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Abstract: This paper proposes a data-driven technique to estimate the wave excitation force
(WEF) which is an essential signal for wave forecasting and implementing power efficiency
maximization control of Wave Energy Converters (WECs). A Bayesian probabilistic model of
a WEC hydrodynamic system is described to generate robust WEF estimates. Specifically,
the WEF uncertainty can be estimated based on observations through Gaussian Process (GP)
modeling. It is shown that this modern way of incorporating the first principle modelling into
a probabilistic framework has stronger robustness properties than the alternative of calculating
estimates of a parametric function representation. Unlike the sample-based non-linear Kalman
Filter, the means and covariances of the joint probabilities can be directly computed based on
analytic moment matching that allow for reliable state-dependent uncertainty propagation. The
results presented demonstrate the accuracy and robustness of the proposed data-driven wave
excitation force estimator.
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1. INTRODUCTION

Wave energy has a great potential for development and
forms an indispensable part of marine renewable energy
(Association et al., 2010), representing higher energy den-
sity compared to offshore wind energy. However, com-
pared to wind turbine technology Wave energy converters
(WEC) are still at an early stage of development due to
the low (achieved) energy conversion efficiency and high
maintenance requirements. The development of the wave
energy requires optimizing the conversion of the resources
to reduce the Levelized Cost of Energy (LCoE). Optimal
control (Ringwood et al., 2014) can maximize the con-
version efficiency by driving the WEC into approximate
resonance with the wave excitation force of the incoming
waves.

The majority of the proposed energy maximizing control
methods require the instantaneous and predicted informa-
tion of the wave excitation force Fex as the determination
inputs (Faedo et al., 2017). Whereas the performance
of some other well-known control strategies including
complex-conjugate control (Salter et al., 2002), latching
control (Budal and Falnes, 1977) are strongly affected by
the knowledge of the future wave elevation η. However, in
a real multi-directional sea scenario, obtaining accurate η
measurements at the position WEC has been installed is a
non-trivial task (Shi et al., 2019). Attractively, the WEF
estimator provides an interesting alternative of obtaining
reliable η measurements at the location of the WEC. The η
can be computed via Fourier transform of the Frequency

Response Function (FRF) of the Fex. Hence, the WEF
estimator can be served as a redundant system to the wave
gauges, with an ability to provide more accurate wave fore-
casting performance (Ling, 2019). Only few casual control
algorithms, such as simple and effective real-time control
(Fusco and Ringwood, 2013), learning-based prediction-
less resonating controller (Shi et al., 2019) do not rely on
the knowledge of η or Fex.

In the real operational scenario, WEF is un-measurable,
therefore, extensive research is currently being conducted
on the WEF estimation problem and on which several
methods have been proposed. Recently, the paper (Peña-
Sanchez et al., 2019) performs a comparison of all cur-
rent available WEF estimators found in the literature.
According to the required measurements, there are three
distinct classes of estimators: using η measurements, using
device motion measurements, or using both device motion
and pressure measurements. The performance of using η
measurements only is heavily affected by both the accu-
racy of the η prediction which is not considered reliable
for real (irregular) sea operation (Shi et al., 2018), and
also the definition of the IRFFex

. Furthermore, to obtain
reliable η measurements requires several wave gauges (as
stated above), due to the principle that η is physically
un-measurable at the device location. Hence, it is found
that the second group of WEF estimators based on sole
use of device motion measurements is the most practically
feasible technique, specifically the Kalman Filter with Har-
monic Oscillator method (Ling, 2019) and Unified Linear
Input and State Estimator (Coe and Bacelli, 2017) and
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the robust unknown input observer (UIO) (Abdelrahman
and Patton, 2019), represent better overall performance
in terms of accuracy and delay time over other estimation
strategies. There is no evidence that including pressure
measurements could provide additional advantage. Indeed,
the UIO estimator described by (Shi et al., 2019) and in
detail by (Abdelrahman and Patton, 2019) is the only
approach able to take model uncertainty into account,
which is important to the robust control of WEC in the
real practice. However, most WEF estimators are based on
linear modeling technique, which belies the true non-linear
hydrodynamics of WECs in the ocean.

This paper propose a novel robust WEF estimator that can
handle both model uncertainty and non-linearity of WEC
hydrodynamic. In contrast to the use of other Gaussian
filters such as Kalman Filter, in which the process and
measurement noise should be specified, the proposed esti-
mator can learn these properties together with other sys-
tem uncertainty directly from data through probabilistic
modeling technique. In particular, the sparse identification
of non-linear dynamics (SINDy) modeling procedure is
adopted to approximate the WEC first principles physics
model, and an non-parametric Gaussian Process (GP)
model quantifies the unknown dynamics of the WEC sys-
tem. Based on this statistical model, the calculation of
state-dependent uncertainty becomes feasible by using reli-
able uncertainty propagation technique that approximates
the intractable posterior of the GP probabilistic model
with uncertain inputs by another Gaussian. Hence, the
means and co-variances of joint probabilities can be ana-
lytically computed. This data-driven method estimates the
WEF in a more robust and practical way by incorporating
the first principle model and unknown uncertainty within
a probabilistic framework.

2. PROBLEM STATEMENT

The floater-wave dynamics are often calculated by solving
the Cummins’ equation (Cummins, 1962):

m∗a(t) + Fr(t) + Fv(t) + Fh(t) + Fpto(t) = Fex(t) (1)

where m∗ = m + A∞, m is the floater mass, A∞ is
the added mass at infinite wave frequency, a(t) is the
acceleration vector of the floater, Fr is the radiation force,
Fex(t) is the wave-excitation force, Fh(t) is the hydrostatic
restoring force, Fpto(t) is the force exerted by (Power Take
Off) PTO system, Fv(t) is the viscous force. Equation
(1) can be approximated by the following deterministic,
discrete-time dynamical system:

xk+1 = f(xk, uk) + wk
= h(xk, uk)︸ ︷︷ ︸

prior model

+ g(xk, uk) + wk︸ ︷︷ ︸
unknown uncertainty

(2)

where xk = [pk vk ak Fexk]T , pk and vk denote the
floater position and velocity, respectively. uk = Fptok is
the control input to the system at time k.

Usually, the prior model h in the WEF estimator are
inaccurately identified based on linear model. In this work,
the prior model is represented by an non-linear paramet-
ric model which has been identified through the SINDy
modeling procedure. The unknown uncertainty relates
to both the un-modeled dynamics g and process noise
wk ∼ N (0, σ2), the noise covariance matrix is Q. In order

to reduce these unknown uncertainties and learn the un-
modelled dynamics g, a probabilistic model is adopted,
whose mean and covariance are given by Gaussian approxi-
mations N (xk|µk|τ ,Σk|τ ), where a subscript τ abbreviates
1, ..., k. This work computes the input-dependent µk|τ and
corresponding uncertainty estimates Σk|τ based on the GP
model. It should be noted that GP model can learn the
un-modeled dynamics, hence reducing the unknown uncer-
tainty which is quantified by GP as well. Noticeably, unlike
other estimators such extended Kalman Filter, the pro-
cess noise matrix Q becomes state dependent covariance
matrix to describe both process uncertainty (un-modeled
dynamics) and process noise in the GP model, no longer
require tuning through error-trial method. Although, the
similar modeling structure in Equation (2) could be used to
represent the system observations, a simple discrete-time
state-space model is adopted here due to the simplicity of
the system measurement function:

zk = Cxk + εk (3)

where zk = [pk ak]T , εk is the measurement noise, whose
covariance matrix is R, C ∈ Rq×n is given by

C =

[
1 0 0 0
0 0 1 0

]
The matrix C selects the position and acceleration of
the device as outputs. The prior distribution p(x0) of
the initial state x0 is N (µ0,Σ0), and the purpose of the
WEF estimator is to find approximations of the posterior
distributions p(xk|z1:k).

3. SPARSE IDENTIFICATION OF NON-LINEAR
DYNAMICS

SINDy combines a library of candidate non-linear terms
and sparsity-promoting regression to identify non-linear
dynamical systems from the time-series data(Brunton
et al., 2016). Although, there are many data-driven mod-
eling approaches to discover the system dynamics, these
learning-based algorithms often suffer from over-fitting,
inability of interoperability and the reliance on massive
data sets. By contrast, the SINDy framework allows the
incorporation of known physics to construct a combinatori-
ally large library of possible non-linear functions. Based on
a sparsity-promoting optimization, a parsimonious model
is sparsely selected from the library based on limited data,
resulting in interpretable models that avoid over-fitting
problem. The SINDy model could represent the complex
system with as few non-linear terms as possible. In the
SINDy framework the dynamical systems of the form

xk+1 = f(xk, uk) =

ζ∑
l=1

ξlhl(xk, uk) (4)

where the sum of functions
∑ζ
l=1 ξlhl describes how the

state evolves in a time step. The small ζ indicates that
the system dynamics can be identified by a parsimonious
set of functions. In order to sparsely select these un-
known functions, a comprehensive library of candidate
functions Θ(x, u) = [h1(x, u)h2(x, u), · · · , hp(x, u)] need
to be constructed, so the functions in Equation (4) are
the subset of Θ(x, u). The choice of library functions
is crucial to the performance of the SINDy algorithm.
One conservative strategy is to begin with polynomials
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Fig. 1. Schematic of the SINDy algorithm

and then gradually increase the complexity of functions
by adding other terms, such as trigonometric functions.
Importantly, it is also possible to incorporate partially
known physics into the library candidate function. For
the wave energy scenario, some terms in Equation (1) are
known, Fh(t) = Khp(t), Kh is the hydrostatic coefficient,
Fv(t) = Kvv(t) + Kdv(t) |(v(t))|, Kd, Kv are the viscous
coefficients, the non-linear Fv is often ignored but very
important. It is worth noting that nearly all the non-linear
forces exerted on the WEC can be approximated by prod-
uct combination of the states in x and the corresponding
coefficients, which construct the main library candidate
functions for the SINDy model of the WEC. Hence, SINDy
modeling technique has the potential to capture more
non-linear dynamics than a linear model due to extra
non-linearity is considered in the library. The radiation
force Fr(t) can be approximated using a parametric state
space model(Taghipour et al., 2008), which can be added
into the library candidate function in the future work to
improve the SINDy performance. The training data sets
are arranged according to the state matrix X ∈ Rm×n
and control vector U ∈ Rm. Then the function library
Θ(X,U) ∈ Rm×p is evaluated for all observations. The
corresponding next time step state matrix X ′ ∈ Rm×n,
is collected with the columns of X by moving advanced
one observation:X ′ = [x2x3...xm+1]. Then the Equation
(4) can be written as:

X ′ = Θ(X,U)Ξ (5)

where the Ξ ∈ Rp×n contains the unknown coefficients that
need to be solved. It is should be noted that the ith column
of Ξ determines the sparsity and accuracy of the ith state
variable. For each coefficient vector in Ξ, it is expected that
as few elements are non-zero as possible, such that only a
small number of candidate functions could give good model
performance. Therefore, sparsity-promoting regression is
employed to identify Ξ :

min
Ξ

1

2
||X ′ −Θ(X,U)Ξ||22 + λ||Ξ||0 (6)

Here, the sparse-coefficient can be solved by using the
Lagrangian minimization problem, ||.||0 is a regularizing
function to promote sparsity in Ξ, λ is a free parameter
that governs the magnitude of the sparsity penalty. In this
work, the sequentially thresholded least-squares approach
is adopted to compute this minimization problem, where
any elements in the coefficient vector less than a threshold
λ are set to zero in each iteration. The schematic of
the SINDy algorithm can be seen in Fig.1, where active
terms are identified through spare-promoting regression in
a library of candidate functions.

4. GAUSSIAN PROCESS WITH UNCERTAIN INPUT

GP is a popular Bayesian non-parametric method, which
has been successfully used in both machine learning and
control science. The appeal of using GP for model iden-
tification stems from the fact that it is able to approxi-
mate the arbitrary continuous functions with uncertainty
quantification that rely on only a small amount of prior
process knowledge about the modeled system in a very
limited data scenario. As its flexibility and inherent ability
to measure uncertainty in system estimation, we adopt the
GP here to model the unknown dynamics and errors, con-
sequently reducing the system uncertainty and providing
direct assessment of the state-dependent uncertainty. For-
mally, a GP is a random process involving an infinite set of
variables, any finite subsets of which are jointly Gaussian
distributed(Rasmussen and Williams, 2006). State and
control measurements form the input data to the GP and
the corresponding training targets are computed from the
deviation to the prior model:

yk = g(xk, uk) + wk = xk+1 − h(xk, uk)

With x̃ = [xTuT ]T , the GP model can be fully specified
by a mean function m(·) and a covariance function k(·, ·),
we write g ∼ GP to indicate that the latent function g
is GP distributed. Throughout this article, the covariance
function is the squared exponential (SE), given by:

k(x̃i, x̃j) = α2exp(−1

2
(x̃i − x̃j)TΛ−1(x̃i − x̃j)) (7)

where Λ is a positive diagonal length-scale matrix and α
is the output scale. However, it is straightforward to use
other differentiable kernels. Generally, the zero-mean func-

tion is assumed, with the training input X̃ = [x̃1, · · · , x̃m],
the corresponding training targets Y = [y1, · · · , ym]T , the
posterior predictive distribution of g∗ = g(x̃∗) for an
arbitrary test x̃∗ is given by(Rasmussen and Williams,
2006):

µg(x̃∗) = k(x̃∗, X̃)[K + σ2I]−1Y = kT∗ β (8)

σ2
g(x̃∗) = k(x̃∗, x̃∗)− kT∗ [K + σ2I]−1k∗ (9)

in which, kT∗ = k∗ = [k(X̃1, x̃∗), · · · , k(X̃m, x̃∗)], β := [K+
σ2I]−1Y , and K is the covariance matrix with Kij =
k(x̃i, x̃j). However, by evaluating the posterior distribu-
tion of a GP from an uncertainty input x̃∗ ∼ N (µ,Σ),
the resulting distribution is generally not Gaussian:

p(g(x̃∗)|µ,Σ) =

∫
p(g(x̃∗)|x̃∗)p(x̃∗|µ,Σ)dx̃∗ (10)

The µg and σ2
g of the predictive distribution for p(g(x̃∗)|x̃∗)

can be obtained from Equations (8) and (9), respectively.
For the SE kernel, the mean µ∗ and σ2

∗ of Equation (10)
can be computed in closed form(Deisenroth et al., 2009):

µ∗ =

∫
µg(x̃∗)N (x̃∗|µ,Σ)dx̃∗ = βTΓ (11)

with Γ = [γ1, · · · , γm]T , where

γi =

∫
k(x̃i, x̃∗)p(x̃∗)dx̃∗ = α2|ΣΛ−1 + I|− 1

2

× exp(−1

2
(x̃i − µ)T (Σ + Λ)−1(x̃i − µ))

The variance σ2
∗ is

σ2
∗ = βTLβ + α2 − tr([K + σ2I]−1L)− µ2

∗ (12)
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where tr(·) is the trace of matrix and with x̃ij := 1
2 (x̃i+x̃j)

Lij =
k(x̃i, µ)k(x̃j , µ)

|2ΣΛ−1 + I| 12

× exp((x̃ij − µ)T (Σ +
1

2
Λ)−1ΣΛ−1(x̃ij − µ))

Therefore, the intractable posterior predictive distribution
p(g(x̃∗)|µ,Σ) of the GP probabilistic model with uncer-
tain inputs has been approximated by another Gaussian
N (µ∗, σ

2
∗), with explicit reliance on the mean and covari-

ance of the input distribution.

Now, to extend the previous results to the multivari-
ate prediction scenario, where N GP models have been
independently trained with same input X̃, but differ-
ent training targets Ya = [ya1 , · · · , yam]T , a = 1, · · · , N .
For a deterministically input x̃∗ and an uncertain input
x̃∗ ∼ N (µ,Σ), the mean µ∗ and variance σ2

∗ of a GP
model for each state dimension are given by Equations
(8)-(9), and Equations (11)-(12), respectively. However,
the predictive covariance matrix of p(g(x̃∗)|µ,Σ) is no
longer diagonal, and only the variance on the diagonal
can be collected from N individual predictions. The cross-
covariances between target dimensions are given by

cov[ga∗ , g
b
∗|µ,Σ] = Eg,x̃∗ [ga∗ , g

b
∗|µ,Σ]− µa∗µb∗

= βTa L̃βb − µa∗µb∗
(13)

where a, b ∈ 1, · · · , N , ga∗ := gax̃∗, and βa := [Ka +
σ2
aI]−1Ya, with Ψ := (Λ−1

a + Λ−1
b )−1 + Σ,

L̃ij =α2
aα

2
b |(Λ−1

a + Λ−1
b )Σ + I| 12

× exp(−1

2
(x̃i − x̃j)T (Λa + Λb)

−1(x̃i − x̃j))

× exp(−1

2
(x̃ij − µ)TΨ−1(x̃ij − µ))

x̃ij :=Λb(Λa + Λb)
−1x̃i + Λa(Λa + Λb)

−1x̃j
With these results, the mean µ∗ and the covariance Σ∗
of p(g(x̃∗)|µ,Σ) can be computed analytically. It is worth
noting that the calculations of µ∗ and Σ∗ are based on
both previous state and observations in training data set,
resulting in more robust and consistent performance.

5. A GENERAL PERSPECTIVE ON BAYESIAN
FILTERS

As mentioned in Section 2, given a prior distribution
p(x̃0) = N (µ0,Σ0) of the initial state, the purpose of the
filter is to find approximations of the posterior distribu-
tions p(x̃k|z1:k). Noting that the initial state and filtered
state both include control signal u, due to the require-
ment of uncertainty propagation for GP model. Using the
Bayesian theorem, the filter distribution at time k is

p(x̃k|z1:k) =
p(x̃k, zk|z1:k−1)

p(zk|z1:k−1)
∝ p(zk|x̃k)p(x̃k|z1:k−1)

(14)
Bayesian filters approximate the distribution p(x̃k|z1:k) via
a Gaussian distribution N (µx̃k, Σx̃k), which are generally
obtained through(Deisenroth and Ohlsson, 2011)

µx̃k = µx̃k|k−1 + Σx̃zk|k−1(Σzk|k−1)−1(zk − µzk|k−1) (15)

Σx̃k = Σx̃k|k−1 − Σx̃zk|k−1(Σzk|k−1)−1Σzx̃k|k−1 (16)

The target µx̃k and Σx̃k can be derived if all the element
values in Equation (15) and (16) are known. All Gaussian

filters compute/approximate these terms by alternating
between predicting (Time update) and correcting (Mea-
surement update) steps:

1)Time update (Predictor):
In the time update step, the predictive distribution
p(x̃k|z1:k−1) is computed via:

p(x̃k|z1:k−1) =

∫
p(x̃k|x̃k−1)p(x̃k−1|z1:k−1)dx̃k−1 (17)

Assume a Gaussian filter distribution p(x̃k−1|z1:k−1) =
N (µx̃k−1,Σ

x̃
k−1) is given, otherwise the initial state dis-

tribution of p(x̃0) is employed. Note that the transition
probability p(x̃k|x̃k−1) can be exactly computed through
Equations (5) and (11)-(13) by treating x̃k−1 as x̃∗. The
time update equations are listed in Table 1.
As can be seen from Table 1, the state prediction is the

Table 1. Time update equations

State prediction (µx̃
k|k−1

) : Equation(5) + (11)

State covariance (Σx̃
k|k−1

) : Equation(12) (13)

sum of Equation (5) and (11), i.e. SINDy estimate plus
GP estimate, whereas the state covariance is estimated
from GP alone. Hence, the state prediction µx̃k|k−1 and

covariance Σx̃k|k−1 are obtained.

2)Measurement update (Corrector):
In the measurement update step, the joint distribution
p(x̃k, zk|z1:k−1) is computed:

p(x̃k, zk|z1:k−1) = p(zk|z1:k−1)p(x̃k|z1:k−1) (18)

Since a Gaussian distribution p(x̃k|z1:k−1) = N (µx̃k|k−1,

Σx̃k|k−1) is approximated from the time update, it remains

to compute the covariance Σx̃zk|k−1 and p(zk|z1:k−1):

p(zk|z1:k−1) =

∫
p(zk|x̃k)p(x̃k|z1:k−1)dx̃k

The p(zk|x̃k) is the marginal measurement distribution,
which has been described by a simple linear Equation (3)
rather than a GP model, whose mean µzk|k−1 = Cµx̃k|k−1

and covariance Σzk|k−1 = CΣx̃k|k−1C
T + R. Similarly, the

Σx̃zk|k−1 = Σx̃k|k−1C
T , hence all the values used in Equa-

tion (15)-(16) are computed. Noticeably, the measurement
update procedure in this case is exactly the one in the
Kalman filter, which has been summarized in Table 2. Us-

Table 2. Measurement update equations

Filter gain: Kk = Σx̃
k|k−1

CT [CΣx̃
k|k−1

CT +R]−1

Measurement residual: ek = zk � Cµx̃
k|k−1

State update: µx̃k = µx̃
k|k−1

+Kkek

State covariance update: Σx̃
k = (I �KkC)Σx̃

k|k−1

ing these results, the SINDy-GP filter algorithm is derived,
so that the WEF has been estimated by an alternating
predictor-corrector procedure in each time step.

6. RESULTS

In this Section, the case study for validating the proposed
WEF estimator will be described. To date, common prac-
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tice in the literature for the validation of an WEF estima-
tor is to employ a known (linear or non-linear) parametric
model of the system hydrodynamics, and the identical
model is also used in motion simulations. However, it can
be assumed that accurate models are usually not available
in practice. Even if an accurate model is available the
result may be that the performance of robust algorithms
are underestimated compared with those methods that can
not handle dynamic uncertainties. In order to avoid the
use of same model in both WEC hydrodynamic simulation
and the WEF estimation stages, a two-body floating-point
absorber (RM3) WEC-Sim model is selected. The linear-
based time-domian RM3 WEC-Sim model is one of the
U.S. Department of Energy WEC reference models, which
is validated via experimental results, can fast accurately
approximated linear and weakly non-linear WEC hydro-
dynamics(Van Rij et al., 2019).

We collect the state x, Fex and Fpto observations from
RM3 WEC-Sim simulations, then the acquired data are
used to identify the proposed data-driven model for WEF
estimation. The constant damping control and JONSWAP
spectrum are employed on PTO system and generation
of irregular waves, respectively. For the sake of validating
the robustness of proposed method, process noise w and
measurement noise ε are added to observations, and the
value of Fex and Fpto are rescaled to the same magnitude
of state x. Firstly, a prior model is derived with the
SINDy algorithm, the candidate functions in the library
are product combinations of floater position, acceleration
and velocity, together with WEF and PTO force. The
validation results and model coefficients are shown in Fig.2
and Fig.3, respectively. It is clear that, the active terms in

140 160 180 200Time (s)
-2

-1

0

1

2

Position SINDy
Position WEC-Sim
Acceleration SINDy
Acceleration WEC-Sim
WEF SINDy
WEF WEC-Sim

Fig. 2. Comparison between position, acceleration and
velocity obtained from WEC-Sim and from the simu-
lation with the SINDy model

the library are sparsely identified,i.e., SINDy attempts to
employ as few terms as possible to approximate the target
dynamical system. The output of the SINDy model is less
smooth compared with the ground truth, due to the fact
that all the observations used to train the SINDy model
are noisy, along with the input sequences. However the
performance of SINDy is accurate, which means that the
residual between WEC-Sim and SINDy simulation results
is mainly noise rather than un-modeled dynamics. In Fig.4,
although the mean of the GP model failed to represent
the un-modeled dynamics (with roughly approximation),
the GP gives state-dependent uncertainty calculation that
can almost cover all the unknown dynamics. This valuable
information of uncertainty bound could in turn improve
the estimator robustness and accuracy. By combining the

Fig. 3. The coefficients of SINDy model via sparse regres-
sion
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Fig. 4. The obtained residual WEF by the GP model
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WEF SINDy-GP

Fig. 5. The obtained WEF by adding SINDy and the GP
model

result from SINDy and GP model, the probabilistic model
for WEF estimation is derived, where both the mean and
uncertainty of the WEC system can be computed. This
is clear in Fig.5. By using the alternation of predictor
and corrector equations summarized in Table 1 and 2, the
Fex can be estimated robustly in real time. As shown in
Fig.6, both process and measurement uncertainty can be
properly handled, although the mean of the estimates do
not always lie centrally, as expected, the variance provided
by the proposed estimator can almost grantee the true Fex
are lie in its uncertainty bound. Due to limited space of
this paper, more comparison with other WEF estimators
in term of quantitative analysis, robustness, computational
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Fig. 6. Fex estimation using the proposed strategy in
close-loop evolution, considering both process and
measurement noise

complexity and practical tuning procedure,etc., will be
considered in the future work.

7. CONCLUSION

Unlike other WEF estimators, which often assume the
parametric models of the transition and measurement
function are available. This paper proposes a purely data-
driven algorithm for WEF estimation, where a probabilis-
tic model is identified from data. This modern modeling
method provides more detailed descriptions about the
target WEC dynamics compared to a simple paramet-
ric linear model that may no longer be validated due
to violations of the small wave assumption in practice.
The probabilistic model is a combination of SINDy and
GP models, which are used to act as the first principles
model and unknown dynamical model, respectively. Based
on the uncertainty qualification ability provided by the
probabilistic model, the calculation of state-dependent dis-
tribution can be realized via an analytic moment matching
method, which can approximate the uncertainty propaga-
tion reliably. The simulation results indicate both accuracy
and robustness of the proposed WEF estimator. These
advantages render the proposed robust data-driven WEF
estimator feasible for real sea implementation.
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