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Abstract: This paper addresses the fundamental difference between equilibria of thermody-
namic systems and equilibria of autonomous state space systems. The notion of stability of
thermodynamic equilibria is analyzed in terms of an entropy generating function that classifies
as a Lyapunov function to prove asymptotic stability of thermal equilibria. The stability analysis
is performed for both finite and infinite dimensional systems. It is shown how the proposed
Lyapunov function naturally extends to assess stability of interconnected thermal systems. A
number of examples is given to demonstrate the time evolution of the Lyapunov function.
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1. INTRODUCTION

The understanding of thermal behaviour plays an increas-
ingly important role to further enhance performance of
high-precision systems. In particular, the compensation of
thermally induced deformations of materials are among
the most important challenges in lithographic machines,
electron microscopes and in technical metrology. Although
many methods and tools van den Hurk et al. (2018) have
been developed for the modeling, simulation and controller
synthesis of multi-physical systems, a rigorous integration
of first principle thermal features in multi-physics models
is often lacking. First principle methods are among the key
tools to explicitly describe energy flows, heat transfers, and
energy conversions among different components, different
subsystems or different physical domains.

At the abstract level, conservation laws and energy func-
tions are often used to prove stability of equilibria of
systems, to analyze their behavior, and for purposes of
control and optimization. The role of Lyapunov functions
in autonomous systems, together with their generaliza-
tions in the direction of open dynamical systems, passive
and dissipative dynamical systems, bond-graph theory and
port-Hamiltonian systems are fundamental in modern sys-
tems theory Khalil (2002); Willems (1972a,b). The essence
of these frameworks lies in the observation that the effi-
ciency of many physical processes is limited by their energy
storage and the amount of energy that has been supplied
by its environment. Indeed, Carnot’s principle claims the
limited efficiency of heat engines; in Hamiltonian and
Lagrangian mechanics, the recoverable energy is always
bounded by the Hamiltonian or Lagrangian function; in
an ideal reversible thermodynamical process, all heat can
be converted into work.

In the last decades, non-equilibrium thermodynamics has
been developed as a research field, aimed at describing

* This work was supported by the Advanced Thermal Control
Consortium (ATCC) in the Netherlands.

Copyright lies with the authors

physics of thermal processes beyond and away from ther-
modynamic equilibrium. In particular, it aims at incorpo-
rating the time-course of intensive variables such as tem-
perature and pressure and to generalize the concept of en-
tropy to thermal states that are not in equilibrium. Start-
ing with Onsager’s reciprocal relations Onsager (1931a,b)
in 1931, important contributions on non-equilibrium ther-
modynamics have been made by Denbigh Denbigh (1951)
on steady state principles, De Groot’s work on linear irre-
versible processes De Groot (1952); De Groot and Mazur
(1962) and Prigogine’s minimum entropy production prin-
ciple Prigogine (1947) that has been extended to the the-
ory of entropy generation minimization by Bejan Bejan
(1996). This theory claims that the maximum efficiency of
a thermodynamic system is achieved while the dissipated
energy is minimal.

For many applications, quadratic Lyapunov functions have
been widely used to provide insight in the qualitative
behavior of systems. Although in Delvenne and Sandberg
(2017), a quadratic function of temperature is proposed to
satisfy Lyapunov stability criteria, these functions do not
naturally inherit the energy attributes of thermodynamic
systems. In In this paper, we propose an alternative
function, directly related to entropy increase, to prove
stability properties of thermal systems that are away from
their thermodynamic equilibrium.

The main contributions of this work can be summarized
as follows: (1) We formally distinguish between the con-
cept of an equilibrium of a dynamical system described
by differential equations and a thermal equilibrium of a
thermodynamic system. We show that not every equilib-
rium is a thermodynamic equilibrium. (2) We propose a
physically relevant Lyapunov function, which characterizes
thermal dissipation by entropy generation. It is shown that
this function characterizes the Lyapunov stability of any
thermodynamic equilibrium. (3) We show the usage of this
function for both distributed and lumped thermodynamic
models describing thermal conduction.

11704



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

The paper is organized as follows. Section 2 introduces a
number of fundamental concepts of quasi-static and time-
dependent thermodynamics. These include entropy bal-
ance (second law of thermodynamics), and the definition
of thermal equilibria. In Section 3, we give the derivation
of the physical relevant Lyapunov function and the cor-
responding stability analysis for both infinite-dimensional
and finite-dimensional systems. In Section 4, some simula-
tion results are given to validate the equilibrium analysis
and the stability analysis based on the proposed Lyapunov
function. Conclusions are given in Section 5.

We first give some notational conventions that will be
used in the paper. The col operator stacks its arguments
in a column vector as in x = col(zy, -+ ,x,). V is the
gradient operator with Vu := col(aa—;‘i |i=1,...,n) for a
differentiable function u : R™ — R. Its divergence V - u =
S 2u and its Laplacian V2u = V - (Vu) = S, 24

i=1 D, i=1 922 °
ou

The directional derivative 55 = Vu - n.

A real-valued continuously differentiable function V'

G — R is positive definite on a neighborhood G of z* if
V(z*) =0and V(x) > 0 for any « # «* in G. If it satisfies
V(x) > 0 for any x # z* in G, then V is said to be positive
semidefinite. A function « : [0,a) — Ry = [0, 00) is of class
KC if it is continuous, strictly increasing, and «(0) = 0.

2. THERMODYNAMICS FUNDAMENTALS

This section briefly reviews a number of classical concepts
from thermodynamics and proceeds with quasi-static pro-
cesses so as to incorporate the time evolution of intensive
variables. Furthermore, the concept of entropy, together
with the second law of thermodynamics, is presented.

Following the authoritative work of Callen (1998), a
(macroscopic homogeneous) thermodynamic system is de-
scribed by extensive and intensive variables whose behav-
ior is a subset '
TC Xea:t x int (1)
where the extensive variables
2 = col(U, S, V,Ny,--- ,N,) € Xt

consist of internal energy U, entropy S, volume V and the
mole numbers N; of the r constituent chemical compo-
nents. The intensive variables

2 = col(T, P, g, -+, pi) € XM
consist of temperature 7', pressure P and the electro-
chemical potentials p; of each component. The extensive

variables 2°** define the thermodynamic equilibria and are
related either by an energetic fundamental relation

U:U(SaKN17"';NT> (2>
or an entropic fundamental relation
S:S(Uv‘/lea"'vNT)' (3)

Either of these relations define the intensive variables z™*

through the partial derivatives
ou ou oUu
T: 55" P oy Hi N (4)
See Callen (1998); Sandler (2017). The first law of ther-
modynamics claims the preservation of internal energy is
expressed by Gibbs’ equation. A similar expansion applies
to the entropic representation and reads

1 P - Hi
dS = ZdU + dV - ; AN, (5)

Under the assumption that z®* and 2™ represent a

quasi-static process consisting of an ordered succession
of equilibrium states Callen (1998); Landsberg (1956),
we may derive the time evolution of state variables from
Gibbs’ relation according to

du. _dS

v KO AN
= 72 _p=~ Pl
at i at T ;“ i (6)

The time evolution of the balance equation may be viewed
as an extension of the first law of thermodynamics to
non-equilibrium state, introduced in Demirel and Sandler
(2004). A wide range of macroscopic systems has been
studied in this context. See, e.g., De Groot and Mazur
(2013); Kuiken and Kuiken (1994); Fitts (1962); Denbigh
(1951); Prigogine (1947); Keizer (1978).

2.1 Entropy generation

According to the fundamental postulate of thermodynam-
ics De Groot and Mazur (2013), the entropy change of a
system can be decomposed according to

dSys  dS.
dte — dt

dsS;
> (7

where S, is the entropy production from its surrounding
across the external boundary of the system and dS;
denotes the entropy production due to processes in the
interior of the system. The change in the entropy of a
system is associated with the heat flow and the mass flow
but not the work flow P4Y Sandler (2017). Irreversibility
is the difference between reversible work and actual work
and leads to a net increase in entropy. Specifically, we have
the following entropy balance equation

dSeys

- Q

T — Zmﬁl + T + Sg@n 9 (8)
i=1

where h; denotes the net rate of the ith mass flow into or
out of the system and §; is the entropy per unit mass. Q/T
represents the rate of entropy flow due to the heat flow
across the boundary and Sge, characterizes the internal
entropy generation within the system (7). The entropy
generation rate is

ds;
Syen = 3" )
It is important to remark that Sge, = 0 for reversible

processes, while Sge,, > 0 for irreversible processes.
2.2 Thermodynamic equilibria

In this paper we distinguish between thermodynamic equi-
libria and an equilibria (or fixed points) of autonomous
differential equations. In order to avoid confusion in the
sequel, ()* denotes the thermodynamic equilibrium and
we refer the (-)* to the equilibrium in the sense of system
theory.

A thermodynamic equilibrium is defined by Sandler (2017)
as a state x = col(z®* 2'"%) that (1) does not vary
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with time; (2) is spatially uniformly distributed, e.g.,
without temperature or pressure gradients; (3) causes
no flow of heat, mass, or work between the system and
its surroundings; (4) causes the net rate of all chemical
reactions to be zero.

The first requirement demands a state variable at equilib-
rium z* in (6) to be time-independent:
dz*
dt
The second requirement imposes a consensus constraint,
addressed by Olfati-Saber and Murray (2004) and Callen
(1998), which states that the equilibrium is uniformly
established at all compartments of a composite system.
This phenomenon is known as the equipartition of energy,
that was elaborated by Bernstein and Hyland (1993), Lyon
(1975),Pearson and Johnson (1987), requires a uniform
spatial distribution of state variables in thermodynamic
equilibrium:
.’1?* c Xeact % Xint

The third condition states that

rFEX x X" — Va*-a=00ndG (12
where 0G denotes the boundary of the geometry of the
system and 7 is an outward pointing unit vector at the
boundary. The fourth condition establishes the chemical
equilibrium Smith (1950) >~'_; ufv; = 0 where v; denote
the stoichiometric coefficients.

e X x X — = 0.

(10)

= Vz*=0.

(11)

Definition 1. For a dynamic system & = f(z,¢) defined
on a geometric domain G, let Vz - 72 be constant on the
boundary 9G. A point x* is in thermodynamic equilibrium
(in the absence of chemical reactions) if

(1) it is time-invariant: 92- = 0,
(2) it satisfies the equipartition property Va* = 0,
(3) it is independent of interaction across the boundary

Vz*-n =0 on 9G.

For (autonomous) dynamical systems described by or-
dinary differential equations, an equilibrium point is a
constant solution to the differential equation. This only
meets the first requirement in Definition 1. In particular,
a dynamical system can still be at equilibrium while the
inflow rate is equal to the outflow rate. Hence, a dynamical
system can be at equilibrium without being at thermody-
namic equilibrium if (2) or (3) are not satisfied. See Fig. 1
for an illustration of the various requirements.

equipartition
Vz* =0

time-invariant

W=

z* =0

isolated
n-Vz* =0

Vz* = cons J L n - Va* = cons

Fig. 1. A set of equilibrium z* (blue frame) and its subset
of thermodynamic equilibrium z* (red frame).

3. STABILITY OF THERMODYNAMIC SYSTEMS

In this section, we analyse the stability of thermody-
namic equilibria. For an example of thermal conduction
in a system described by partial differential equations, we
present a Lyapunov function that warrants stability of a

thermodynamic equilibrium. A similar example is given in
the second subsection for a system described by ordinary
differential equations.

8.1 FEquilibria in distributed systems
Consider a model of 1-dimensional thermal conduction in

a solid, as depicted in Fig. 2, whose governing equation,
boundary conditions and initial condition are given by

i G

0 ’I‘ L

Fig. 2. Heat conduction in a solid with geometry G and
boundary 9G (dashed line).

Cpa;; +V-J=0 ing, (13a)
VT(r,t)-n="2y on 0G, (13b)
T(r,0) = To(r) at initial time ¢ = 0. (13¢)

Here, T' : G x R>9 — Ry is an analytic function of
the 1-dimensional domain G that represents temperature.
The heat flux J(r) := —skVT(r), r € G where k > 0
represents the heat transfer coefficient. Density and heat
capacity of the solid are defined by p and C},, respectively.
The case where v = 0 corresponds to an isolated system.
We assume a time-independent non-positive constant ~.
For every time instance ¢t > 0, the temperature T'(-,t) is
assumed to be a mapping from G to R . The set of all such
mappings is denoted by D. With a given initial condition
To € D and ~y defined on dg, we will assume that T'(r,t),
with r € G, t > 0 is uniquely defined by (13).

Let D be equipped with an inner product

(T1,T3) = /gT1(7“)T2(T) dr

where T1,To € D. Then (D,{(-,-)) becomes an inner

product space with induced norm ||T|| := /(T,T). The
entropy balance equation then reads

(14)

S LI 4 "V dr
Sewn = = | Vg dr /gJ() Vi ¢

The first term represents the entropy flux across the
boundary. The second term denotes the entropy generation
within the system, that we will propose as candidate
Lyapunov function. Let S’qen : D — R be defined as

gen /J d?"—— /VT

E|V(In )|, (15)
Thus, Sgen(T) is a positive semidefinite function on D.
Equilibrium solutions T* of (13a) satisfy «V2T* = 0
and therefore have constant gradient V7. This means
that Sgen(7*) not necessarily vanishes at equilibria 7.

In particular, Sge, is not strict positive definite on a
neighborhood of 7.

Theorem 1. Let E denotes the set of all thermodynamic
equilibrium points of the system (13). Then any T* € E
is Lyapunov stable. Moreover, the function Sge, : D — R
defined by (15) is a Lyapunov function in the sense that
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Sgen is positive definite on a neighborhood of T in D and
Sgen(T) <0 for all T € D.

Proof. Let T* € E and consider Sy, defined in (15). Then
Sgen(T) > 0 and since T™ satisfies (11), it follows from
(15) that Sgen(T*) = 0. Sgen is therefore positive definite
on a neighborhood of T™*. Using the chain rule, the time
derivative Sgen(T) of Sgen(T'(1,t)) along solutions of (13)
is given by

s'gen(T):fﬁ/ {(gtw) V—+VT (gtvl)] dr

— /Q[VT vT+VT v(aat;)] dr.  (16)

Using integration by parts it follows that

VT - Vl =V (TV%) = TVQ%, (17)
VT - v(%%) =V (%% VT) — %% V2T, (18)
Substitute (17),(18) in (16) to infer that
Sgen(T n/ {v &? VT)+ V- (Tv%)
—TV? %— (;;)VQT} dr. (19)

After applying the divergence theorem, the first three
terms at the right-hand side of (19) can be rewritten as

o1 1 .1
n/g[v (&f VT)+V - (TV5) =TV 7] dr

01 o . 1
1
=K = TVT -7 dF — /TV vT) dr
L (VD)
1
=K ——TVT -7 dF. (20)
/ag T2

which vanish because of the boundary condition (13b). The
derivative (19) is therefore equal to
. 01
Sen@) = [ (L Lyv2T ar = - [ L iviT 4
gen(T) n/(atT)V T S TP V2T dr.

By substituting the model equation (13a) this gives
Sgen(T) = H o)

It follows that Sgen( ) <0 for all T €D and Syen(T ) =
0. Conclude that Sg., is a Lyapunov function proving

Lyapunov stability of T* € E. O

(21)

Theorem 1 proves stability of thermodynamic equilibrium
points of (13), not their asymptotic stability. Indeed, the
set £ generally does not consist of isolated equilibrium
points, which means that Sqen is not negative definite in
an open neighborhood of T* € E. The following result
establishes uniform asymptotic stability to the set E. For
this, let the distance between T € D and the set E of
thermodynamic equilibria of (13) be defined by

dist(T,E) := inf | T — T*|?.
T*€E
Theorem 2. Let E denote the set of all thermodynamic

equilibrium points of the system (13). Then E is uniformly
asymptotically stable in the sense that lim;_, o dist(T,E) =

0 for any solution T of (13). In particular, there exist
functions ay, ag, a3 of class K such that

a1 (dist(T,E)) < Syen(T) < ay(dist(T, E))
Sgen(T) < —az(dist(T, E))
for all T € D.

Proof. This proof follows a similar reasoning as in [114,
Theorem 4.1] Khalil (2002).The difference is that the
upper and lower bound on Sy, are measures of dist(7, E).
We claim that the distance from T € D to the set E
of thermodynamic equilibria is dist(7,E) = ||VT||?. For
1 <T < oo and k > 0 we have

R\ T2 = az(dist(T, E))

SpenlT) = 1| S| <

where 0 < sup, <y, T~ = 7 < 1. Similarly, for the lower

bound, we have

vT .
Sgen(T) = Kl =71 = w2 VT||* = an(dist(T’ E))

where 0 < infi<r<oo T-! = v < 1. By construction,
aq(dist(T*,E)) = a1(0) = 0 and ao(dist(T*,E)) =
a2(0) = 0. Next, we claim for all real positive pC|, € R,
. V2T
Sgen = -

2
I < 7|IV2T2||2 (22)
P

||
pCp
Z2,{2 V2R2\
= IV2T|? < — IVT|*.
PLp p

We prove this claim as follows. Using integration by parts,
[VT||? infers

/VToVTdr:7/T~V2Tdr+/V~(TVT)dr
g g g

— / T - V2T dr + vy max{T(0), T (L)}
g

< / —T - V2T dr.
g

Notice that the ymax{T'(0),T(L)} < 0 is derived by the
divergence theorem and the max{7T'(0),7(L)} denotes the
highest boundary temperature. Using Holder’s inequality,
(23) can be rewritten as

(23)

/VTVTdrg/—VQTTdr
g g

< (/g|—V2T|2dr)é(/g|T|2dr>;.

We note that for the given boundary condition (13b), there
exist such an eigenvalue
VT|?dr
A= min % > 0. (24)
(See Evans (2010)). Consequently, we have
IVTI* < AHIV2T. (25)
By substituting the (25) into (22), we prove the claim

1//<;)\

Sgen S -

ST = —as(dist(T,E))

Therefore, Sgen, < —ag(dISt(T, E)) for a function as of
class K is proved. O
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3.2 Equilibria in lumped composite systems

Consider a spatial partitioning of the geometry G depicted
in Fig. 2, leading to the composite system shown in Fig. 3
with two disjoint geometries G, and Gs.

oG AQ
> Qun Ty b, T,

0 ™ 2L

Q’Out%‘j

Fig. 3. Composite system of two compartments: G; U Gs.

In this formulation, the system dynamics of the two
components are described by

p1Cp T1(t) = Qin — AQ  in Gy, (26a)

p2Cp,To(t) = AQ — Qouy  in Go (26b)
with initial conditions T7(0) = Tp.1,72(0) = Tp. Here
AQ denotes the rate of heat flow between G, and Go,
represented by Fourier’s law AQ = k(Ty — T) where
k > 0. The density and the specific heat capacity of each
subsystem are given by p; and C,,, i = 1,2, respectively.
The rate of heat inflow to G; is denoted by Qin, the rate
of heat outflow from G, is Qout.

From the governing equations, the entropy balance (7) can
be derived by dividing (26) by 77 and T5. This gives
CE:Qm_% CEZLQ_QOHJE
PR T T T P, T, T
The left-hand sides of the equality in (27) can be rewritten
as piCp, 2 = p;Cy,L[InT;(t)]. This logarithmic form,
also derived in Haddad et al. (2009), shares the form of
Boltzmann’s entropy formula. For the composite system,
the first law of thermodynamics is obtained by adding the
equations (26) which gives
plcplTl + p2Cp2T2 = Qin - Qout~ (28)
Similarly, the entropy balance in inferred by adding (27),

. (27)

dSsy. d . .
dtys = In(p1Cp,T1) + In(p2CpyT2)

Qin Qout

- - S en T 7T 29
Tl 1’!2 + g ( 1 2) ( )

where the entropy production is
T, — Ty)?
Sgen(T1, Tp) = W) (30)

T1Ts
In this derivation, we set Qin = Qout = 0 as an input-
free system. Notice that Sgen (T4, 7%) > 0. Taking the time
derivative of Sy, along solutions (77, T5) of (26) gives

G (T3, Ty) = — L~ T2)(Ty Ty — ToTh)
gen 9 =

(31)

T3
Substitute (26) to infer that
. T -T2 +T), T T
Sgen — 2! + (32
g T12T22 (pch2 plc’pl) ( )

This proves that Sge, is a Lyapunov function for the
thermodynamic equilibria of the composite system.
Theorem 8. The set E = {(T1,T2) | Ty = Ta} are the
thermodynamic equilibrium points of the system (26). Any
(Ty,T3) € E is Lyapunov stable. Moreover, the function
Sgen defined in (30) is a Lyapunov function.

Next, we derive the equivalent of Theorem 2 for the
composite system. Let

dist((T1,T%),E) == inf  wy(Ty — T§)? + wo(Ty — Ty)2.
(Ty,T5)€k

where w; > 0 and wy > 0 are positive weights. The
weighting factors w; can be made material dependent and,
for example, be chosen as w; = p;Cp,.

Theorem 4. Let E = {(Ty,T%) | Ty = T3} be the
set of all thermodynamic equilibria of (26). Then E
is uniformly asymptotically stable in the sense that
lim¢_, oo dist(7;(t), E) = 0 for any solution T;(t) of (26)
and any positive weights wi,ws. In particular, there exist
functions ay, as, az of class K such that

Oél(diSt((Tl, Tg), 5)) S Sgen(Th Tg) S OéQ(diSt((Tl, Tg), g))

Sgen(leTQ) S 7053(di8t((T17T2)75))
for all T € D.

Proof: The proof follows the same lines as the proof of
Theorem 2. O

4. NUMERICAL EXAMPLE

In this section we provide a computation of the tempera-
ture distribution in the 1D heat conduction example given
in Fig. 2. Consider the spatial geometry G = [0, L] with
L > 0 the length of a beam. Let its temperature dis-
tribution be described by (13a) with Dirichlet/Neumann
boundary conditions and initial conditions given by

T(Oa t) = TO(t)
T(L,t) =Tr(t)
T(r,0) = Bsin(Fr) + Tor(r)

Dirichlet & IC:

where Tor,(r) = To + TLZTO.

oT(0.t) _

Neumann & IC: AT(LY) _
T(r,0) = cos(F)+¢&, £>0
The solutions are obtained by separation of variables and
read for the Dirichlet conditions

T(r,t) = Tor(r) + Bsin( il

2
7)exp(=73 @t)

with 8 > 0, and for the Neumann conditions

r 2I<E

T(r,t) = &+ cos( T )exp(—%pﬁt).
P

For t — oo the two types of boundary conditions exhibit
two different stable thermodynamic equilibria as depicted
in Fig. 4 and Fig. 5.

Note that the equilibrium in Fig 4 is not a thermodynamic
equilibrium since the equipartition condition does not
hold, while the steady state in Fig 5 is a thermodynamic
equilibrium. The time evolution of the proposed Lyapunov
function, together with the time derivative are both given
in the following Fig 6.

5. CONCLUSION

This paper considers thermodynamical systems beyond
their quasi-static behavior. We make an important con-
ceptual distinction between thermodynamic equilibria of
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w0
ws w0
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z 0 £
e 3
£ a0 20
g g
g 2% 8205
P o s —
Tss 20
294 2
15 15
- ) :
290 o 05

o 02 04 08 08 1
Length [dm]

12 14 16 18 2 Length [dm) e

Fig. 4. Spatial temperature profiles with Dirichlet bound-
ary condition. The temperature distribution Ty, Ty.1
and Tss represent the time at ¢ = [0,0.1] and the
steady state, respectively.

265

Temperature [K]

25

05
Length fam] Time ]

08 1 12
Lengih fam]

Fig. 5. Spatial temperature profiles with Neumann bound-
ary condition.

Time evaluation of the Lyapunov function with Neumann BC Time evaluation of the Lyapunov function with Dirichlet BC
35

VilJ-K]

VilgK]

0 05 1 15 ) 05 1 5

Time: [s] Time [
Time derivative of the Lyapunov function with Neumann BC Time derivative of the Lyapunov function with Dirichlet BC
o o
0005 00005
001 200
< oo < 00015
= 002 = 0.002
> ooz 00025
000 000
00 00035

Fig. 6. Time evolution of the Lyapunov function with two
different boundary conditions.

a system and equilibria in the sense of constant (time-
positive invariant) solutions of autonomous systems de-
scribed by differential equations. We proved the stability
of thermodynamic equilibria in a distributed thermody-
namical model and in a composite lumped thermodynam-
ical model. In both cases, a suitable Lyapunov function
has been derived from first principle properties of the
entropy balance equation of the system. It is shown that
this function represents entropy generation at the state of
irreversible thermal processes and decays along solutions of
the system towards thermodynamic equilibria. The set of
thermodynamic equilibria is proven to be uniform asymp-
totically stable.
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