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Abstract: The paper presents a control concept for interacting vehicles in a road network. The
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vehicles. The control concept was implemented and validated on scale robots and experimental
results are discussed.
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1. INTRODUCTION

Numerous applications arise from the task of conflict
avoidance employing multiple autonomous robotic vehi-
cles. This includes intersection management, platooning or
general path planning. The common ground of these prob-
lems motivates the formulation of coordination and path-
following problems, where the realization of the numerical
solutions on real robots introduce additional difficulties
regarding communication and imperfect information. To
this end, the task is to design a control concept which is
able to coordinate the vehicles on their respective tracks
and to resolve conflicts. In addition, a reliable and stable
controller is required to track paths in combination with
a communication topology that ensures the distribution
of dependable information among the vehicles with low
latencies.
There are various ways to approach this class of problems
or parts of it. In Alessandretti and Aguiar (2019) the
coordination problem is tackled with a model predictive
control approach, where a coordinated output regulation
problem is solved to meet a predefined consensus. Further,
the vehicles do not share their predictive trajectories but
their coordination vectors. However, no implementation
and tests are conducted on real nonholonomic robots. Hult
et al. (2018) propose a mixed integer approach to solve the
scheduling problem occuring at intersections by computing
time slots for each vehicle. Further, in Zanon et al. (2017)
an algorithm with asynchronous sensitivity updates to
minimise the time lost in communication is presented.
Another approach to solve the intersection management
problem is to compute state dependent hierarchies for

the conflicting vehicles by employing a model predictive
control approach, see Britzelmeier and Gerdts (2018).

Most of the aforementioned approaches use predefined
hierarchies. An alternative concept is motivated by game
theory. In this setting, the vehicles are considered as
individual players trying to achieve an equilibrium. The
resulting differential game usually is one of three types:
cooperative, antagonistic, or a leader-follower game. A
game theoretic approach is associated with a more dy-
namic behaviour and greater efficiency compared to a
priori defined rules. In this paper we employ the decom-
position algorithm proposed in Britzelmeier et al. (2019);
Britzelmeier and Dreves (2019). The vehicles exchange
information about their planned paths. Then, the conflict
is resolved by formalising a nonlinear model predictive
control framework, where in each step every player has
to solve a generalized Nash equilibrium problem (GNEP).
However, the problems are coupled by a nonconvex anti-
collision constraint. The coupled problem is reformulated
into a generalized potential game (GPG) by exploiting
a penalty approach. An extensive convergence proof can
be found in Britzelmeier and Dreves (2019). For further
information on GNEP and potential games, we refer the
interested reader to Ba and Pang (2018); Facchinei et al.
(2011); Facchinei and Kanzow (2010); von Heusinger and
Kanzow (2009); Monderer and Shapley (1996); Rosenthal
(1973); Rosen (1965). For implementation and experimen-
tal validation we use nonholonomic robots equipped with
a microcomputer. For the positioning we employ the HTC
Vive System. The information exchange is designed as a
vehicle-in-the-cloud system, where information and plan-
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ning is executed online in a central cloud. Furthermore,
we propose an improved version of a dynamic inversion
controller, which was primarily introduced in Burger and
Gerdts (2019), to track the planned paths of the vehicles.
We further provide a stability proof of this controller.

The paper is structured as follows. In Section 2 we in-
troduce the problem setting and formalise the GNEP as
well as the GPG. Section 3 gives a short overview of the
decomposition algorithm to solve the conflict problem. The
dynamic inversion controller is presented in Section 4, as
well as the stability proofs of the error dynamics and the
internal dynamics. The implementation and the experi-
mental setup is explained in Section 5, followed by a com-
parison of computed and measured results in Section 6.

2. SETTING

We model a common traffic scenario, where we consider
a given road network on which N cars aim to reach
their desired destination, compare Figure 7 in Section 6.
Herein, the objective of each car is to reach the respective
destination in minimal time, whilst avoiding collisions with
other traffic participants. As in usual traffic each car has
a point of departure and a point of destination, which
are connect by a route, acquired from, e.g, a navigation
system. Hence, we a priori assign a path to each vehicle
on which it moves towards to its destination. These paths
are modelled as cubic periodic splines,

γν : r0, Lνs ÞÑ �2, γνpsq–

ˆ

xνpsq
yνpsq

˙

where ν “ 1, . . . , N , Lν is the path’s length and s
designates the arclength along the path. The coordination
of the vehicles’ motion, i.e., the choice of their velocity
profiles on the paths in the road network, is resolved by
a non-linear model-predictive control (NMPC) approach
with an embedded GNEP on time horizons of length T .
Herein, the optimal controls are computed as a solution to
the GNEP, i.e., for each player on the stated time horizon.
Then the controls are applied for some interval τ ă T .
Further, the time horizon is shifted by τ and the GNEP is
solved again for the shifted time horizon rτ, τ ` T s. This
way the computed velocity profiles can be adapted in every
NMPC step and a high-level feedback controller is realized.

In the game theoretical sense, the vehicles are considered
as players and the coordination problem is the game, in
which these players participate. Let us define the GNEP,
for simplicity, on the interval r0, T s for players ν “

1, . . . , N . The controls (accelerations) u “ pu1, . . . , uN q,
with uν : r0, T s Ñ �, ν “ 1, . . . , N , are measurable
functions. Further, we define the velocity vν : r0, T s Ñ �,
and the arclength, sν : r0, T s Ñ �, for all , ν “ 1, . . . , N ,
which describe our states and are absolutely continuous
functions in W 1,1pr0, T sq. Let J ν denote the index set of
all players µ P t1, . . . , Nuzν, which have intersecting paths
with player ν. For µ P J ν let P νµ denote the set of tupels
pp, qq, where p and q are the arclengths relative to the paths
of player ν and µ, respectively, for a common intersection
point of the two paths. Since the paths are known a priori,
the intersection points and their respective arclengths in
P νµ can be precomputed. Let us introduce the function

gνµpa, bq– dνµ ´maxt|a|, |b|u

with a safety radius dνµ ą 0 for µ P Jν .

Each player ν “ 1, . . . , N then has to solve the following
optimal control problem on the time horizon r0, T s to find
a velocity profile:

min
puν ,vν ,sνq

´ sνpT q

s.t. vνp0q “ vν0 , sνp0q “ sν0 ,

pvνq1ptq “ uνptq ´ c1v
νptq ´ c2v

νptq2,

psνq1ptq “ vνptq,

vνptq P rvνmin, v
ν
maxs, (GNEP)

uνptq P ruνmin, u
ν
maxs,

vνptq ď vνmaxps
νptqq,

gνµps
νptq ´ p, sµptq ´ qq ď 0, @pp, qq P P νµ,µ PJν.

Herein, c1 ě 0 and c2 ě 0 are given constants. Let
v “ pv1, . . . , vN q, s “ ps1, . . . , sN q, u “ pu1, . . . , uN q
be combined in z “ pz1, . . . , zN q with zν “ pvν , sν , uνq,
ν “ 1, . . . , N .

In the NMPC, (GNEP) is discretized by applying an
explicit Euler method with step-size h ą 0, such that
ti “ i ¨ h with i P �. Throughout the paper the index
h is used to emphasize the discretized system. Then the
strategy space for all players ν “ 1, . . . , N is

Ξhν :“ tpuνh, v
ν
h, s

ν
hq | v

ν
hp0q “ vν0 , sνhp0q “ sν0 ,

and for all i “ 0, . . . ,M ´ 1 and t P rti, ti`1s :

vνhptq “ vνhptiq ` pt´ tiqpu
ν
hptiq ´ c1v

ν
hptiq ´ c2v

ν
hptiq

2q

sνhptq “ sνhptiq ` pt´ tiqv
ν
hptiq (1)

vνhpti`1q P rv
ν
min, v

ν
maxs,

uνhptiq P ru
ν
min, u

ν
maxs X tu

ν
min ` jh

ν
u | j “ 0, . . . ,Mν

u uu.

We introduce a generalized potential game. To this end, we
define a penalty function, where the penalty term holds the
non-convex constraints, as well as the velocity constraints,

Λhpvh, shq–
N
ÿ

ν“1

M´1
ÿ

i“0

ˆ

maxt0, vνhpti`1q ´ v
ν,h
maxps

ν
hptiqqu

`
1

2

ÿ

pp,qqPPνµ

µPJν

maxt0, gνµps
ν
hpti`1q ´ p, s

µ
hpti`1q ´ qqu

˙

.

(2)

With (1) and (2), we define the discrete generalized po-
tential game

min
puh,vh,shq

´

N
ÿ

ν“1

sνhpT q ` ρΛhpvh, shq

s.t. puh, vh, shq P
N
ą

ν“1

Ξhν . (GPGh)

where ρ “ 1
ph`huqβ

, with hu the step-size of the discretized

control and some constant β ă 1. We further extent the
problem by adding a regularization term for the control,
to acquire applicable and smooth trajectories. Hence,
(GPGh) becomes,

min
puh,vh,shq

´

N
ÿ

ν“1

sνhpT q ` ρΛhpvh, shq ` α
N
ÿ

ν“1

M´1
ÿ

i“0

uνhptiq
2

s.t. puh, vh, shq P
N
ą

ν“1

Ξhν . (eGPGh)
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A theoretical investigation without the regularization term
can be found in Britzelmeier and Dreves (2019). Finally,
(eGPGh) can also be considered as a multi-objective
optimal control problem and applying the method in Kaya
and Maurer (2014) yields,

min
puh,vh,shq

max
 

´γ1

N
ÿ

ν“1

sνhpT q, γ2Λhpvh, shq, γ3σpuq
(

s.t. puh, vh, shq P
N
ą

ν“1

Ξhν , (MOOCP)

with γ1 ` γ2 ` γ3 “ 1, γ1, γ2, γ3 P r0, 1s, and

σpuhq–
N
ÿ

ν“1

M´1
ÿ

i“0

uνhptiq
2.

We observed that this formulation leads to trajectories
at the limit of the constraints. This shall be investigated
numerically and practically in this paper.

3. DECOMPOSITION ALGORITHM

In this section, we briefly outline the decomposition algo-
rithm which is employed to solve (GPGh). An extensive
convergence proof for this problem as well as for the
algorithm can be found in Britzelmeier and Dreves (2019).
We do not impose a prescribed hierarchy of players, which
is usually introduced by employing iterative methods to
solve GPGs. Solving the generalized potential game comes
down to solving a penalized standard Nash game. Due to
the non-convexities moved into the penalty term, we can
avert difficulties, which would arise from nonempty feasible
sets.

To simplify the notation for the algorithm, we drop the
fixed h in our notation. We further set fνpz

νq “ ´sνhpT q
and let the strategies of all opposing players be z´ν .

Decomposition Algorithm with Penalty Selection
[DAPS]

(S.0) Choose a starting point z0 “ pz10 , . . . , z
N
0 q P

N
Ś

ν“1
Ξν

and set k :“ 0,

pcp1q, . . . , cpNqq “ p0, . . . , 0q,

pqp1q, . . . , qpNqq “ p0, . . . , 0q.

(S.1) If pqp1q, . . . , qpNqq “ p1, . . . , 1q: STOP.
(S.2) Compute

Ak :“ tν P t1, . . . , Nu | qpνq ‰ 1,

Λνpzkq ě Λµpzkq @µ “ 1, . . . , Nu.

Choose a νk :“ argmax
νPAk

cpνq.

(S.3) For ν “ νk compute a global solution zνk`1 of (GPGh)
(S.4) Set

zk`1 “

$

&

%

zk, if fνpz
ν
kq ` ρΛνpzνk , z

´ν
k q

“ fνpz
ν
k`1q ` ρΛνpzνk`1, z

´ν
k q,

pzνk`1, z
´ν
k q, else.

(S.5) If zk`1 ‰ zk, set pqp1q, . . . , qpNqq “ p0, . . . , 0q.
Set qpνkq “ 1,

cpνq “

"

cpνq ` 1, for all ν ‰ νk,
0, for ν “ νk,

k Ð k ` 1, and go to (S.1).

In (S.3) the selected player solves his optimization problem
by utilization of a dynamic programming approach, which
has the advantage of giving us global optimal solutions.
Then, if the acquired solution constitutes an improvement
with respect to the penalty contribution, the new solution
zk`1 is adopted. If the contrary is the case, the previous
iterate remains unchanged, i.e., zk`1 “ zk. The player
to optimize is chosen by his contribution to the sum of
all penalties. Hence, the one who contributes the most is
selected. Moreover, the players who optimized are tracked
by a logical index set q, where the index of the previously
optimizing player is set to qpνkq “ 1. Eventually, the player
which was chosen in the previous iteration is exempt in
this turns selection process. If an improvement is made
in one iteration the tracking set q is reset in (S.5). In
(S.2), if Ak is no singleton, then the player with the most
idle turns is selected. This information is stored in the
counter set c, which at the end of each iteration increments
all players indices by one, except the optimizing players
one, which is reset to zero. The algorithm stops, if after
N´1 iterations no improvements are made, i.e., in a finite
number of iterations.

For (MOOCP) we proceed analogously, where the terms
of the penalized objective functions in (S.4) are replaced
by the respective maximum terms.

4. DYNAMIC INVERSION CONTROLLER

So far, the NMPC-GNEP approach serves as a high-level
controller that coordinates the motion of the vehicles on
their prescribed paths. For a practical realization we need
a tracking controller that keeps the vehicles on said paths.
The proposed controller operates on a lower level than
the NMPC-GNEP based planning algorithm. The lower
level controller is designed to track the curvature of the
spline curves characterizing these paths. The control law
is based on the inversion of the dynamics of a point mass
vehicle model, defined in curvilinear coordinates, see Lot
and Biral (2014). Due to the limited scope of this paper
we refer the interested reader to Rotella et al. (2001);
Martin et al. (2002) and Fliess et al. (1995) for further
information on flatness based controllers. Let us introduce
the point mass motion model in curvilinear coordinates
relative to a reference path given by a periodic cubic spline
γm : r0, Ls ÞÑ �2, compare Figure 1:

s1ptq “
vptq cosχptq

1´ rptq ¨ κmpsptqq
,

r1ptq “ vptq sinχptq, (3)

χ1ptq “ ψ1ptq ´
κmpsptqqvptq cosχptq

1´ rptq ¨ κmpsptqq

with χptq “ ψptq ´ ψmptq, ψ1ptq “ vptqκptq. Herein,
κ denotes the curvature of the driven path, κm is the
curvature of a given reference path, ψ is the yaw angle of
the vehicle’s driven path, and ψm is the yaw angle of the
reference path. The offset of the vehicle to γm is denoted
by r at the arclength s. Throughout, the index m refers
to a reference value, and the index d to a desired value.
In our experiments we use a mobile robot with two driven
wheels on the left and the right, compare Figure 3. Hence,
we have

vptq “
vrptq ` vlptq

2
, ψ1ptq “

vrptq ´ vlptq

wc
,
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with vlptq, vrptq the velocities of the left and right wheel
and wc the width of the robot.

xm

ym

y
rptq

vptq

ε

ψm

ψm ψyc

xc

y

x

Fig. 1. Curvilinear coordinates, defined with respect to
spline trajectory γmpsq.

Now, we aim to track the reference path γm with offset
rptq ” 0. Differentiating twice yields,

0 “ r2ptq “ v1ptq ¨ sinχptq ` vptq ¨ χ1ptq ¨ cosχptq

“ v1ptq ¨ sinχptq

` vptq2
ˆ

κptq ´
κmpsptqq cosχptq

1´ r ¨ κmpsptqq

˙

¨ cosχptq.

Consider v ‰ 0, then the first equation yields sinχptq “ 0
and the second equation is satisfied for,

κptq “
κmpsptqq ¨ cosχptq

1´ rptq ¨ κmpsptqq
“ κmpsptqq ¨ cosχptq.

With this we can derive a feedback control law that guides
the system back to the desired reference trajectory, for
which rd ” 0, χd ” 0 and s1dptq “ vdptq holds. Therefore
we want to construct a second order control law. Hence,
let us introduce the following definitions,

y – r

y1 – r1 “vptq sinχptq

y2 – r2“v1ptq ¨ sinχptq

`vptq2
ˆ

κptq ´
κmpsptqq cosχptq

1´ r ¨ κmpsptqq

˙

¨ cosχptq.

Then we can write the desired error as,

e “ y ´ yd “ r ´ rd. (4)

Hence, we derivate until the control appears,

9e “ y1 ´ y1d “ r
1 ´ r1d

:e “y2 ´ y2d “r
2 ´ r2d

with rd ” 0 we also get r1d “ 0, r2d “ 0. Employing the
following second order error function,

:e` k1 9e` k2e “ 0. (5)

Inserting (4) yields,

r2 ` k1r
1 ` k2r “ 0.

Finally with the derivatives for r we get,

v1ptq sinχptq ` v2ptq

ˆ

κptq ´
κmpsptqq cosχptq

1´ rκmpsptqq

˙

cosχdptq

` k1r
1 ` k2r “ 0

and solving for κptq with cosχd “ 1, sinχd “ 0

κptq “
1

v2ptq cosχptq

`

´k1r
1 ´ k2r ´ v

1ptq sinχptq
˘

`
κmpsptqq cosχptq

1´ rκmpsptqq
. (6)

With this we can derive the feedback control law for a
mobile robot,

4v “ vr´vl “ wc ¨ v ¨ κ

“wc ¨ v

„

1

v2 cosχ

`

´k1r
1 ´ k2r ´ v

1 sinχ
˘

`
κmpsq cosχ

1´ rκmpsq



.

And finally for the left and right wheel speed,

vr|l “ vd ˘
4v
2
.

4.1 Stability Analysis

We analyse the error dynamics stability and the stability
of the internal dynamics.

Error Dynamics

Lemma 4.1. Consider (5) with parameters k1, k2 ą 0.
Then the error dynamics are asymptotically stable.

Proof. Rewriting the second order error dynamics in (5)
as a first order system yields

9x “

ˆ

9e
9ξ

˙

“

ˆ

0 1
´k2 ´k1

˙ˆ

e
ξ

˙

.

The eigenvalues are

λ1{2 “
1

2

ˆ

´k1 ˘
b

k21 ´ 4k2

˙

(7)

and their real parts need to be negative for the system to
be asymptotically stable.

If the eigenvalues are complex, i.e. k21 ´ 4k2 ă 0, then the
real part ´k1{2 is negative iff k1 ą 0.

If the eigenvalues are real-valued, i.e. k21 ´ 4k2 ě 0, then
both eigenvalues are negative iff k2 ą 0.

This yields the assertion.

Internal Dynamics Now we look into the stability of the
internal dynamics of the controller. Let a desried velocity
profile vd be given (from the NMPC-GNEP). We consider
the first order dynamics

v1 “
vd ´ v

δ
for the velocity with some constant δ ą 0. The feedback
controlled system reads x1 “ fpxq with x “ pr, χ, vqJ and

fpxq “

¨

˝

v sinχ
1

v cosχ

`

´k1v sinχ´ k2r ´
vd´v
δ sinχ

˘

vd´v
δ

˛

‚. (8)

Herein, we introduced (6) into (3) and exploited the
differential equations for r and v.
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Lemma 4.2. The internal dynamics in (8), with parame-
ters k1, k2 ą 0 are locally asymptotically stable at rd “ 0,
χd “ 0, vd.

Proof. The Jacobian of f at rd “ 0, χd “ 0 and vd is
given by

f 1xprd, χd, vdq “

¨

˝

0 vd 0
´k2
vd
´k1 0

0 0 ´ 1
δ

˛

‚.

The eigenvalues are given by

λ1 “ ´
1

δ
ă 0

λ2|3 “
1

2

ˆ

´k1 ˘
b

k21 ´ 4k2

˙

.

With the proof of Theorem 4.1 we see that all eigenvalues
have negative real part iff k1 ą 0 and k2 ą 0 and δ ą 0.
This yields the assertion.

5. IMPLEMENTATION

To validate the overall algorithm consisting of the NMPC-
GNEP high-level controller in Section 3 and the low-level
tracking controller in Section 4 with multiple vehicles, a
laboratory testing environment was set up. Currently it
is possible to handle up to four vehicles on a testing area
of 3.5 m by 3.2 m. To track the position and velocity of
the vehicles, a HTC Vive VR System was installed. For
this purpose two HTC Vive Lighthouses rev. 2.0 were
mounted facing each other in opposite corners, Figure 2.
Each vehicle carries a HTC Vive Tracker rev.2.0 on top of
the body as shown in Figure 3.

L 1

L 2

x

y

Fig. 2. Experimental setup, with the testing area (dotted),
vehicles, the lighthouses L1, L2, their respective mea-
suring cones and orientation.

According to Niehorster et al. (2017) recorded tracking
data is accurate up to 1 cm in x and y direction. The
measurement and control of the system is managed on
the implemented Vehicle Cloud. Internally the Vehicle
Cloud is interfaced with SteamVR, as well as OpenVR to
acquire the tracking information in a frequency of 50 Hz.
Further, there are two TCP server implemented, one to

Fig. 3. Small vehicles on test track, vehicle 1 in foreground

control and manage the vehicles and a second providing
and handling the data . In particular, the primary server
is used to handle the status communication of each ve-
hicle, i.e., the registration and connection status, or to
control the vehicle during the tests. This service could get
adapted and extended depending on future requirements.
The secondary server is used for data distribution and
acquisition. If a vehicle is registered and requests a data
set, the secondary server provides the measured position,
angles, velocities as well as the desired control input, i.e.,
the offline computed velocity profiles, in the response. The
communication stream for data distribution was separated
from the state communication to be flexible in future use
cases, e.g., change protocol from TCP to UDP. So it’s
possible to emulate a local position service that could be
replaced by other position services like GPS or Galileo.

5.1 The vehicle

For the test purposes a small vehicle was developed. It is
driven by two 6 V DC motors with a transmission. Each
motor is equipped with a rotary sensor, which later can be
used for fusion of sensor data to improve the positioning.
However, this functionality was not implemented for this
paper. The computing unit is a Raspberry Pi 3B`. It is
used in combination with two different motor controller
boards. The first is a Phidget DC Motor controller board,
which is connected by USB to the Raspberry Pi. The
second is an Adafruit DC Stepper Motor HAT, which
is connected via GPIO Pins and uses the I2C-bus. Two
different motor controller boards were used to reach differ-
ent driving characteristics. Vehicle 1 is equipped with the
Phidget and vehicle 2 is equipped with the Adafruit board.
Vehicle 1 accelerates and decelerates with at most 1 m s´2.
The measured accelerations for vehicle 2 are 4 m s´2 in
acceleration and 10 m s´2 in deceleration respectively. The
dynamic inversion controller described in Section 4 is used
to calculate the speed difference for the left and right
wheel. The desired velocity is controlled by a proportional
controller.

6. RESULTS

6.1 Controller evaluation

To evaluate the low-level tracking controller of Section 4
both vehicles described in Section 5 were tested on the
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track shown in Figure 4 and Figure 5. The figures show
the measured paths and the given track.

Fig. 4. Measured driving path of vehicle 1 using the
dynamic inversion tracking controller.

Fig. 5. Measured driving path of vehicle 2 using the
dynamic inversion tracking controller.

To quantify the deviation from the track, the offset r was
analysed over time in Figure 6. The upper picture shows
the deviation r from the reference track over time. The
lower provides a statistical evaluation for both vehicles.
A maximum deviation of 3 cm for vehicle 1 and 2.6 cm
for vehicle 2 was observed. In comparison to a vehicle
width of 20 cm and a measurement error of about 1 mm
the controller performs accurately. The parameters with
which this test was conducted are listed in Table 1.

Table 1. Controller parameters for evaluation

vehicle 1 vehicle 2

k1 6.0 6.0
k2 2.0 3.0

preview in m 0.0 0.02

Fig. 6. Deviation between measured and ideal trajectory.
In the lower plot, 50% of the measurements reside
within the box, the orange line indicates the median
and the minimal and maximal values are visualized.

6.2 Coordination of vehicles and collision avoidance

The NMPC-GNEP high-level controller with collision
avoidance introduced in Section 2 was tested in two dif-
ferent configurations. So far, the controller was only used
to generate paths offline. Its online realization is a future
task, which is currently under construction.
The first configuration was setup with both vehicles de-
scribed in Section 5, where vehicle 1 uses track one and
vehicle 2 track two.

Fig. 7. Tracks of the vehicles with intersection points P1-
P4 for the first scenario

Figure 7 shows both tracks, the starting positions, and
the intersection points. The safety distance dνµ was set to
20 cm with a defined constant speed of 0.2 m s´1 for both
vehicles and with a step-size in t of h “ 0.1 s. The time
horizon of the NMPC was set to 3.0 s. Table 2 summarizes
the parameters for the velocity profiles shown in Figure 8.
It can be nicely observed that the second vehicle stops,
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such that vehicle 1 can pass. Afterwards, the second vehicle
accelerates again. This is one possible generalized Nash
equilibrium.

Table 2. Parameters for scenario 1: desired
velocity vd and initial arclength parameter s0

for the vehicles.

vehicle 1 vehicle 2

vd in m 0.2 0.2
s0 in m 0.0 2.0

Fig. 8. Velocity profiles for the first scenario: Computed
profiles and tracking results.

Figure 9 shows the distance to point P1 in terms of
arclength for each trajectory respectively. A deviation at
the start of vehicle 2 compared to the computed solution
can be observed. This deviation is a second reason for the
smaller distance between the measured vehicle data at the
collision point P1 and the computed solution. However,
the expected safety distance of 30 cm is upheld. Further,
a slight delay in the real driving paths compared to the
desired trajectory can be observed, due to inaccurate
measurements of velocity and position.

Fig. 9. Distance in arc length to collision point P1 for the
first scenario.

A second scenario was designed with three vehicles. Vehicle
3 was a virtual vehicle with the same configuration as
vehicle 1. To get a possible collision at point P1 the
starting points were updated as depicted in Figure 10.
The desired values for velocity and safety distance were
the same as in scenario 1. Table 3 shows the parameters
used for the second scenario. The calculated and measured
velocities for this scenario are shown in Figure 11. Herein,
vehicle 3 has the same velocity profile as vehicle 2. Vehicle
1 accelerates to increase the distance to vehicle 3. To avoid
the collision with vehicle 2, the first vehicle stops and
waits until vehicle 2 passes. By improving the velocity
measurement and integration of rotary sensors, the safety
distance could be reduced further.

Fig. 10. Road network with intersection points for the
second scenario.

Fig. 11. Velocity profiles of all vehicles in scenario 2.

Table 3. Parameters for scenario 2: desired
velocity vd and initial arclength parameter s0

for the vehicles.

vehicle 1 vehicle 2 vehicle 3

vd in m 0.2 0.2 0.2
s0 in m 0.0 1.0 0.6
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It can be observed that the minimal distance between both
vehicle is much higher as in the first scenario. We can
observe that the results of MOOCP approach the safety
distance closer than the results of eGPGh. This is due to
the choice of penalty parameters and is desired to ensure
the safety of the vehicles. The distance of the vehicles to
the intersection point P1 on their respective paths is shown
in Figure 12 in terms of arclength.

Fig. 12. Distance in arc length to collision point P1 in
scenario 2.

7. CONCLUSION

The implemented dynamic inversion controller yields good
results with minor deviations from the desired track.
The correct synchronization of the offline computed de-
sired paths is difficult and it would be desirable to run
the NMPC-GNEP high-level controller online as well.
This is subject to current work. Nevertheless, the results
show that the method is capable of providing reasonable
collision-free paths for the coordinated motion of several
vehicles in a road network.
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