16)

Pk+1|k = AkPk|kA
T
k + Qγ

k (17)

with

Qγ
k = BkP

γ
k B

T
k + Qk , (18)

i.e., the input estimate (14) with covariance (15) is used.

Remark 1: In the linear Gaussian case, the input esti-
mates can be inferred as ML estimates either from the
input measurements z

(u)
k if available or from the implicit

information γk = 0 when no transmission is triggered. The
derived event-based prediction bears a strong resemblance
with the commonly considered event-based filtering step,
where implicit information is exploited in the update
equations (5) and (6). It is worth to emphasize that implicit
information is a key ingredient of the prediction step when
no transmission event is triggered: Complete ignorance
about the actual input uk implies infinite uncertainty Qγ

k ,
which renders the prediction useless. Strictly speaking, the
prediction (16) and (17) cannot be carried out without
any information that could be inferred about the actual
input uk. In general, assumptions about the input forces
driving the system are made and are a strong argument in
favor of implicit information being exploited in event-based
estimation.

Remark 2: Detailed studies on communication rate,
stability, and convergence are left to future work. However,

the corresponding analyses can be adopted from Han
et al. (2015), i.e., the behavior of event-based input
triggering resembles the measurement update with implicit
measurements. For instance, a lower and upper bound on
Pk|k can be derived by designing Kalman filters with error
dynamics according to (4) and (17), respectively.

4. SIMULATIONS

To evaluate the proposed concept, a send-on-delta trigger
mechanism as used by Schmitt et al. (2019) is studied.
In both evaluation scenarios, the trigger variable ck is
set to the last transmitted input uklast

at time step klast.
The event-based approach is compared against a periodic
transmission of input data and a näıve approach, which also
relies on the event-based transmission schedule. Due to the
send-on-delta scheme, the näıve and event-based estimator
design resemble each other in that they both use the same
trigger decision and hold uklast

when no transmission is
triggered. In doing so, they have the same transmission rate.
However, they differ in that the näıve approach does not
exploit the implicit information. Both simulations confirm
that the implicit information significantly contributes to
improving the estimation quality.

4.1 Near-Constant-Velocity Model

In the first example, a near-constant-velocity model with
the system matrices

Ak=

[
1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

]
, Bk=

[
0 0
0 0
1 0
0 1

]
, Qk=


∆t4

4 0 ∆t3

2 0

0 ∆t4

4 0 ∆t3

2

∆t3

2 0 ∆t2 0

0 ∆t3

2 0 ∆t2

 ,
and initial state x0 = [7, 7]T is considered. The measure-
ment model (2) is defined by the matrices

Ck=[ 1 0 0 0
0 1 0 0 ] , Rk=0.01 I .

The velocity inputs uk are computed such that the state
trajectory follows the dashed line in Fig. 1(a). The same
figure depicts the estimation results in the periodic, näıve,
and event-based case. In the second and third case, the
estimators are only aware of the velocities when events are
triggered. In this example, the velocities uk are directly
accessed, i.e., P

(u)
k = 0. The trigger matrix is set to

Zk = 0.2 I. Hence, the noise matrix (18) used by the event-
based estimator becomes

Qγ
k = Bk ZkB

T
k + Qk

to model the implicit information when no transmission
is triggered. Fig. 1(b) depicts the root-mean-squared error
(RMSE) for 10 000 Monte-Carlo simulations. The event-
based case provides a slightly higher error than the periodic
case but outperforms the näıve case. The event trigger
lowers the communication rate to 38 % of the periodic case.

4.2 Simulation of Integrated Navigation System

The second evaluation scenario uses the simulation frame-
work NaveGo for navigation systems developed by Gonzalez
et al. (2015). To investigate event-based transmission
schemes, the INS/GNSS example based on synthetic data
provided in the file navego_example_synth.m has been
extended. The accelerations and turn rates measured by
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Fig. 2. INS/GNSS navigation example with ADIS16405
IMU error profile. 3σ-bounds for the periodic and
event-based case are shown as dashed lines.

the simulated onboard IMU in the body frame are each
three-dimensional vectors. For the six-dimensional joint
vector, a trigger for event-based transmissions is defined
with

Zk =
[
Zacc 0
0 Zrate

]
, Zacc = 0.008 I , Zrate = 0.004 I .

For all other parameters, the predefined settings in the
NaveGo simulation framework have been adopted, which
also provides error profiles of an ADIS16405 IMU. Details
and parameter settings can be found in Gonzalez et al.
(2019). The framework employs an extended Kalman filter,
which is a complementary filter as proposed by Farrell
(2008). The error state representation comprises 15 state
components.

The extended scenario using event-based estimation as-
sumes that the object is tracked by a remote estimation
system that receives the IMU data from the object and
fuses the data with GNSS measurements. Again, a send-
on-delta scheme with trigger matrix Zk is used to trigger
transmissions from the object to the remote tracker. For

the ADIS16405 error profile, the estimation results and
errors are depicted in Fig. 2, where only 33 % of the mea-
surements have been transmitted. We have also conducted
simular experiments with the parameters of a tactical grade
ADIS16488 IMU, where even rates below 10 % can be
achieved. It should be noticed that the simulated data is
rather smooth and higher rates are expected in real systems.
Experiments with a robotic platform and real data will be
part of future work. The event-based estimator exploiting
the implicit information conveyed by the send-on-delta
trigger reaches a similar estimation quality as the periodic
filter design. The send-on-delta trigger implies using the
last received input when no event is triggered. This strategy
is also pursued by the näıve estimator. However, it does not
exploit the correct error covariance (17), which is related
to the implicit information. The incorrect error covariance
leads to performance degradation of the näıve approach as
it can be seen, e.g., in Fig. 2(b). With a more sophisticated
trigger design, e.g., a predictive trigger, the event-based
estimator should further outperform the näıve approach
at an even lower transmission rate, which will be part of
prospective research.

5. CONCLUSION & OUTLOOK

The commonly considered measurement update with event-
triggered sensor data has been extended to time updates
with event-triggered input data. When no transmission is
triggered, the remote Kalman filter can infer implicit infor-
mation about the input data. Due to the stochastic trigger
design, the design matrix Zk appears as additional process
noise in the prediction step. The evaluation scenarios
underpin the effectiveness of the proposed stochastic input
triggers in reducing the communication rate without signif-
icantly impairing the estimation quality. Further research
will be dedicated to a more sophisticated trigger design that
equips the sensor with a predictive assessment of the sensor
signal. In doing so, the transmission rate can be further
reduced. Unreliable communication links and estimator
properties like stability and convergenge rate also need to
be addressed. For the considered scenarios, a validation
against real data is necessary. Also, a combination with
advanced pre-integration techniques, as proposed by Forster
et al. (2017), may represent a promising research direction.
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Appendix A. PREDICTION OF STATE ESTIMATES
WITH INPUT MEASUREMENTS

The prediction step in (3) and (4) incorporates possibly
noisy inputs uk. The following considerations briefly
outline how the prediction step can be directly derived
for measurements z

(u)
k of uk according to eq. (8). In the

time update of the Kalman filter, we strive for finding the
best unbiased prediction

x̂k+1|k = Mk x̂k|k + Nk z
(u)
k (A.1)

where the available input measurements z
(u)
k are used. The

corresponding prediction error yields

xk+1 − x̂k+1|k =Ak xk + Bk uk + wk

−
(
Mk x̂k|k + Nk z

(u)
k

)
=Ak

(
xk − x̂k|k

)
+
(
Ak −Mk) x̂k|k + wk

+
(
Bk −NkC

(u)
k

)
uk + Nk v

(u)
k .

Without going into much detail, we see that Mk = Ak and
NkC

(u)
k = Bk give the unbiasedness required to minimize

the mean-squared prediction error. The matrix Nk takes
the form Nk = Bk

(
C

(u)
k

)∗
with the second matrix being

a pseudo inverse. The pseudo inverse
(
C

(u)
k

)∗
has to be

determined so that the error covariance related to Nk v
(u)
k

is minimized. It can be shown that this is achieved when
the pseudo inverse equals (11), i.e., Nk = Bk Lk. The
corresponding error covariance then yields

Cov{Nk v
(u)
k } = Bk Lk

(
R

(u)
k

)−1
LT
k BT

k

(10)
= BkP

(u)
k BT

k .

The prediction error then reduces to

xk+1 − x̂k+1|k =Ak

(
xk − x̂k|k

)
+ Bk Lk v

(u)
k + wk .

Using the determined parameters of (A.1) and the pre-
diction error, we arrive at the equations (12) and (13).
The following properties can be noticed: The Kalman filter
estimates correspond to the conditional means given z

(u)
k in

place of uk, the covariance (10) is part of the process noise

matrix Q
′

k, and most importantly, the input estimate (9)
naturally enters the prediction equations to determine the
best unbiased prediction.
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