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Abstract: The purpose of this research is to design optimal boundary control to solve demand
tracking problems for manufacturing systems represented at the factory level in terms of
conservation laws coupled with ordinary differential equations. The factory level is modeled as a
network with arcs describing specific production policies, e.g., velocity, processing rate, number
of machines, and each vertex represents the buffer zone. Different interconnection topologies
that correspond to dispersing and merging networks are considered. Numerical solutions are
performed using direct and indirect methods.
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1. INTRODUCTION

Production flow control is one of the key operations
to solve issues such as cost reduction, energy savings,
optimizing machines utilization, and time savings and
leads to maximize profit in manufacturing systems.

In general three main modeling approaches are available
for manufacturing systems: discrete event models, see, e.g.,
Lauzon et al. (1996), fluid models, see, e.g., Panayiotou
and Cassandras (2006) and queuing models, see, e.g., Pa-
padopoulos and Heavey (1996). Typically, discrete event
models are stochastic models to describe the dynamics
of manufacturing systems. However, the main drawback,
as declared in Fishwick (2007), is that it is difficult to
design a controller in case of a large or complex system
that contains a large amount of information (states). Fluid
models are flux oriented and are typically represented by
ordinary differential equations (ODEs). The main short-
coming of fluid models is that these models do not express
flow times which means that the flux can be produced
using zero inventory (van den Berg et al., 2008). Besides,
these models are not suitable for modeling the complete
dynamic behavior (transient and steady state) of a man-
ufacturing system. Queuing models show the connection
between throughput and flow time only in steady state
which is not applicable for control theory. Recently, par-
tial differential equations (PDEs) have been utilized for
modeling of manufacturing systems. The main idea comes
from the continuum theory of highway traffic (Lighthill
and Whitham, 1955), (Richards, 1956). The motivation for
using PDE models is that these are suitable for a proper
controller design by considering that the lots are produced
continuously on large scale manufacturing systems. Also,
PDE models are computationally feasible and express the
complete behavior of the dynamic system by incorporating
the system characteristics of both throughputs and flow
times. Therefore, PDE models are adopted in the present
paper.

Several hyperbolic PDEs models have been proposed by
Armbruster et al. (2003) and Lefeber (2004). These models
have been validated by comparison with discrete event
systems in van den Berg et al. (2008) and model predictive
control (MPC) is employed to solve both tracking and
backlog problems for homogeneous (identical) machines in
the manufacturing system. The adjoint state method as
an optimal control for re-entrant homogeneous manufac-
turing system characterized by non-local velocity (spatial
invariant) is used by La Marca et al. (2010). Armbruster
et al. (2006) deduced that the mass conservation law is
asymptotically valid in the supply chain network with
a large number of lots. The purpose is to construct a
simplified formula of the relation between the density and
the flux on a large scale. This model has been modified
by Göttlich et al. (2006) by coupling ODEs to PDEs,
which represents the supply chain network to avoid the
occurrence of bottlenecks. Optimal control is applied to
this model using adjoint equations in comparison with a
mixed-integer programming (MIP) to minimize the flow
or maximize it in certain locations inside the network
(Kirchner et al., 2006). Moreover, feedback control laws
are applied based on Boltzmann equations to allow supply
chain models to deal with priorities (Herty and Ringhofer,
2011). Besides, the investigation of the feedback stabiliza-
tion for a production model is using a Lyapunov argument
(Baumgärtner et al., 2019). Having these studies as point
of departure, the main contribution of the present paper
is to apply optimal control using the adjoint technique
to optimize the tracking of desired demand trajectories
based on quasi-linear hyperbolic PDEs coupled with ODEs
models. These models represent the entire network at the
factory level.

The paper is organized as follows: Sec. 2 introduces the
problem setting. Sec. 3 presents two different optimiza-
tion approaches to solve the problem. Sec. 4 shows the
parameter setup and discusses the simulation results. Sec.
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Fig. 1. Dispersing network (top) and merging network
(bottom).

5 presents the example of the complex network. Sec. 6
provides the conclusion of the paper.

2. PROBLEM STATEMENT

The system consists of flow lines with each having an
identical number of workstations. Each workstation in-
cludes a machine and a buffer. The production flow works
according to an M/M/1 model, which means process time
and inter-arrival time are exponentially distributed. The
flow line is represented by the arc e and modeled as a
single PDE. Between two successive arcs there is a storage
area represented by vertex v and modeled as a single ODE.
The importance of the vertex is to keep the incoming flow
lower than the processing rate in each arc. In the network
context, these components are connected to construct a
dispersing network or a merging network as shown in
Fig. 1. The position of the workstation inside each arc
is denoted by the normalized coordinate x ∈ [0, 1]. The
inlet of the arc e is at x = 0 and at x = 1 is the outlet
of the same arc. The buffer zone is located between the
exit of a specific arc and the entrance of a succeeding arc.
The following assumptions are imposed: (i) the lots are
conserved inside the arcs, (ii) the density of lots ρe(x, t)
and the flux fe(x, t) are non-negative, (iii) each queue is
considered to follow a first-in-first-out (FIFO) policy and
has infinite capacity. The task of the storage area at vertex
v is to compensate for the difference between the incoming
flows from the outlets of the predecessor arcs and the
outgoing flows to the successor arcs by storing the lots.
The system dynamics for each flow line e can be described
as

∂

∂t
ρe(x, t) = − ∂

∂x
fe(ρe(x, t)),

fe(ρe(x, t)) = ρeve =
µeρe(x, t)

Me + ρe(x, t)
.

(1)

Each arc e is an aggregated PDE model with individual
properties such as the mean processing rate µe for each
machine and the number of the machines or workstations
Me. The structure of the buffer zone at v differs depending
on the network topology. For the dispersing network shown
in Fig. 1 (top) the PDE model (1) is amended by

dqe
+

v (t)

dt
= Ae

+

v (t)fe
−

(1, t)− fe
+

(0, t),

fe
+

(0, t) = min

(
µe

+

,
qe

+

v (t)

κ

)
,

ρe(x, 0) = 0, qev(0) = 0, fe1(0, t) = u(t)

0 ≤ Ae
+

v (t) ≤ 1,
∑

Ae
+

v (t) = 1, 0 ≤ u(t) < µe1

e− ∈ {1} , e+ ∈ {2, 3} , v ∈ {1} .

(2)

Herein,
dqe

+

v (t)
dt is the rate of the change of the buffer load.

The arcs e− and e+ refer to the arcs before and after
the vertex, respectively. The parameter κ is a smoothing
parameter. The outflow from arc e1 splits into two flows.
The summation of these flows must be equal to the outflow
coming from e1 which is covered by the fraction Av(t) ∈
[0, 1] and the conditions in (2). At the initial time t = 0, it
is assumed that no lots are inside the system. Besides, the
incoming flow is bounded between zero and the processing
rate of each arc.

For a merging network according to Fig. 1 (bottom) the
PDE model (1) is subject to

dqe
+

v (t)

dt
= Av(t)

∑
e−∈{1,2}

fe
−

(1, t)− fe
+

(0, t),

fe
+

(0, t) = min

(
µe

+

,
qe

+

v (t)

κ

)
,

ρe(x, 0) = 0, qe
+

v (0) = 0, fe1(0, t) = u(t)

0 ≤ u(t) < µe1 , 0 ≤ Av(t) ≤ 1

e− ∈ {1, 2} , e+ ∈ {3} , v ∈ {1} .

(3)

Here, all incoming flows are combined together to enter the
main arc e3. The value Av(t) ∈ [0, 1] denotes a fraction of
the entire incoming flows at vertex v. This part is crucial
because it means that some unrequired lots are stored in
the storage area.

3. OPTIMAL CONTROL APPROACHES

To control the flow on the network along a prescribed
desired outflow trajectory subsequently optimal control is
applied by considering the objective functional

min
u,Av

J(u,Av) =
1

2

∫ tf

0

(y(t)− f∗(t))2dt, (4)

subject to (1), (2) for the dispersing or (1), (3) for the
merging network, respectively. Here, f∗(t) is the desired
trajectory and y(t) = fe3(1, t) is the outflow from the arc
e3 to fix the control problem in the dispersing and the
merging scenarios. To solve the optimal control problem
direct and indirect methods are utilized and compared.

3.1 Direct Method

In the direct approach both the PDE (1) describing the
state evolution along each arc and the ODEs arising in
(2) or (3), respectively, are fully discretized. For this, an
upwind scheme is used for spatial discretization, and the
explicit Euler method is applied for time discretization.
Let ∆x = 1/Me and ∆t denote the spatial and time
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step where ∆t and ∆x are connected by the Courant-

Friedrichs-Lewy condition CFL =
V e
mdt
dx ≤ 1 for numerical

stability purposes with V em the maximum speed in each
arc. In addition introduce ρei,j = ρe(i∆x, j∆t), fei,j =

fe(i∆x, j∆t), qe
+

v,j = qe
+

v (j∆t), yj = y(j∆t), uj = u(j∆t),
Av,j = Av(j∆t) for i = 1, 2, . . . ,Me, j = 0, 1, . . . , N − 1.
Taking into account the discretization of the objective
functional (4) the static optimization problem is obtained
consisting of

min
u,Av

J(u,Av) =
1

2

N∑
j=0

(yj − f∗j )2∆t, (5)

subject to

ρei,j+1 = ρei,j −
∆t

∆x
(fei,j − fei−1,j),

qe2v,j+1 = qe2v,j + ∆t

(
Av,jf

e1
Me,j − f

e2
0,j

)
,

qe3v,j+1 = qe3v,j + ∆t

(
(1−Av,j)fe1Me,j − f

e3
0,j

)
,

fe
+

0,j = min

(
µe

+

,
qe

+

v,j

κ

)
,

ρei,0 = 0, qe
+

v,0 = 0, fe10,j = uj

e+ ∈ {2, 3} , 0 ≤ uj < µe1 , 0 ≤ Av,j ≤ 1,

(6)

for the dispersing network. In case of the merging network
(5) is extended by

ρei,j+1 = ρei,j −
∆t

∆x
(fei,j − fei−1,j),

qe
+

v,j+1 = qe
+

v,j + ∆t

(
Av,j

∑
e−∈{1,2}

fe
−

Me,j − fe
+

0,j

)
,

fe
+

0,j = min

(
µe

+

,
qe

+

v,j

κ

)
,

ρei,0 = 0, qe
+

v,0 = 0, fe10,j = uj

e+ ∈ {3} , 0 ≤ uj < µe1 , 0 ≤ Av,j ≤ 1.

(7)

The optimization problem is solved using SQP method
by making use of MATLAB. The control variables uj and
Av,j are needed as an initial guess to solve the problem.
In each iteration, the gradient is updated by finding a new
step length and search direction.

3.2 Indirect Method

In this approach, the optimization is performed for the
infinite-dimensional system. The Lagrangian L of problem
(4) for the dispersing network is obtained as

L =
1

2

∫ tf

0

(y(t)− f∗(t))2dt

+
∑

e∈{1,2,3}

∫ tf

0

∫ 1

0

λe
(
∂

∂t
ρe +

∂

∂x
fe(ρe)

)
dxdt

+
∑

e+∈{2,3}

∫ tf

0

φe
+

v

(
q̇e

+

v −Ae3v fe
−

(1, t) + fe
+

(0, t)

)
dt.

(8)

For the merging network L is obtained as

L =
1

2

∫ tf

0

(y(t)− f∗(t))2dt

+
∑

e∈{1,2,3}

∫ tf

0

∫ 1

0

λe
(
∂

∂t
ρe +

∂

∂x
fe(ρe)

)
dxdt

+

∫ tf

0

φe
+

v

(
q̇e

+

v −Av
∑

e−∈{1,2}

fe
−

(1, t) + fe
+

(0, t)

)
dt.

(9)

The functions λe(x, t) and φe
+

v (t) are the adjoint states for
the equality constraints induced by the PDEs on the arcs
and the ODEs at the vertices, respectively. Evaluating the
Gateaux derivative of L, applying integration by parts and
regrouping one obtains

∂

∂t
λe = −

(
µeMe

(Me + ρe(x, t))2

)
∂

∂x
λe,

λe(x, tf ) = 0,

λe3(1, t) = f∗(t)− y(t),

φe
+

v (t) = λe3(0, t).

(10)

The difference between the dispersing and the merging
networks is found in the coupling and the variational
derivatives with respect to the control variables. Hence,
in case of the dispersing scenario this implies

λe1(1, t) = λe3(0, t)Ae3v (t),

δuJ(t) = −λe1(0, t),

δAe3
v
J(t) = −λe3(0, t)fe1(1, t).

(11)

For the merging scenario one obtains

λe1(1, t) = Av(t)λ
e3(0, t),

δuJ(t) = −λe1(0, t),

δAv
J(t) = −λe3(0, t)(fe1(1, t) + fe2(1, t)).

(12)

The system dynamics (1), (2) or (1), (3), respectively are
discretized and solved forward in time as in (6) or (7),
respectively. The adjoint equations are discretized and
solved backward in time for i = Me − 1, . . . , 1, 0, j =
N, . . . , 2, 1 according to

λei,j−1 = λei,j −
∆t

∆x

(
µeMe

(Me + ρei,j)
2

)
(λei+1,j − λei,j),

λei,N = 0,

λe3Me,j = f∗j − yj ,

φe
+

v,j = λe30,j .

(13)

The discretized form of (11) in the dispersing network
becomes

λe1Me,j = λe30,jA
e3
v,j ,

δuJj = −λe10,j ,
δAe3

v
Jj = −λe30,jf

e1
Me,j .

(14)

While for the merging network (12) implies

λe1Me,j = Av,jλ
e3
0,j ,

δuJj = −λe10,j ,
δAv

Jj = −λe30,j(f
e1
Me,j + fe2Me,j).

(15)

The gradients are then computed from (14) or (15),
respectively, and are combined with an SQP approach to
find local minimizers u∗(t) and A∗v(t).
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4. SIMULATION RESULTS

In this section, controlled and uncontrolled networks are
studied. For the dispersing network with three arcs the
the number of machines in each arc is chosen as Me = 10
with the processing rates µe being 2, 3 and 4 in e1,
e2 and e3 respectively. In case of the merging network
µe1 = 4, µe2 = 3 and µe3 = 2 are used. The spatial
step size ∆x = 0.1 in each are e and CFL is 0.5. For
the uncontrolled networks Ae2v (t) = 0.7, Ae3v (t) = 0.3 and
the smoothing factor is chosen as κ = 0.2. The aim is to
show the dynamics of the uncontrolled network.

4.1 Dispersing Network

Fig. 2. Flux evolution through arcs e1, e2 (left) and e1, e3
(right) for uncontrolled dispersing network.
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Fig. 3. Flux in each arc at the inlet and the outlet in the
uncontrolled dispersing network.

In case of the uncontrolled dispersing network, Fig. 2
shows the evolution of the flux inside the network. The
inflow profile is applied at x = 0 and the flux grows in
arc e1 as is shown in Fig 3 (top-left). From the numerical
results, the lots are conserved along the system. This is
checked by integrating both the inflow and the outflow of
each arc with respect to time in the time interval. The
total number of lots at the inlet of the arc e1 equals 50.
These are split into 35 and 15 lots passing arcs e2 and e3,
respectively.

In the controlled dispersing network, both direct and
indirect approaches are utilized. In case of the dispersing
network the final value of the objective functional (4) is
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1.5

f
*
(t)

y(t) Direct
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Fig. 4. Input u∗(t) (left) and comparison of the desired
demand trajectory f∗(t) and fe3(1, t) (right) in case
of direct and indirect method.

1.03× 10−3 by the direct method reasonably well demand
tracking is achieved. As is shown in Fig. 4 the input from
the indirect method is smoother than the input from the
direct method and the output in arc e3 perfectly matches
the desired flow trajectory. The final value of the objective
functional (4) is 7.29× 10−4.

4.2 Merging Network

Fig. 5. Flux evolution through arcs e1, e2 (left) and e1, e3
(right) in the uncontrolled merging network.
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Fig. 6. Flux in each flow line e1, e2 and e3 in the
uncontrolled merging network.

For the case of the uncontrolled merging network, the
imposed boundary inflows in e1 and e2 are shown in Fig.
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5. In arc e2 the outflow can not reach the maximum of
the inflow level because of the processing rate µe2 . The
processing rate plays an important role in the system
utilization utle = ue

µe . The higher the processing rate, the

lower the utilization. The lots are still under processing in
the arc. Here, the difference between the inflow and the
outflow is not equal to zero. The same also occurs in arc
e3. For example, the total number of lots entering e3 is 71
with 67 leaving the arc at the outlet and the lots being
processed is 4. The conservation of mass holds anywhere
in the system except inside the storage area.
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Fig. 7. Direct and indirect approaches used for demand
tracking in the merging network.

By applying the direct approach in the merging network,
the outflux is reasonably tracking the desired demand, see
Fig. 7. However, it slightly oscillates in steady state region
from the time ranging between 30 to 60 unit of time. The
final value of the objective functional equals 4.19×10−3 for
the direct method and 3.19×10−3 for the indirect method.
The outflux matches the desired demand, especially in
both ramp-up and ramp-down behaviours.

5. EXAMPLE OF COMPLEX NETWORK

The control problem (4) is considered for a complex
network as shown in Fig. 8. Herein, the inflow to the
system at the inlet of arc e1 is u(t) = fe1(0, t) and
the outflow y(t) = fe7(1, t) is the outlet of the arc e7.
The parameters of the network are chosen as κ = 0.25,
Me = 10, µe1 = 6, µe2 = 4, µe3 = 3, µe4 = 2, µe5 = 3,
µe6 = 4, and µe7 = 5. The control variables are the inflow
and the fractions of the vertices u(t), Av1(t), Av2(t), Av3(t)
and Av4(t) respectively.

The results in Fig. 9 for the indirect method show that
the outflow completely with the desired trajectory in all
states. The final value of the objective functional is 1.01×
10−3. With the direct method, the mismatch between the
outflow and the desired flow becomes obvious, especially in
ramp-up and ramp-down regions compared to the indirect
method, see Fig. 10. The final value of the objective
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Fig. 8. The structure of the complex network.
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Fig. 9. Direct and indirect approaches used for demand
tracking in the complex network.
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Fig. 10. The error e(t) between y(t) and f∗(t) in case of
complex network using direct and indirect methods.

functional equals 2.36×10−2 in case of the direct method.

In general, the results in the indirect method are more
satisfactory than the ones obtained for the direct method
and the outflow perfectly matches the desired demand
trajectory in the operational time interval. According to
the fixed parameter setup in both methods, the simulation
time using the indirect method is shorter than using
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the direct one in all situations merging, dispersing and
complex networks.

6. CONCLUSION

Demand tracking control in manufacturing systems is
studied using an optimal control approach. The flow lines
(arcs) are modeled as PDEs. The storage areas (vertices)
are modeled by ODEs. These PDEs and ODEs are coupled
in different network topologies at the factory level, which
is constructed for two simple dispersing and merging
networks and a more complex network. In each case, a
direct method and an indirect method are applied to
solve the optimal control problem addressing demand
tracking. For this a desired reference trajectory is assigned
to the outlet of a particular arc depending on the network
topology. Although both approaches provide satisfactory
results the obtained numerical results indicate that the
indirect method is more efficient and accurate.
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