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Abstract: In networked control systems, due to competing demands on bandwidth and energy
constraints, sensor scheduling is an important problem for remote estimation and control tasks.
Traditionally, a single sensor is scheduled in each resource block to avoid interference or collisions
so that the probability of packet loss is reduced. However, receiving multiple packets from
different sources under interference is routinely achieved in wireless networks using multi-packet
reception techniques. In this work, we explore the problem of sensor scheduling for remote
estimation when the estimator is able to simultaneously receive multiple packets. We use the
typical signal-to-interference-and-noise-ratio (SINR) based capture model to compute the packet
arrival probabilities. Then an optimal scheduling policy is determined by minimizing expected
estimation error covariance subject to a constraint on the average number of total transmissions.
In the case of two sensors, for a scalar system and for a decoupled two-dimensional system,
we show that allowing multiple simultaneous transmissions can improve the quality of the
estimation achieving lower energy consumptions and we provide structural results on the optimal
policies. Numerical results illustrate the benefits of multi-packet reception in remote estimation.

Keywords: Estimation under communication constraints; Multi-packet reception; Packet loss.

1. INTRODUCTION

The ubiquity of wireless communication networks has
paved the way for novel control technologies involving
remote processes and networked devices. In particular, re-
mote state estimation of dynamical systems using Wireless
Sensor Networks (WSNs) has gained considerable atten-
tion in the past years in many different areas, such as home
and factory automation, environment monitoring, power
distribution, and autonomous vehicles, thanks to its im-
portant practical advantages as reduced wiring, increased
agility, easy and modular connections. On the other hand,
with respect to standard sensing architectures, estimation
performances are not necessarily improved through the
use of WSNs since, if the network medium access is not
suitable designed, resulting information losses and delays
cause poor estimates. At the same time, even when losses
are avoided, energy consumption becomes an important
aspect and frequent communications can drain the bat-
teries of the sensors prematurely. Therefore it is funda-
mental to devise a scheduling algorithm that manages the
access to the network of each device: the solution is not
straightforward and many different algorithms have been
proposed. When only a single sensor is present, scheduling
policies are required to satisfy energy limitations. Shi et al.
(2011b) consider a smart sensor with two transmission
energy levels: the higher guarantees that packets are al-
ways successfully delivered, while the lower has a loss
probability greater than 0. The corresponding optimal

periodic policy transmits at the higher level as ”uniformly”
as possible. This structure is shown to be optimal by Ren
et al. (2013) also when totally reliable communications
are not guaranteed. The case where a single system is
observed by multiple sensors has also been studied in many
different works. Shi et al. (2011a) consider two sensors with
different energy consumptions while, for a general number
of sensors, the finite-horizon case is considered by Vitus
et al. (2012) and the infinite-horizon case is investigated
by Zhao et al. (2014). Without packet losses, the latter
shows that the optimal scheduling can be approximated
arbitrarily closely by a periodic schedule. The case with
multiple sensors with packet losses is studied by Leong
et al. (2016). Under the assumptions that the system is ob-
servable from each sensor and that local estimates are com-
municated, optimal scheduling is a time-varying threshold
policy (time-invariant in the infinite-horizon case) based
on the estimation error covariance matrix at the remote
estimator. The general scenario with multiple unstable
systems (and multiple sensors) has been studied by Han
et al. (2017).

All the above works assume that sensors are not simul-
taneously scheduled and thus mutual interference is never
taken into account. There are two notable exceptions: Gat-
sis et al. (2018) propose a channel-adaptive optimal ran-
dom access scheme for remote control of multiple systems,
and Li et al. (2019) study the optimal power allocation for
remote estimation. In this work, we explore how to exploit
multi-packet reception in remote estimation of dynamical
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systems. Indeed, multi-packet reception in the presence of
interference is very common in wireless communications by
exploiting a suitable receiver equipped to decode multiple
simultaneous signals from their superposition in noise.
This can be achieved in many ways, such as at the sig-
nal modulation level (CDMA), by signal processing based
collision resolution methods (see Tong et al. (2001)), or by
multiple antennas at transmitter and receiver (MIMO). In
particular, massive MIMO is widely adopted by the most
recent wireless networks as 5G and last Wi-Fi standards.
On one hand, multi-packet reception can yield a great
improvement for WSNs because the estimator would be
able to simultaneously receive measurements from differ-
ent sensors but, on the other, simultaneous transmissions
would interfere with each other and, even if multi-packet
reception is possible, the loss probability of a given packet
may be higher. The optimal balance between transmission
scheduling and interference mitigation in the context of re-
mote estimation of dynamical systems is an open problem,
and largely an unexplored field.

In this work, we aim to partially answer this question.
We formulate an optimization problem where the expected
trace of the remote estimation error covariance is mini-
mized subject to average transmission energy constraints,
but, differently from existing algorithms, we allow mul-
tiple simultaneous transmissions. The packet reception
model takes into account both the interference due to
other incoming communications and external noise. We
consider two types of multi-packet reception schemes, one
based on the capture property of the wireless receiver
(see Zanella and Zorzi (2012)), where any sensor that has
a received Signal-to-Interference-and-Noise Ratio (SINR)
above a certain threshold at the remote estimator, is
successfully decoded. In this scheme, each sensor sees the
interference due to other sensor transmissions as noise.
We also investigate a more sophisticated receiver based
on Successive Interference Cancellation (SIC), where the
sensor with the strongest received power is decoded first,
and its reconstructed signal is subtracted out from the
total received signal, so that the sensor that has the sec-
ond strongest received power can be decoded next where
the strongest user’s interference is no longer present. In
the context of information theory, it is well known that
SIC is an optimal scheme that achieves the rate region
of a multiple access channel while minimizing the total
transmission power (Tse and Viswanath (2005)).

The main contributions of this work can be summarized
as follows: (i) in contrast with existing works, we consider
multiple simultaneous transmissions, an accurate model of
the wireless channel that accounts for mutual interference
with the corresponding arrival probabilities, and two dif-
ferent decoding algorithms, namely with and without SIC,
(ii) under the considered framework, an optimal scheduling
policy is determined by solving an optimization problem
that accounts for the estimation quality and penalizes the
total number of transmissions, (iii) we provide the general
structure of the optimal scheduling policy for a scalar
system and a decoupled two-dimensional system for the
two-sensor case, showing their threshold-type behaviour
and the independence of the decoding algorithm, and (iv)
numerical simulations are used to compare the proposed
algorithms with a traditional single-transmission scheme.

System
Sensor 1

Sensor 2
Estimator

y1

y2

ν1

ν2

γ1

γ2
Wireless channel

Fig. 1. System model.

2. PROBLEM FORMULATION

In this paper we consider a dynamical system whose state
has to be estimated by a remote estimator, as depicted
in Fig. 1 for the case of two transmitting sensors. In
general, a set of N sensors communicate to the estimator,
which plays the role of a fusion centre, through a wireless
network. The central node is equipped with a receiver
capable of multi-packet reception, thus allowing more than
one sensor to transmit simultaneously. To avoid confusion,
we denote by transmission period the time interval during
which all the scheduled sensors transmit their measure-
ments. We assume that there is a transmission period
in any sampling period. Moreover, all the simultaneous
transmissions are synchronized, starting at the beginning,
and finishing at the end of the transmission period.

2.1 System model

Consider the discrete time state-space linear model

x(k + 1) = Ax(k) + w(k) (1)

where x(k) ∈ Rn is the state and w(k) ∈ Rn is the process
noise modelled as independent and identically distributed
(i.i.d.) Gaussian random variables w(k) ∼ N (0, Q) with
Q ≥ 0. A set of N sensors is available. At each sampling
instant, the i-th sensor measures the output

yi(k) = Cix(k) + vi(k) (2)

where yi(k) ∈ Rmi and vi(k) is the measurement noise
modelled as i.i.d. Gaussian random variables vi(k) ∼
N (0, Ri) with Ri > 0 and independent of {w(k)}. During
the k-th transmission period, a packet containing the sam-
pled output yi(k) is communicated to the remote estimator
according to the decision variable νi(k): if νi(k) = 1,
then yi(k) is transmitted, while it is not transmitted if
νi(k) = 0. When scheduled, a transmission may not be
successfully completed due to interference of other trans-
missions and channel and receiver noise. We represent
this process through the variable γi(k), which is equal to
1 if the transmission of yi(k) is successfully completed,
0 otherwise. The information set available at the fusion
centre at the time instant k is:

I(k)=

N⋃
i=1

Ii(k), Ii(k)=
{
νi(0)γi(0)yi(0), νi(1)γi(1)yi(1),

. . . , νi(k−1)γi(k−1)yi(k−1)
}

where, with a little misuse of notation, if νi(t)γi(t) = 0
then νi(t)γi(t)yi(t) = Ø, i.e. yi(t) is missing. Define

x̂(k|k−1) :=E[x(k) | I(k)]

P (k|k−1) :=E[(x(k)−x̂(k|k−1))(x(k)−x̂(k|k−1))′ | I(k)].

From Anderson and Moore (2012), x̂(k|k−1) is the optimal
estimator given I(k), and the matrix P (k|k − 1) denotes
the corresponding estimation error covariance matrix. In
order to easily manage intermittent partial observations we
exploit the information form of the optimal estimator given
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by Hashemipour et al. (1988). Due to space limitations, we
report only the update of the error covariance

P (k|k)=

(
P−1(k|k−1) +

N∑
i=1

γi(k)νi(k)C ′iR
−1
i Ci

)−1
(3)

P (k|k − 1) = AP (k − 1|k − 1)A′ +Q. (4)

The decision variables νi(k), i = 1, . . . , N are chosen at the
central node and are communicated back to the sensors
within the time interval (k − 1, k) without error.

2.2 Channel model

Denote by P tx
i the transmitted power of the i-th sensor,

while gi denotes the slow fading component of the channel
power gain (usually dependent on path loss) from the
i-th sensor to the remote estimator, and hi(k) is the
fast fading component of the same channel during the k-
th transmission period. We assume that P tx

i and gi are
constant, while hi(k) is modelled as a temporally i.i.d.
exponential random variable (this corresponds to Rayleigh
fading, a common distribution for a wireless environment
with large number of scatterers) with unity mean, i.e.
hi(k) ∼ Exp(1), with hi(k) ⊥ hi(t) for t 6= k and hi(k) ⊥
hj(t) for ∀k, t and i 6= j. It follows that the received power
at the remote estimator from the i-th sensor P rc

i (k) during
the k-th transmission period is

P rc
i (k) =

{
P tx
i gihi(k) if νi(k) = 1

0 if νi(k) = 0.
(5)

Given that νi(k) = 1, the received power is an exponential
random variable with mean λ−1i = giP

tx
i , i.e. P rc

i (k) ∼
Exp(λi). Due to the nature of the wireless medium, back-
ground channel and/or receiver noise is also present. We
model it as an Additive White Gaussian Noise (AWGN)
whose average power at the estimator is σ2.

Without SIC, since transmissions are overlapped, the
SINR corresponding to the packet containing yi(k) is

SINRi(k) =
νi(k)P rc

i (k)∑
j 6=i

νj(k)P rc
j (k) + σ2

. (6)

When SIC is employed, we assume without loss of general-
ity that the sensors have been ordered in descending order
of received power, i.e. P rc

1 (k) ≥ P rc
2 (k) ≥ . . . ≥ P rc

N (k).
Since the stronger users are decoded before the weaker
users, the SINR for the i-th sensor in this case is given by

SINRi(k) =
νi(k)P rc

i (k)∑
j>i

νj(k)P rc
j (k) + σ2

. (7)

A packet from the i-th sensor at the k-the time slot can
be decoded without error if SINRi(k) > α, where α > 0
is a threshold depending on the modulation and coding
schemes. In order to enable multi-packet reception without
SIC we need to have α ∈ (0, 1). It can be achieved e.g. by
Code Division Multiple Access (CDMA). It follows that
the packet arrival process can be expressed as

γi(k) =

{
1 if SINRi(k) > α

0 otherwise.
(8)

Since the channel gains are independent across time slots,
γi(k) is also an i.i.d Bernoulli process. However γi(k), γj(k)
for j 6= i may be dependent on each other due to
interference within a given time slot.

3. ARRIVAL PROBABILITIES

In this section we provide the probabilities of the arrival
process for the case with 2 sensors. When only 1 sensor is
scheduled, we have:

q10 := P (γ1(k) = 1 | ν1(k) = 1, ν2(k) = 0) = e−αλ1σ
2

q01 := P (γ2(k) = 1 | ν1(k) = 0, ν2(k) = 1) = e−αλ2σ
2

When both the sensors are scheduled, denote:

p11 := P (γ1(k) = 1, γ2(k) = 1 | ν1(k) = 1, ν2(k) = 1)

p10 := P (γ1(k) = 1, γ2(k) = 0 | ν1(k) = 1, ν2(k) = 1)

p01 := P (γ1(k) = 0, γ2(k) = 1 | ν1(k) = 1, ν2(k) = 1)

p00 := P (γ1(k) = 0, γ2(k) = 0 | ν1(k) = 1, ν2(k) = 1)

It is easy to compute p11 + p10 and p11 + p01:

p11 + p10 =
λ2

λ2 + αλ1
e−αλ1σ

2

=
λ2

λ2 + αλ1
q10

p11 + p01 =
λ1

λ1 + αλ2
e−αλ2σ

2

=
λ1

λ1 + αλ2
q01.

Under the assumption that α ∈ (0, 1), while different
expressions exist, it is convenient to write

p11 =

(
λ1

λ1 + αλ2
+

λ2
λ2 + αλ1

− 1

)
e−(λ1+λ2)

α
1−ασ

2

p00 = 1− (p11 + p10)− (p11 + p01) + p11

= 1− λ2
λ2 + αλ1

e−αλ1σ
2

− λ1
λ1 + αλ2

e−αλ2σ
2

+(
λ1

λ1 + αλ2
+

λ2
λ2 + αλ1

− 1

)
e−(λ1+λ2)

α
1−ασ

2

Finally p10 and p01 can be found by subtracting p11 from
p11 + p10 and p11 + p01.

When SIC is employed, the corresponding probabilities
(denoted by the superscript SIC) are given by

pSIC11 =

(
λ2

λ2+αλ1
e−λ1α

2σ2

+
λ1

λ1+αλ2
e−λ2α

2σ2

)
e−(λ1+λ2)ασ

2

+

(
1− λ2

λ2 + αλ1
− λ1
λ1 + αλ2

)
e−(λ1+λ2)

α
1−ασ

2

pSIC10 =
λ2

λ2 + αλ1
e−ασ

2λ1

(
1− e−ασ

2(λ2+αλ1)
)

pSIC01 =
λ1

λ1 + αλ2
e−ασ

2λ2

(
1− e−ασ

2(λ1+αλ2)
)

pSIC00 = p00.

Lemma 1. The following results hold:

(1) p11 + p10 < q10 and p11 + p01 < q01
(2) p00 + p10 > 1− q01 and p00 + p01 > 1− q10
(3) p00 < max{1− q10, 1− q01}
(4) p00 < min{1− q10, 1− q01} if and only if

e−(λ1+λ2)
α
α−1σ

2

(
λ1

λ1 + αλ2
− αλ1
λ2 + αλ1

)
<

λ1
λ1 + αλ2

e−αλ2σ
2

− αλ1
λ2 + αλ1

e−αλ1σ
2

(9)

As an immediate consequence of previous Lemma, accord-
ing to point (3), if channels are identical, i.e. q10 = q01 = q,
then p00 < 1 − q. The same results hold when the arrival
probabilities are replaced by their counterparts with SIC.
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4. OPTIMAL SENSOR SCHEDULING

In this section, we are interested in finding the optimal
sensor scheduling scheme over the finite horizon [0,K−1],
where the sum of the trace of expected prediction error
covariance matrices P (k|k − 1) over the finite horizon is
minimized, along with a penalty on the expected number
of total sensor transmissions. In particular, the sensor
scheduling problem can be formulated as

J
(
U[0,K−1], P0

)
=

K−1∑
k=0

E [Tr (P (k|k − 1))]+µ

K−1∑
k=0

N∑
i=1

νi(k)

where

U[0,K−1] = {νi(k) i = 1 · · · , N, k = 0, · · · , K − 1}
and µ is a regularization parameter that can be tuned
to set the desired trade-off between the estimate perfor-
mances (i.e the error covariance) and the communication
cost (i.e. the number of transmissions). Minimizing the
metric for different values of µ corresponds to minimizing
the error covariance under different bounds on the mean
number of transmissions. The optimal schedule is then

U∗(P0) = arg min
U

J (U,P0) .

The problem is essentially a stochastic control problem,
with the scheduling variables as the control sequence, and
can be efficiently solved e.g. through Dynamic Program-
ming. In the following we show some structural results for
the two simplest cases: a scalar system and a 2-dimensional
system with decoupled process noise, 2 sensors and 1-step
horizon (K = 1). For these particular cases, we can denote
U=(ν1, ν2). Proofs (reported in Pezzutto et al. (2020)) of
the following results are based on simple calculus tools that
can not be exploited for the general case, that is let as a
future work. Note that the following propositions hold true
both with and without SIC once the probabilities p11, p10,
and p01 are substituted by their counterparts with SIC.

4.1 Scalar system

We say that the sensor are identical if R1 = R2 and that
the channels are identical if P tx

1 g1 = P tx
2 g2, thus q10 =q01

and p10 =p01. We consider C1 =C2 =1 w.l.o.g..

Lemma 2. If channels and sensors are identical, then
J((1, 0), P ) = J((0, 1), P ) ∀P ≥ 0. If channels are identical
and R1 < R2, then J((1, 0), P ) < J((0, 1), P ) ∀P ≥ 0. If
channels are not identical and q10 > q01 then

J((1, 0), P ) < J((0, 1), P ) ∀P > 0⇐⇒ R1q01 < R2q10
Otherwise if R1q01 > R2q10 then

J((1, 0), P ) < J((0, 1), P )⇐⇒ P > P̂ =
q01R1 − q10R2

q10 − q01

Roughly speaking, the previous Lemma states that the
sensor with the best channel (highest q) is always pre-
ferred for high error covariances, while the sensor whose
measurements have the best quality (lowest R) might be
preferred for low error covariances. However, there are
configurations of the parameters for which the sensor with
the worst channel is never preferred to the other. In that
case, without multi-packet reception, this sensor is never
scheduled. The following Proposition shows that even in
this case such a sensor can be exploited when the receiver
has multi-packet reception capabilities.

Proposition 3. (Scalar system, 1-step horizon). For a scalar
system, if µ > 0, the following hold

(1) ∃P > 0 s.t. if 0 ≤ P < P then U∗(P ) = (0, 0), while
if P > P then U∗(P ) 6= (0, 0)

(2) ∃P > 0 s.t. if P > P then U∗(P ) = (ν∗1 , ν
∗
2 ) =

arg minν1,ν2 P (γ1 = 0, γ2 = 0 | ν1, ν2), namely the
scheduling that gives the lowest probability of no
new delivered packets. In particular, when condition
(9) holds, multiple simultaneous transmissions are
optimal, i.e. U∗(P ) = (1, 1) for P > P

(3) There are no additional thresholds in the interval
(P , P ) in the following cases:
• the sensors and channels are identical
• the sensors are identical and

p00 < min{1− q10, 1− q01}
• if R1 > R2 but scheduling (1, 0) is always better

than scheduling (0, 1) and p00 < 1− q10, i.e.

R1>R2 q10>q01 R1q01>R2q10 p00<1− q10

The previous Proposition shows that the optimal schedul-
ing has a threshold-type behaviour. In particular, P defines
the threshold before which no sensor transmit, while P is
the largest threshold, since for P >P the optimal schedule
is fixed. In general, it is possible that P = P . Note that,
with R1<R2 and identical channels, both sensors transmit
for P > P since (9) holds, despite the fact that the first
sensor would be always preferred to second sensor when
multiple transmissions are not allowed. It is possible to
find also cases where q10 > q01 and R1q01 < R2q10 but
condition (9) holds. Two interesting behaviours of the
optimal cost and of the optimal scheduling are reported in
Fig. 2. In particular, the bottom panel represents the case
where sensors and channels are very different and external
noise is high. Without SIC, we can see that, in the top
panel, simultaneous transmissions are optimal for P > P ,

while, in the bottom panel, it is optimal for P ∈ (P , P ). In
both the cases we can see the improvement given by SIC.

4.2 2-dimensional decoupled system

Consider a 2-dimensional system where matrices A and Q
are diagonal. We refer to this system as decoupled. For
easy of notation, denote

A =

[
A1 0
0 A2

]
C1 = [1 0] C2 = [0 1]

Q =

[
Q1 0
0 Q2

]
P =

[
P1 0
0 P2

]
Lemma 4. At the point P = (P1, P2),

J((1, 0), P ) < J((0, 1), P )⇐⇒ q10A
2
1P

2
1

P1 +R1
<
q01A

2
2P

2
2

P2 +R2
.

The curve Γ : J((1, 0), P ) = J((0, 1), P ) divides the
positive quadrant of the plane (P1, P2) in two regions. It
passes through (0, 0), asymptotically tends to the line r:
q10A

2
1P2 = q01A

2
2P2 while always lying underneath it if

q10A
2
1R1 > q01A

2
2R2, or always above it otherwise.

The previous Lemma shows that, for a decoupled system,
for each sensor there always exists a set of error covariances
for which it is preferred to the other, independently of the
quality of the channels, the quality of the sensors, and the
magnitude of the eigenvalues of the system.
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Fig. 2. Examples of optimal scheduling. A= 1.7, Q= 0.5.
Top: g1 =1.5, g2 =1, σ=0.1, R1 =0.2, R2 =0.1, µ=1
Bottom: g1 =5, g2 =σ=1, R1 =1, R2 =0.01, µ=0.01

Proposition 5. (2D decoupled system, 1-step horizon). For
a 2D decoupled system, if µ > 0, the following holds:

(1) ∃P 1 > 0, P 2 > 0 that define the region

R00 = {(P1, P2) : 0 ≤ P1 < P 1 and 0 ≤ P2 < P 2}
s.t. if P ∈ R00, then U∗(P ) = (0, 0), while if P /∈ R00

then U∗(P ) 6= (0, 0). The point (P 1, P 2) belongs
to the curve Γ. Moreover, the region R00 is strictly
included in a set where U∗(P ) 6= (1, 1).

(2) ∀P1 ∃P 2(P1)>0 s.t. U∗(P1, P2)=(0, 1) if P2>P 2(P1)
∀P2 ∃P 1(P2)>0 s.t. U∗(P1, P2)=(1, 0) if P1>P 1(P2)

(3) U∗(P ) = (1, 1) for P = (P1, P2) belonging to the non-
empty region R11:

(q10−p11−p10)
A2

1P
2
1

P1 +R1
+ν < (p11+p01)

A2
2P

2
2

P2+R2

(q01−p11−p01)
A2

2P
2
2

P2 +R2
+ν < (p11+p10)

A2
1P

2
1

P1+R1

The curve Γ intersects the bound of the region R11

at a unique point (P̂1, P̂2), so that any point (P1, P2)

s.t. P1>P̂1, P2>P̂2 belonging to Γ belongs to R11.

According to point (1) of the previous Proposition, as
illustrated in Fig. 3 there exists a rectangular region
R00 with the origin as bottom-left vertex in which no
transmissions is the optimal scheduling. According to (2),
we have that, keeping a component of the error covariance
fixed and making the other bigger, the optimal scheduling

Without SIC With SIC

Fig. 3. Example of optimal schedule for a 2D system. Left:
without SIC. Right: with SIC. A1 = A2 = 1.7, Q1 =
Q2 =0.5, g1 = g2 =1, σ=0.1, R1 =R2 =0.1, µ=3.

eventually schedules only transmissions to observe the
most uncertain state. Point (3) outlines that scheduling
(1, 1) is optimal in a region R11 (partially) containing
the curve Γ where scheduling (1, 0) and scheduling (0, 1)
achieve the same cost. As can be seen in Fig. 3, while R00

is the same with or without SIC, R11 is definitely larger
with SIC: multiple simultaneous transmissions are optimal
for a wide range of covariance matrices.

5. NUMERICAL SIMULATIONS

In this section, we fix the system parameters as follows:

A = 1.7 Q = 0.5 C1 = C2 = 1 R1 = R2 = 0.1

P tx
1 = P tx

2 = 1 g1 = g2 = 1 σ2 = 0.1

Where not explicitly indicated, α = 0.7 and µ = 0.1. The
resulting arrival probabilities are:

q10 = q01 = q = 0.932 p11 = 0.110 p10 = p01 = 0.438

pSIC11 = 0.862 pSIC10 = pSIC01 = 0.062 pSIC00 = p00 = 0.014

Since channels are identical, according to Proposition 3,
U∗(P ) = (0, 0) if P < P , U∗(P ) = (1, 0) if P ≤ P < P ,
and U∗(P ) = (1, 1) if P ≥ P . This section aims to
explore the improvement that can be achieved employing
a receiver with multi-packet reception capabilities for a
scalar system. We compare the optimal (1-step horizon)
policy devised in Sec. 4 with the optimal (1-step horizon)
policy for the case where at most one single transmission is
possible studied by Leong et al. (2016). First we consider
the time evolution of the error covariance for the different
policies over the same realisations of the processes P rc

1 and
P rc
2 . Results are shown in Fig. 4. We can see that multiple

transmissions achieve a lower error covariance when both
packets are successfully delivered. Peaks (corresponding
to no new packets) are less frequent since p00 < 1 − q
with identical channels, and the mean error covariance
is further improved using SIC. Fig. 5 reports the mean
error covariance for the different policies with varying α,
which is a communication parameter that can be properly
tuned by changing modulation and coding rate. A low
α allows to successfully receive a packet also with a low
SINR but it requires a low-order modulation and a high
coding rate at the price of a low data-rate. As we can
see, simultaneous multiple transmissions always achieve
lower mean error covariances. It is worth mentioning that,
for small α, the improvement given by SIC is minor, due
to the fact that mutual interference affects the packet
reception in a negligible way. On the other hand, when
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Fig. 4. Evolution of the error covariance

Fig. 5. Error covariance with varying α

Fig. 6. Thresholds with varying µ

α is close to one, without SIC the improvement given by
the multiple transmissions is minor. Interestingly, for the
given system, the plot corresponding to SIC is almost flat
for α ∈ (0, 0.7). In Fig. 6 we show for the case without
SIC (the case with SIC is analogous) how P and P behave
with varying µ. It is related to the actual energy constraint
given by the battery life of the sensors or it can be used to
set a trade-off between communication cost and estimation
performance. We can see that both P and P are increasing
function of µ: as expected, when the communication cost
increases, transmissions are penalized more and only when
the error covariance is high, simultaneous transmissions
are scheduled.

6. CONCLUSIONS

In this paper we consider a sensor scheduling problem for
remote estimation when the receiver is able to decode mul-
tiple simultaneous incoming packets. We consider a suit-
able model for multi-packet reception that takes into ac-
count interference and two different decoding algorithms,
i.e. with and without SIC. We provide the optimization
problem for the general case and we study the structural
properties of the optimal schedule for a scalar system and
for a 2-dimensional decoupled system. Numerical simula-
tions show that multiple simultaneous transmissions can
be beneficial, especially with SIC.
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