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Abstract: With rising market deployment the condition monitoring of solid oxide fuel cell
systems is gaining particular importance. The conventional approaches mainly use electrochem-
ical impedance spectroscopy based on the repeated sinusoidal perturbation over a range of
frequencies. One of the notable weaknesses of the approach is excessively long perturbation
time needed to properly evaluate the impedance curve. In this paper, we propose a time-efficient
approach in which, a short, persistently exciting and small-amplitude perturbation is used to
excite all the relevant system eigenmodes. A model structure from a class of linear fractional
order models is selected to describe the perturbed dynamics and to account for anomalous
diffusion processes in the cells. Then, the model parameters are estimated directly from measured
input and output records. The paper presents a computationally efficient parameter estimation
procedure in which the numerical issues of differentiation of noisy signals are alleviated by
using modulating functions. In practice, that means a combination of filtering and application
of conventional least squares. The approach is applied on a case of health assessment of solid
oxide fuel cells.

Keywords: Fractional order systems, time-domain identification, condition monitoring, solid
oxide fuel cell systems

1. INTRODUCTION

Solid oxide fuel cell systems are a promising technology for
direct conversion of chemical energy bound in fuel gas into
electrical energy without additional conversion steps. The
high degree of fuel flexibility, high efficiency irrespective of
the power scale, no need for rare materials such as plat-
inum and lithium, make solid-oxide fuel cells (SOFCs) a
perspective technology particularly suitable for stationary
applications. Unfortunately, the most serious barriers to
the broader commercialisation and market deployment of
SOFCs are yet insufficient durability, reliability and high
cost Irvine and Connor (2013).

Despite a great deal of effort dedicated to the understand-
ing of SOFC degradation mechanisms Barelli et al. (2013),
only a relatively limited set of diagnostic approaches
is available. That encompasses several analytical model-
based approaches Marra et al. (2016); Sorce et al. (2014),
black-box approaches Sorrentino et al. (2014) and signal
processing approaches Pahon et al. (2016). However, still
the most frequent health assessment approach builds on
the use of electrochemical impedance spectroscopy (EIS).
Characteristic for EIS is that applies local perturbation
to excite all the relevant dynamic modes of the system.
Although it has been around for several decades, the

way it is used has not changed much. To infer on the
health status, the EIS data have to be interpreted either
through the change of the pattern of the EIS curve, or by
interpreting changes in the parameters of the equivalent
circuit models (ECM) Polverino et al. (2017); Niya et al.
(2016) and distribution of relaxation times (DRT) Liu
et al. (2010); Heinzmann et al. (2018). Such an approach
suffers from at least two drawbacks. First, too long pertur-
bation time is usually required to obtain high-quality EIS
spectra. That means too long perturbation of the process
in operating mode. Particularly critical is estimation of
EIS curve at low frequencies as normally several periods
of a sinusoid are required to extract precise information.
Second, long perturbation times raise the chance that ran-
dom disturbances come into play during the perturbation
sessions, e.g. in terms of temperature drifts, variations in
fuel composition. Moreover, further processing of EIS data
targeting DRT and ECM in both cases requires heuristic
tuning of regularisation parameters as well as exhaustive
optimisation searches.

By applying excitation over a wide range of frequencies si-
multaneously, the authors in Boškoski et al. (2017) showed
that the same quality of the results as in conventional EIS
can be obtained at the substantially shorter perturbation
times (an order of magnitude). The evaluation of EIS
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curve is done by post-processing of the current and voltage
signals utilizing complex wavelet transform Apart from the
much shorter perturbation session, an additional benefit
is also much better resolution of the EIS curve obtained
compared to the conventional EIS, as it is defined by
the sampling rate. Savings in required perturbation times
can gradually diminish when the required precision of the
spectral reconstruction at low frequencies is increasing.
To circumvent the last limitation we propose the time-
domain identification of the system dynamics described
by the fractional order differential equation.

The currently available approaches to fractional order sys-
tems (FOSs) identification can be split into three groups.
The first one contains approaches that employ recursive
linearisation techniques Sabatier et al. (2015); Malti et al.
(2007). These approaches closely approximate the be-
haviour of a FOS within a certain frequency band. The
second group comprises approaches that use algebraic ma-
nipulation of the fractional order transfer function Gehring
and Rudolph (2017). The result is an integer order transfer
functions whose parameters are result of an optimisation
process. A challenge in all of those those approaches is
is high sensitivity of the numerical derivation with noisy
signals. For that purpose a class of methods making use of
the modulating functions, as an elegant way to circumvent
direct signal derivation, have been proposed. The idea is
instead to do derivation directly on the signal to move it in-
directly to the modulating function and in the closed form
Eckert (2017); Liu et al. (2013); Belkhatir and Laleg-Kirati
(2017); Liu and Laleg-Kirati (2015); Dai et al. (2016).
Technically, a modulating function (MF) takes the form of
low-pass filter. With the exception of Belkhatir and Laleg-
Kirati (2017) in the most of the cases the commensurate
transfer functions have been addressed.

In this paper we propose an algorithm for identification of
a class of incommensurate fractional order noisy systems,
which represent the best match for fuel cell system dynam-
ics. The main results of the paper are as follows. First, a fil-
ter with an exponentially decaying MF is adopted. It serves
to alleviate the problem of direct numerical derivation
of the signal. Second, a parameter estimation algorithm
based on a two-step nested constrained optimisation is
proposed and applied to the condition monitoring of a
solid oxide single-cell system. It is shown that the pre-
sumed model structure reduces the required identification
time to only a fraction of the time needed for classical
EIS. Finally, DRT turns to be simply a byproduct cal-
culated through a straightforward transformation of the
identified transfer function Fuoss and Kirkwood (1941).
The experimental validation of the proposed methodology
is performed under the degradation-free as well as the
degradation-accelerated operating conditions on a SOFC.

2. BACKGROUND

2.1 Fractional order calculus

The fractional order calculus is an extension of the con-
ventional integer order calculus. Instead of the first, second
and, generally, nth derivatives the order of derivative can
be non-negative real number. Compared to the integer
order differentiation, fractional order differentiation has no

straightforward graphical interpretation Podlubny (1999).
The easiest way to describe the concept is to use the
Laplace transform. The Laplace pair of an integer order
differentiation of a function f(t) with zero initial condi-
tions reads

dpf(t)

dtp
L←→ spF (s), p ∈ N, s ∈ C. (1)

Nothing changes in (2) if instead of an integer p we take
p ∈ R+. Unfortunately, the time domain equivalent of frac-
tional differentiation is not so elegant and is represented
by the Riemann-Liouville integral Podlubny (1999):

Dp
t f(t) =

1

Γ(n− p)
dn

dtn

(∫ t

−∞

f(τ)

(t− τ)p−n+1
dτ

)
, (2)

where (n − 1) ≤ p < n, p determines the fractional
differentiation order as in (1) and Γ(p) is the Gamma
function.

2.2 Numerical evaluation

For many functions f(t), the solution of the Riemann-
Liouville integral (2) either does not exist in a closed form
or includes the so-called Mittag-Leffler function. Moreover,
if fractional derivatives of real signals need to be evaluated
the integral (2) is needed. The common way of numerical
approximation of the Riemann-Liouville (RL) integral is
through the Grünwald-Letnikov (GL) scheme Podlubny
(1999); Monje et al. (2010); Schmidt and Gaul (2000):

Dp
t f(t) = lim

N→∞

( t

N

)p N−1∑
j=0

Aj+1f(t− j t
n

)


Aj+1 =

Γ(j − p)
Γ(−p)Γ(j + 1)

=
j − 1− p

j
Aj .

(3)

Unfortunately, direct application of the GL numerical
scheme (3) for fractional differentiation suffers the same
drawback as ordinary numerical differentiation of noisy
signals. At poor signal-to-noise ratios, the GL scheme
provides numerically unstable results, thus limiting its
usefulness for practical applications.

2.3 Problem definition

The problem of FOS identification is almost identical to
that of integer order systems, i.e. the goal is to estimate
the unknown ai, bj , αi, βj of the following FOS:

y(t) +

Na∑
i=1

aiD
αi
t y(t) =

Nb∑
j=0

bjD
βj

t u(t), Nb ≤ Na, (4)

given the realisation of dicrete values (ui, yi, i = 1, ..., N)
where αi ∈ R+ and βj ∈ R+. It should be noted that for a
general case the powers αi and βj are incommensurate 1 .
By allowing αi ∈ N and βj ∈ N the linear system (4)
reduces to the integer order linear system.

The greatest issue of time domain FOS identification is
numerical fractional order derivation of noisy signals thus
precluding the applicability of GL numerical scheme. One
possible remedy is by using the concept of modulating
functions.
1 Commensurate FOS is a special case and its identification repre-
sents somewhat simpler problem Malti et al. (2007).
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3. MODULATING FUNCTIONS

Definition 1. (Preisig and Rippin (1993)). A MF φ(t) of
order n is a function defined on the interval [0, T ] that
satisfies the following properties:

(1) φ(t) ∈ Cn([0, T ])
(2) φ(i)(0) = φ(i)(T ) = 0 for i = 0, 1, . . . , n− 1
(3) Dα

t φ(t) exists, ∀ 0 ≤ α ≤ n and
(4) Dα

t φ(t)|t=0 = 0, ∀ 0 ≤ α ≤ n.

A MF should have vanishing derivatives up to order n =
maxb{max(αi)}, {max(βi)}c. Having a MF φ(t) of order
n ∈ N and a function f(t) whose fractional derivative
of order α exists than the following relation involving
convolution holds Preisig and Rippin (1993); Lorenzo and
Hartley (2008):∫ t

0

Dα
t f(τ)φ(t− τ) dτ =

∫ t

0

f(t− τ)Dα
t φ(τ) dτ

+
c

Γ(1− α)

∫ T

0

φ(t− τ)(τ + a)−α dτ − cDα−1
t φ(t),

(5)

where f(t) = c for t ∈ [−a, 0], a > 0.

For initial conditions
Dαi
t y(t)|t=0 = 0 for i = 0, . . . , Na

D
βj

t u(t)|t=0 = 0 for j = 0, . . . , Nb,
(6)

performing convolution with a MF φm(t) on both sides
using (5), the original problem (4) becomes:

Na∑
i=0

ai

∫ t

0

f(t− τ)Dαi
t φ(τ)dτ

=

Nb∑
j=0

bj

∫ t

0

u(t− τ)D
βj

t φ(τ)dτ.

(7)

The fractional derivatives in (7) include only MFs. Con-
sequently, relation (5) transforms the original system in
a form where fractional derivatives include noise free and
more importantly known functions. Furthermore, for care-
fully selected MFs, the fractional derivatives exist in a
closed form. The transformed system has the same set of
parameters, however in the transformed form, it depends
on the so-called modulated versions ũ(t) and ỹ(t) of the
original signals u(t) and y(t).

There are many functions that satisfy the properties
defined in Definition 1. One of the most commonly used is
the so-called Cahen and Loeb function:

φm(t) =

{
tn+m(T − t)nF (t) for t ∈ [0, T ]

0 elsewhere,
(8)

where F (t) is n − 1 times differentiable. For the MF (8)
the solution of the RL integral (2) exists in closed
form Belkhatir and Laleg-Kirati (2017):

Dα
t φ(t) =

m∑
k=1

ck
Γ(Kk)

Γ(Kk − α)
tKk−α+1, (9)

where Kk = M + ā − m + k + 2. Although the solution
of (9) exists in closed form in suffers from the so-called
“catastrophic cancelation” (i.e. loss of significance). One
way of avoiding this issue is by increasing the number of
significant digits during the evaluation of (9). The cost is
a substantial increase of the calculation time.

Conversely, the Puchov and Chinayev function offers a
numerically efficient implementation even for substantially
long signals. This function has the form of the first-order
system with dead time as Preisig and Rippin (1993):

φ(t) =
a4

6
(t− T )3e−a(t−T ), (10)

where the parameter a determines the cut-off frequency of
the filter, and T is sufficiently small. The Fourier transform
of (10) exists in closed form:

H(jω) =
a4
(
T 3 (a+ iw)3 − 3T 2 (a+ iw)2 + 6T (a+ iw)− 6

)
(a+ iw)4 (T 3a3 − 3T 2a2 + 6Ta− 6)

(11)

4. THE PROPOSED PARAMETER ESTIMATION
APPROACH

Recall that in in the case for ordinary linear systems,
where αi and the βj are known integers, the estimation
of model parameters can be done by one of numerous
identification methods, see Garnier and Wang (2008).
However, in fractional systems, neither fractional orders αi
and βj , nor its corresponding parameters are known. This
section outlines the model parameter estimation, which
includes (i.) estimation of the parameters ai and bi, and
(ii.) estimation of corresponding fractional order.

In the context of SOFC’s and electrochemical energy
systems in general, the system output u(t) corresponds
to the measured voltage and the system’s input i(t) is the
electrical current, therefore we rewrite (4) in the following
form:

u(t) =

Nb∑
j=1

bjD
βj

t i(t)−
Na∑
i=1

aiD
αi
t u(t), Na ≥ Nb. (12)

4.1 Estimation of model parameters ai and bj

Provided the fractional orders αi and βj are known, one
can evaluate fractional derivatives of the input/output
signals employing e.g. (3). However, as already discussed
in Section 3, this approach becomes inappropriate due to
the issues related with numerical differentiation.

To overcome the issues related to the numerical differenti-
ation, equation (12) is transformed into Fourier space and
multiplied by function Φ(jω) on the both sides to obtain

U(jω)Φ(jω) =

Nb∑
j=1

bjI(jω)(jω)βjΦ(jω)

−
Na∑
i=1

aiU(jω)(jω)αnΦ(jω).

(13)

There are no restrictions imposed on the selection of
function Φ(jω). In this work the function of Puchov and
Chinayev (11) is employed.

By reverting back to time domain we finally arrive to

u(t)∗φ(t) =

Nb∑
j=1

bji(t)∗Dβj

t φ(t)−
Na∑
i=1

aiu(t)∗Dαi
t φ(t) (14)

where ∗ denotes the convolution operation.
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For data collected every sampling period ∆t, i.e. t ∈
{0, ∆t, 2∆t, · · · , N∆t}, the above equation (14) can be
written in matrix form

U = Aα,βp
T , (15)

where U = u(t) ∗ φ(t) is vector of length N , p =
[bNb

, . . . , b1, aNa , . . . , a1] is vector of length Na +Nb, and
matrix Aα,β of size N × (Na +Nb) contains the fractional
derivatives of measured signals:

Aα,β =
[{
i(t) ∗ Dβjφ(t)

}
{−u(t) ∗ Dαiφ(t)}

]
. (16)

The unknown parameters in p can be estimated from
measured signals through linear least squares approach as:

p̂ = (AT
α,βAα,β)−1AT

α,βU. (17)

4.2 Estimation of fractional orders

Provided the fractional orders αi and βj are available and
known, the model parameters in p are easily evaluated by
employing (17) following the procedure described above.
Since that is not the case, an optimisation problem min-
imising the prediction error should be formulated.

The measurement matrix Aα,β in (15) is parameterised
by fractional orders α and β. For a given set of Aα,β the
prediction error reads

e(α,β) = Aα,βp−U. (18)
In order to find the optimal set of fractional orders,
one needs to solve the following non-linear mathematical
program:

min
α,β

c(α,β) (19)

where we define optimisation criterion as mean squared
error

c(α,β) = e(α,β)Te(α,β) =

N∑
n=0

||A(n)
α,βp−U(n)||22, (20)

where n sums over each row of the matrices. With optimi-
sation defined as (20), the gradient can be easily found to
be 

∂c(α,β)
∂αi

...
∂c(α,β)
∂βj

...

 =


2
∑
n(A

(n)
α,βp−U(n))

∂A
(n)

α,β

∂αi

...

2
∑
n(A

(n)
α,βp−U(n))

∂A
(n)

α,β

∂βj

...

 (21)

where (index n is ommitted)
∂Aα,β

∂αj
= u(t)∗∂D

αiφ(t)

∂αi
,
∂Aα,β

∂βj
= i(t)∗∂D

βiφ(t)

∂βi
. (22)

5. CASE STUDY

The experimental examinations of SOFC were performed
at the Institute of Thermal Engineering at Graz University
of Technology. The test rig assembly used for the experi-
mental investigations is shown in Fig. 1.

The SOFC under test was an anode-supported with an
active surface of 81 cm2. Nickel current collector was
used on the anode side, while platinum was used to
contact the cathode side. The cell housing was positioned
in a temperature-programmed furnace and the operating

Purge gas for
emergency case

MFC

H2/N2

Humidifier
system

Fuel
line Fuel

line

MFC MFC MFC MFC MFC MFC

Gas
Analyzer

Impedance Analyzer with
Galvanostat/Potentiostat

Anode
inlet gas
Anode

outlet gas

Air

Electronic Load

Cell Housing

Cathode

Anode

H
eating

 F
urnace

Control 
System UnitN2 H2 CO CH4 CO2 Air

Fig. 1. SOFC test setup Subotić (2017)

temperature was held constant at 800◦C. The selected
current set point was 4 A.

The experiment went through two phases. In the first
phase, the anode was fed with a dry H2/N2 mixture,
including 45 vol% H2, while the cathode was fuelled with
air. The air and fuel flow in the co-flow conditions. The
volume flow rate to the cell was set to 2.4 SLPM 2 , and 2
SLPM, for anode and cathode respectively. In the second
phase the cell was intentionally poisoned while performing
a run-to-failure experiment that lasted for 48 hours. For
the purpose of the accelerated degradation, methane with
S/C=0.5 was used as a fuel, thus forcing carbon deposition
degradation phenomenon.

The system excitation consisted of two pseudo-random
binary sequence (PRBS) signals PRBS1 and PRBS2 with
cut-off frequencies of 1 Hz and 100 Hz respectively. The
goal was to properly excite both slow and fast dynamic
modes. The sampling frequency was fs = 100 kHz al-
though the effective bandwidth was 10.8 kHz.

5.1 Parameter estimation at the healthy state

The equivalent circuit model consists of 2 RQ elements.
The rationale is twofold. When fueled with pure hydro-
gen the EIS spectrum exhibits 3 semi arcs Bertei et al.
(2016). Due to the limited bandwidth of our experimental
equipment only the low and the middle frequency arcs
are pronounced. In this particular case the model can be
written as:

GFC(s) =
A

τasα + 1
+

B

τbsβ + 1
+R, (23)

and the model parameters to be estimated include time
constants τa, τb, static gains of the RQ elements A and B,
serial resistance R, and finally the fractional orders α and
β.

Expanding the equation leads to the transfer function

GFC(s) =
b3s

α+β + b2s
β + b1s

α + b0
a3sα+β + a2sα + a1sβ + 1

(24)

where the relations among parameters ai, bi and parame-
ters of RQ elements R, A, τa,B, τb follow:

2 SLPM stands for the standard liters per minute
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b3 = Rτaτb = p1 b2 = τa(B +R) = p2
b1 = τb(A+R) = p3 b0 = A+B +R = p4

a3 = τaτb = p5 a2 = τa = p6
a1 =τb = p7

(25)

Following the parameter estimation algorithm described in
4 with constraints (25), the identified model reads

GFC =
1.18× 10−6s1.72 + 0.0002s+ 0.0001s0.72 + 0.02

0.00029s1.72 + 0.07s0.72 + 0.004s+ 1
(26)

5.2 Validation of the SOFC model

The time domain identification results are shown in Fig. 2.
During the first 3s the system was excited with the sum
of PRBS1 and PRBS2, while in the time interval 3s− 12s
only PRBS1 continued to excite the cell. From the results
it is clearly visible that the identified system matches the
measured signals very accurately.

Time [s]

u(
t)

u(t)

ĜFC(s)

0 2 4 6 8 10

1.035

1.04

1.045

1.05

1.055

Fig. 2. The time domain identification results

Additional validation of the FOS model was done by
comparing the Nyquist curves obtained from the estimated
model parameters and the Nyquist curve obtained using
the conventional sinusoidal perturbation. A set of 24
consecutive sinusoidal excitation signals (of frequencies
from 0.1Hz-9kHz), with the duration of 7 periods each were
applied. The complete duration of the entire excitation
session was 133.33 seconds.

−
ℑ{

Z
(j
ω
)}

×
1
0
−
3

ℜ{Z(jω)} × 10−3

FOS - PRBS based
Sine-based

5 10 15 20
-1

0

1

2

3

4

Fig. 3. Validation through comparison of the Nyquist
curves

It is important to stress the following comments:

(1) Substantially different perturbation times (133 s for
repeated sinusoids versus 12 s of PRBS) result in
almost the same Nyquist plots. Reductions of an order
of magnitude are rather typical.

(2) Short PRBS perturbation for FOS identification
bears an additional advantage. Namely, by extending
the experimental run the chance that external dis-
turbances may affect the experiment increases. For
example, small variations in the temperature, pres-
sure, gas composition can result in fluctuations in
the evaluated points on the Nyquist curve, which is
clearly visible in Fig. 3.

(3) Finally, unlike the classical sine-based EIS where
the Nyquist curve is measured at discrete points,
estimated FOS parameters provides fractional-order
transfer function in a closed form as shown in Fig. 3.

The comparison in the frequency domain is an additional
prove that the identified system is a clear match with the
real one.

5.3 Application to condition monitoring of a single SOFC

Fig. 4 shows the estimated parameters of the fuel cell
model for at six points during the run-to-failure experi-
ment. The measurement indices denoted Ti are shown on
the x-axis. The y-axis corresponds to particular parameter
in (24). It is clearly seen that some of the parameters

P
ar

am
et

er
va

lu
e

FOS parameter
T0

T1
T2

T3
T4

T5

b3
b2

b1
b0

a3
a2

a1
0

0.05

0.1

0.15

0.2

Fig. 4. Time evolution of the FOS parameters through
short degradation experiment.

increase in value. This can be correlated with an increase
of polarisation losses that, due to ongoing degradation
inside the cell, increase significantly. Therefore, the esti-
mated parameters can be directly employed for condition
monitoring in the subsequent step.

6. CONCLUSION

A time domain approach to the estimation of incommensu-
rate fractional order models is presented and its potential
for health monitoring of SOFCs is demonstrated. Short
persistent excitation by means of PRBS and pre-filtering
of input and output signals by a modulating function allow
for accurate identification of the linearized fuel cell dynam-
ics. The approach is shown to outperform the conventional
EIS approach in many aspects of which the substantially
lower process excitation is the most striking. This makes
the approach a viable solution for online health monitoring
not only SOFCs but also other electrochemical conversion
systems. In the work to follow a more systematic, data-
driven, structural identification procedure able to select
an optimal model from a set of the candidate models will
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be investigated. No such results seem to be available at
the time being.
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