
Robust Parametrization of a Model
Predictive Controller for a CNC Machining

Center Using Bayesian Optimization ?

David Stenger ∗ Muzaffer Ay ∗ Dirk Abel ∗

∗ Institute of Automatic Control, RWTH Aachen University, Aachen,
Germany (e-mail: {d.stenger,m.ay,d.abel}@irt.rwth-aachen.de).

Abstract: Control algorithms such as model predictive control (MPC) and state estimators
rely on a number of different parameters. The performance of the closed loop usually depends
on the correct setting of these parameters. Tuning is often done manually by experts based
on a simulation model of the system. Two problems arise with this procedure. Firstly, experts
need to be skilled and still may not be able to find the optimal parametrization. Secondly,
the performance of the simulation model might not be able to be carried over to the real
world application due to model inaccuracies within the simulation. With this contribution,
we demonstrate on an industrial milling process how Bayesian optimization can automate the
tuning process and help to solve the mentioned problems. Robust parametrization is ensured by
perturbing the simulation with arbitrarily distributed model plant mismatches. The objective is
to minimize the expected integral reference tracking error, guaranteeing acceptable worst case
behavior while maintaining real-time capability. These verbal requirements are translated into
a constrained stochastic mixed-integer black-box optimization problem. A two stage min-max-
type Bayesian optimization procedure is developed and compared to benchmark algorithms in
a simulation study of a CNC machining center. It is showcased how the empirical performance
model obtained through Bayesian optimization can be used to analyze and visualize the
results. Results indicate superior performance over the case where only the nominal model
is used for controller synthesis. The optimized parametrization improves the initial hand-tuned
parametrization notably.

Keywords: Constrained Bayesian optimization, Outlier detection, Noisy optimization, Model
Predictive Control, Automatic parameter tuning, Milling, CNC machining center

1. INTRODUCTION

A major goal of controller synthesis is to achieve best
possible closed-loop performance. Besides choosing a suit-
able controller and possibly state estimator, their correct
parametrization can heavily improve closed-loop perfor-
mance. Analytical design rules are only available for a
limited number of controllers and scenarios. Manual tuning
of controller parameters is tedious and often suboptimal.
Mathematical optimization can lead to a more systematic
approach and overall better performance.

The problem of finding the optimal configuration of a
controller can in the most simple case be written as:

θoptc = arg min
θc∈D

C(θc) (1)

The value of the loss function to be minimized C(θc)
is obtained for one set of controller parameters through
simulation or experiment. This results in three challenges
for the optimizer used to find the solution to Eq. 1:

? The presented research was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC-2023 Internet of Production - 390621612.

Firstly, we have a black-box optimization problem. Sec-
ondly, simulations and experiments might be time consum-
ing requiring a sample efficient optimization algorithm.
Thirdly, the objective function might be corrupted by noise
C̃(θc) = C(θc) + ε. These challenges rule out a number of
common optimization algorithms. Algorithms relying on
gradients or relaxations of the problem are not suitable.
Meta-heuristics such as Genetic Algorithms or Particle
Swarm Optimization are considered to be not sample
efficient since they discard some of the previously obtained
simulation results. Additionally, they do not incorporate
stochastic constraints and objective functions inherently.

Bayesian optimization is a common method used for noisy
optimization. Surrogate models of black-box responses are
learned by fitting fast-to-evaluate probabilistic regression
models using all data obtained through previous sampling
of the black-box during optimization. These surrogate
models are used to find the next promising sample point.

Bayesian optimization is a tool widely used in algorithmic
tuning across different domains such as tuning of opti-
mization algorithms [Hutter et al. (2011)] and Fault de-
tection and isolation (FDI) [Marzat et al. (2011)]. Recent
examples from the control and robotics community include
learning gaits under uncertainty [Calandra et al. (2016)],

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10523

throttle valve control [Neumann-Brosig et al. (2019)], local
linear dynamics learning [Bansal et al. (2017)] and tuning
for a linear quadratic regulator for robots [Marco et al.
(2016)]. A related line of research is safe Bayesian opti-
mization which tries to prevent the algorithm from sam-
pling in unsafe controller parameter regions and therefore
allows experimental parameter tuning [Berkenkamp et al.
(2016)]. This method was recently applied by Khosravi
et al. (2019).

In this contribution we apply Bayesian optimization to
an industrial CNC machining process with machinery
sensitive to improper actuation. We cannot expect this
process to be modeled accurately with low computational
cost a-priori 1 . Therefore the focus of this contribution
is to find a robust parameterization for the combination
of a Kalman Filter (KF) and a MPC with respect to
random model plant mismatches in the simulation. Goal
is to maximize expected performance while ensuring safe
worst case behavior.

Parameter tuning for MPC with Bayesian optimization
was recently examined by Piga et al. (2019) and Lucchini
et al. (2020). However, the authors do not consider save
worst case behavior or optimization of the state estimator.
Andersson et al. (2016) optimize tuning parameters of soft
constraints for stochastic collision avoidance with MPC
taking into account probabilistic safety constrains.

Ensuring minimal worst case behavior has been previously
addressed in the FDI community by Marzat et al. (2011).
Ghosh et al. (2018) used Bayesian optimization to search
for adversarial examples for controllers. Krause and Ong
(2011) considered finding optimal parameters for different
application-contexts using Bayesian optimization.

Our main contributions in the context of parameter tuning
for MPC with Bayesian optimization are to

• ensure acceptable worst case behavior by explicitly
considering model uncertainty while
• simultaneously optimizing the MPC and KF

parametrization and
• expand previous work on outlier detection by adding

a classification step to prohibit resampling in an area
where outliers often occur.

The presented method can be used to find a safe
parametrization to initiate experimental manual tuning,
tuning with safe Bayesian optimization [Berkenkamp et al.
(2016)] or other online learning methods.

The paper is organized as follows: In Section 2, the appli-
cation system is described in detail and the optimization
problem is stated. In Section 3, Bayesian optimization
including design choices made for the problem at hand is
introduced. Section 4 shows how it is used in a two stage
framework to solve the problem described in Section 2. In
Section 5, the presented approach is evaluated.

2. PROBLEM STATEMENT

Milling is a fast and flexible machining process, which is
highly acclaimed in production due to its productivity.

1 Accurate modeling is possible via dexel simulations. Computa-
tional costs prohibit their usage in controller synthesis.

During milling, a rotating tool is moved against a work-
piece to cut material along a predefined trajectory. Thus,
a desired geometry can be manufactured. The presented
optimization approach is examined for the quality control
during milling. The quality of the production is defined
by the deviation of the manufactured geometry from the
desired geometry. This deviation relates to the deflection of
the working tool during the process. Hence, a reproducible
quality for the milling process requires the control of the
cutting force, which leads to tool deflection. The force in
turn relates to the feed velocity of the tool. Therefore,
a multi-stage approach is applied, where on the outer
loop the trajectory for the feed velocity is optimized with
respect to the resulting force and on the inner loop the
feed velocity of the tool is controlled. The tool dynamic is
described as

v̈ (t) + 2Dω0 v̇ (t) + ω2
0 v (t) = K ω2

0 u (t− td) , (2)

where v (t) stands for the tool velocity at time t in
dependence of the control input u after the delay-time td
and the model parameters K for gain, D for damping and
ω0 for resonance frequency.

In order to avoid high cutting forces before occurrence, a
model predictive control strategy is applied for the quality
control during milling. In addition, a Kalman-Filter (KF)
is used for state-estimation during the process. The reader
may refer to previous work by Stemmler et al. (2019) for
further details about the structure of the control approach.

The performance of the overall control strategy depends
in part on the parametrization of the MPC and KF.
Namely for the MPC, the prediction horizon Hp, control
horizon Hu are relevant parameters. Additionally, the ratio
λMPC ∈ R between the weighting matrices Q = I and
R = I 10λMPC in the MPC cost function,

J = ||e||Q + ||∆u||R (3)

are considered within optimization. This way, the devi-
ation from the desired trajectory e and the change of
the control input ∆u can be weighted differently during
optimization. Regarding the KF, the covariance matrix for
measurement noise is predefined as RKF = I ·0.001 which
corresponds to an experimentally determined variance of
the sensor. In order to weight between prediction and mea-
surement at correction, the covariance matrix for process
noise is set as QKF = I 10λKF by the ratio λKF ∈ R.

Satisfactory tracking performance for the underlying con-
trol of the feed velocity was achieved with the hand-tuned
default parametrization (Hu = 15, Hp = 15, λMPC = −3,
λKF = −1) on the nominal model. In order to increase
the robustness of the parameterization, sources of uncer-
tainty are introduced in the simulation model. Measure-
ment signals are perturbed with zero mean Gaussian noise.
Additionally, a model plant mismatch is introduced by
modifying the plant models stiffness ω̃0 = ω0 · θe,1 and

damping D̃ = D · θe,2. Note that while the simulated
process model is disturbed, the internal MPC model is
kept constant. From now on we refer to certain realizations
of θe = {θe,1, θe,2} as context. Note that in general other
types of environmental conditions can be included in the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10524

contextual variables such as different reference trajectories
or operating modes.

Goal now is to find a robust set of parameters θc =
{Hu, Hp, λMPC, λKF} with respect to a known probability
distribution of θe. The inputs and outputs of the simula-
tion model used during optimization are shown in Fig.
1. Note that even in a fixed context, the simulation is
probabilistic because the realization of measurement noise
is drawn at random.

Fig. 1. Overview of the simulation environment

The optimization problem is stated in Eq. 5. The objec-
tive function (Eq. 5a) is the expected (with respect to
the assumed probability distribution of θe) value of the
integral tracking error, CEITE(θc). For one simulation it is
calculated by comparing the actual velocity vk at timestep
k with the reference velocity vref,k. Here it is assumed
that θe is distributed according to a truncated normal
distribution with no correlation in between components
of θe as follows:

θe ∈ R2 ∼ ψ(µe, σ
2
eI,θ

min
e ,θmax

e) (4)

where ψ(µe, σ
2
eI,θ

min
e ,θmax

e) is a normal distribution with

p(θe < θ
min
e) = p(θe > θ

max
e) = 0.

Note however that the presented approach is in principle
applicable for all probability distributions with bounded
support. In order to prevent damage to the milling head
the maximal overshoot in the worst case context ∆h∗(θc)
is constrained (Eq. 5e). This constraint is not explicitly
considered in the original MPC formulation 2 . In addition,
to be able to use cost efficient hardware the maximal
computation time T (θe|θc) is limited (Eq. 5d). With a
probability of Φ(z = 3) = 0.96 it is not allowed to exceed
a critical value of Tmax.

min
θc

CEITE(θc) = E

[
N∑
k=0

(vref,k − vk(θe|θc))2
]

(5a)

s. t. θc ∈ Z2 × R2 (5b)

θmin
c ≤ θc ≤ θmax

c (5c)

p(T (θe|θc) < Tmax) > Φ(z = 3) = 0.96 (5d)

max
θe

(∆h(θe|θc)) = ∆h∗(θc) < ∆hmax (5e)

It should be noted that the optimization methodology
presented is not limited to the constraints and objective
2 This constraint can be integrated in the MPC formulation. This
might increase calculation time and its fulfillment cannot be guar-
anteed if the MPC model is inaccurate as it is in the presented case.

function chosen here. Arbitrary constraints or performance
matrices can be used. Preferably those which cannot be
explicitly considered in the controller.

3. NOISY CONSTRAINED BAYESIAN
OPTIMIZATION WITH OUTLIER DETECTION

The aim of this Section is to explain the fundamentals of
noisy Bayesian optimization with outlier detection as well
as highlight the design choices made for the problem at
hand. Two instances of the algorithm described in this
section are used in a hierarchical approach as will be
described in Section 4. For notational simplicity, we now
consider a simplified version of the optimization problem
stated in Eq. 5:

min
x

E [y(x)] (6a)

s. t. x ∈ Rm (6b)

p(g(x) < gmax) > Φ(z) (6c)

The objective function y(x) as well as the constrained
black-box response g(x) are corrupted by noise. Each time
the Black-Box is evaluated with parameters xi, corre-
sponding noisy samples yi and gi are obtained.

Algorithm 1 Bayesian optimization with outlier detec-
tion
1: Initial sampling of X1, Y1 and G1:

2: for k = 1; 2; . . . ; do

3: update probabilistic surrogate models using
X̃k+1,Ỹk+1 and G̃k+1

4: select xk+1 by optimizing an acquisition function:
xk+1 = arg maxx(α(x))

5: query objective function to obtain yk+1 and gk+1

6: augment data Xk+1 = {Xk, xk+1},
Yk+1 = {Yk, yk+1}, Gk+1 = {Gk, yk+1},

7: X̃k+1, Ỹk+1, G̃k+1 ← OutDetect(Xk+1, Yk+1, Gk+1)

8: end for

Algorithm 1 shows the procedure of Bayesian optimiza-
tion. A detailed introduction to Bayesian optimization
is provided for example by Shahriari et al. (2016). The
main idea is to use all sample points obtained so far
(Xk = [x1, . . . , xk], Yk = [y1, . . . , yk], Gk = [g1, . . . , gk])
to construct fast-to-evaluate surrogate models of y(x) and
g(x) at each iteration (Line 3) and use these models to
search for the next promising sample point. This way
the surrogate models are iteratively refined in promising
regions.

In this work Gaussian process regression (GPR) models
are used as surrogate models. A separate GPR model is
built for each of the responses. For a detailed introduction
on GPR the reader is referred to Rasmussen and Williams
(2006). GPR is a nonparametric regression and interpo-
lation model which provides a probabilistic prediction of
each of the black-box responses for parametrization which
have not been evaluated yet. The model is here defined
by a constant a-priori mean, a squared exponential kernel
with automated relevant detection and a homoscedastic
Gaussian observation model (to account for the noisy
samples). Hyperparameters are optimized at each iteration

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10525

by maximizing the likelihood. Hyper-priors are placed on
the hyperparameters to include expert knowledge in the
optimization and avoid potential over fitting. E.g. the
lower bound on the kernel length scales in the direction of
prediction and control horizon are set to lmin

Hu
= lmin

Hp
= 0.22

which roughly speaking corresponds to a covariance of the
objective function values of at least 0.1 if the horizons are
changed by one.

Based on these models, an acquisition function α(x) is
used to balance between exploitation (sampling close to
the current optimum) and exploration (sampling where
the model is uncertain) when searching for the next sample
point (Line 4). Here the so called reinterpolation procedure
(RI) proposed by Forrester et al. (2006) is used. Using RI
prohibits multiple evaluations of the objective function for
identical parameters by fitting an intermediate interpolat-
ing surrogate model. This is beneficial in the presented
case since repeating the second stage of the optimization
(cf. Section 4.2) twice for identical parameters would be a
waste of computational resources. In addition to maximize
the noisy expected improvement of the objective function
by maximizing RI(xq), we want our query point to be
feasible pfeas(xq), to not be an outlier pout(xq) with off-the-
charts objective function value and we want the simulation
not to fail pfail(xq). Therefore, the following acquisition
function is used:

α(xq) = RI(xq)pfeas(xq)(1− pout(xq))(1− pfail(xq)) (7)

The probability of feasibility is calculated by using the
probabilistic predictions of g(x). At each iteration, the
next sample point is chosen by maximizing α(xq) using
particle swarm optimization.

After evaluation of the new sample point (Line 5), outlier
detection is performed (Line 7). In Bayesian optimization
with GPR, special care needs to be taken of outliers. At
the problem at hand, some parametrization may lead to
very large objective function values. This is problematic
because outliers can severely corrupt the probabilistic
surrogate models, leading to unrealistically small length
scales. In order to detect outliers we follow the approach
presented by Martinez-Cantin et al. (2018). In this paper
outliers are detected by first fitting a robust GPR model
with a student-t observation model and then detecting the
observations with a low likelihood.

In the original paper, outliers are discarded from the set
of observations. We take this approach one step further by
building a k-nearest-neighbor (knn) classifier 3 to estimate
the probability pout(xq) of observing an outlier at a given
location xq. The training data set of the knn-classifier
consists of all sample points within the controller design
parameter space labeled according to whether they were
identified as outliers or not.

For some parameterizations the control algorithm to be
configured may lead the simulation environment to crash
due to numerical issues. To prevent repetitive sampling in
these areas an additional knn-classifier is built to estimate

3 A squared exponential kernel as distance metric and a squared
inverse distance weighting is used .

the probability pfail(xq) of a parametrization xq to lead to
a crash.

4. TWO STAGE BAYESIAN OPTIMIZATION FOR
MPC AND KF TUNING

The algorithm presented in Section 3 is applied within
a two stage optimization approach to solve the problem
stated in Eq. 5. An overview is given in Fig. 2. Stage
one has the task to find the optimal controller config-
uration characterized by low expected integral tracking
error, acceptable worst case overshoot and real time ca-
pable execution time. For each controller configuration,
θ′c, queried by Stage one, the overshoot belonging to the
worst possible combination of environmental variables,
∆h∗(θ′c) = maxθe

(∆h(θe|θ′c)), is searched for in Stage
two. This is achieved by solving a second stage optimiza-
tion problem and ensures that constraint 5e is satisfied.
This procedure is similar to the one presented by Marzat
et al. (2011) in the context of FDI.

Fig. 2. Overview of the two stage optimization approach

4.1 Stage one: Optimize controller parameters

The algorithm presented in Section 3 is used within Stage
one. Although p(θe) is assumed to be a truncated normal
distribution, we cannot make any assumptions about the
true structure of the probability density function of a
response (i.e. integral tracking error, return time, and
maximum overshoot) for a given controller parametriza-
tion θc because the simulation model is non-linear. By
using GPR with Gaussian likelihood (observation model)
we approximate the true unknown probability distribution
of the responses, by a deterministic function corrupted
by Gaussian noise. This way in total 3 GPR models are
built - one for each of the relevant black-box responses:
CEITE(θc), T (θc) and ∆h∗(θc). Latin hypercube sampling
is used as initial sampling. As the objective function (Step
5 of Algorithm 1) of stage one, stage two of the optimiza-
tion procedure is called.

4.2 Stage two: Find worst possible context

The goal of Stage two is to find the maximum overshoot
for a given controller parametrization θ′c queried by Stage
one. Note that using RI in the first stage prohibits multiple
evaluations of the second stage with identical controller
parameters. Noisy Bayesian optimization is used in this
Stage, as well. But in this case only box constraints need
to be considered. Outlier detection is also not used. There-
fore, only one GPR model to approximate ∆h(θe|θ′c) is
built and standard RI is used as the acquisition function.
Initial sampling is performed by drawing 5 different con-
texts from the truncated normal distribution of environ-
mental variables. The corresponding 5 different integral

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10526

tracking errors and return times of the initial sampling
are returned to Stage one. The overshoot is maximized
in the successive steps. Stage two is terminated either if
an overshoot exceeding the maximum overshoot allowed
was observed or if 10 evaluations were performed. Note
that the GPR models built in both stages are completely
independent from one another. This follows the approach
by Marzat et al. (2011). An alternative approach would be
to use a joint model using the controller parameter as well
as the environmental parameters as explanatory variables
for the overshoot as for example explained by Krause and
Ong (2011).

5. RESULTS

The algorithm presented in Sections 3 and 4 is applied
to the optimization problem stated in Section 2 and was
implemented in MATLAB 2017b using the GPML tool-
box [Rasmussen and Nickisch (2010)] to create the GPR
surrogate models. Additionally, a simplified benchmark
test case (Section 5.2) is used to compare the developed
approach with three different benchmark approaches (Sec-
tion 5.1). Parameters are optimized with respect to a single
reference velocity trajectory. This is reasonable because in
a real world milling application we can expect to know
the desired trajectory in advance. However, the presented
approach is not limited to use only one single reference
trajectory during optimization.

5.1 Benchmark algorithms

The presented algorithm (Algo. IV) is compared with three
benchmark algorithms (Algo. I -III):

I Bayesian optimization on nominal model
II Random sampling in Stage one

III Bayesian optimization without outlier detection
IV Bayesian optimization with outlier detection

The goal is to evaluate the performance impact of the
individual proposed optimization steps. Algo. I is used
for parameter optimization on the nominal model whereas
Algo. (II-IV) are run on randomly varying realizations of
the perturbed model using the second Stage presented in
Section 4.2 to determine feasibility w.r.t. constraint 5e.
Algo. II uses random sampling in Stage one instead of
finding the next sample point by maximizing the acquisi-
tion function presented in Eq. 7. Algo. III is identical to
the presented approach except that the outlier detection
and classification scheme is not used.

5.2 Benchmark test case

In order to compare the algorithms quantitatively each
algorithm is run 10 times for 3 hours (only one hour
for (Algo. I)) respectively on a simplified benchmark test
case 4 . The benchmark test case considers only two con-
troller parameters Hu and λMPC. The prediction horizon
Hp is set to the controller horizon Hu and λKF is kept
at its hand-tuned default value. In each of the 10 runs,
initial sampling was kept identical for each algorithm. The

4 All experiments were performed on a desktop PC with an AMD
Ryzen 7 1700 Eight-Core Processor @3GHZ and 16 GB Ram

validation performance of a given parametrization is esti-
mated by running the simulation with 25 different random
draws from the distributions of model uncertainties. Table
1 shows the average quality of the final solution of each
of the algorithms. Fig. 3 depicts the average validation
objective function of the feasible best solution after a given
number of simulations during optimization.

Table 1. Quality of the final solution averaged
over 10 runs (benchmark test case)

Algorithm: I II III IV

Feasibility 50% 100% 90% 100%
Obj. fun. validation 0.147 0.182 0.148 0.155
∆ Obj. fun. val. - train +0.042 +0.001 +0.003 +0.007

Fig. 3. Validation performance after a given number of
iterations considering only feasible solutions averaged
over 10 runs (benchmark test case)

It becomes apparent that only optimizing the MPC on
the nominal model (Algo. I.) is not sufficient. Although it
requires the algorithm only ∼ 25 simulations to converge,
half of the time, the final solution is infeasible due to too
much overshoot (Constraint 5e) when model uncertainty is
incorporated during validation. Additionally, the expected
integral tracking error is underestimated substantially.

In contrast, Algos. II-IV are able to consistently find solu-
tions which are feasible during validation and only slightly
underestimate the validation integral tracking error. Ran-
dom Sampling (Algo. II) is not able to find a competitive
solution. Although the outlier detection and classification
scheme used in Algo. IV improves the initial convergence
(until around 200 simulations), the average performance
of the final solution is slightly better in Algo. III.

Preliminary experiments have shown that the surrogate
model of the objective function generated with outlier de-
tection is more plausible than without outlier detection 5 .
Without outlier detection, negative integral tracking errors
are predicted in some regions and the surrogate models are
far less smooth and in general uncertainty is larger.

Furthermore, it was observed that with outlier detection,
the hyper parameter optimization favored larger length
scales which is consistent with the smoother predictions
5 Plots are not shown here due to space limitations.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10527

and smaller uncertainty. We hypothesize that the larger
length scales hinder exploration in the later stages of
optimization due to lower model uncertainty. Therefore
interestingly, the more realistic fit obtained by GPR with
outlier detection does not automatically mean that opti-
mization performance is increased.

The experiments conducted by Martinez-Cantin et al.
(2018) have shown that outlier detection consistently im-
proves the optimization procedure. This somewhat con-
tradicts our findings. One reason is that in comparison
to Martinez-Cantin et al. (2018) we have deterministic
outliers, which consistently occur in one area of the design
parameter space instead of random outliers.

Fig. 4. Final surrogate model of the benchmark test case
with estimated feasible area and objective function.

Fig. 4 depicts the final estimated behavior of the closed
loop within the controller design parameter space. In
general the results are comprehensible. Calculation time
is solely a function of Hu. Due to the presented outlier
classification scheme we can observe that deterministic
outliers (very large integral tracking errors) appear in
areas with small Hu and large λMPC. In contrast, the worst
case overshoot constraint is violated for small values of
λMPC (i.e. low penalty on change of inputs).

Interestingly, the optimum has a smaller Hu than the
calculation time constraint would allow. At first glance
this may be counterintuitive. But given enough model
uncertainty a longer prediction horizon does increase the
chance of misprediction and therefore of critical overshoot.
The default parametrization is located in the infeasible
region. It was therefore considerably improved by the
optimization approach.

5.3 Full test case

In the full test case all four parameters are considered for
optimization θc = {Hu, Hp, λMPC, λKF}. Algos. III & IV
were run 4 times for 6 hours each.

The best and average validation performance as well as
the average feasibility of the final solution are shown in
Table 2. Results indicate that the proposed algorithms
can find a competitive solution even in a higher dimen-
sional controller parameter space. Yet performances of
the algorithms are less consistent than in the benchmark
test case. Additionally, we can observe that the default
parametrization of λKF = −1 and Hp = Hu could not be
improved upon.

Table 2. Validation obj. fun. of the final solu-
tion averaged over 4 runs (full test case)

Best Average Feasibility

Algo. III 0.143 0.151 75%
Algo. IV 0.141 0.174 75%

Temporarily, an alternative parametrization was consid-
ered to be the best feasible solution during the course of
optimization. This parametrization is shown with some
of its neighboring parameterizations in Table 3. Similar
parameterizations were found in 50% of the runs of Algos.
III and IV.

Table 3. Parametrization with the best valida-
tion performance and neighboring parameteri-

zations.

Hu Hp λMPC λKF Obj. Fun. Feasibility

1 4 −3.9 2 0.12 3

1 3 −3.9 2 0.19 7

1 5 −3.9 2 0.22 3

1 4 −3.9 −1 0.23 3

2 4 −3.9 2 0.14 7

Although this parametrization shows superior validation
performance in comparison to the best solution of the
simplified test case, its neighboring solutions are either
infeasible or the expected integral tracking error is unac-
ceptably high. Therefore from a control engineering per-
spective this solution cannot be considered robust and
would be rejected in practice.

Fortunately, during later stages of the optimization these
parameterizations are discarded by the optimization al-
gorithms, because of the worse performing or infeasible
neighborhood. This can be explained by the fact that in
Bayesian optimization with GPR, black-box responses are
assumed to be smooth on the characteristic kernel length
scales. By setting a minimal kernel length scale based on
domain knowledge as done in the present work, the opti-
mizer implicitly considers the neighborhood of the optimal
solution. This can be seen as an additional advantage
of Bayesian optimization over other optimizers such as
genetic algorithms where only the best solution is con-
sidered regardless of its neighborhood. Additionally, this
alternative parametrization highlights the non-convexity
of the optimization problem and of the relevance of all
considered parameters.

6. SUMMARY & CONCLUSION

In this contribution Bayesian optimization was used to
simultaneously optimize hyperparameters of a MPC and
KF for an industrial CNC machining process. In order to

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10528

achieve a robust parameterization, the simulation model
was perturbed with model-plant mismatches randomly
drawn from a known distribution with bounded support
as well as randomly drawn measurement noise. Goal was
to minimize expected integral tracking error, ensure worst
case safety by constraining the maximum overshoot and
enforce real-time capability by limiting the return time.
The optimization problem is solved using a two-stage
Bayesian optimization procedure relying on GPR with
Gaussian observation model, the RI-acquisition function
as well as outlier detection and classification. On a simpli-
fied benchmark test case, it was shown that optimization
on the nominal model does not produce satisfactory pa-
rameter combinations. The default parametrization as well
as random sampling was outperformed considerably. It was
also observed that outlier detection did not consistently
improve the convergence although surrogate models are
more comprehensible. The empirical performance model
obtained through Bayesian optimization allowed to an-
alyze and visualize the results. Optimization on the full
test case revealed the relevance of all parameters and the
non-convexity of the optimization problem. Furthermore,
it was shown how the model assumptions encoded in the
hyperprior helps the optimization to avoid narrow and
physically incomprehensible local minima.

The presented approach can help control engineers to find
an initial robust and safe parametrization for controllers
and state estimators given a closed loop simulation of
the system and a probabilistic assumption over the model
plant mismatch. It can empirically enforce constraints or
performance metrics which are not or cannot explicitly
be considered within the controller. This parametrization
can then be further improved online for example by safe
Bayesian optimization.

REFERENCES

Andersson, O., Wzorek, M., Rudol, P., and Doherty,
P. (2016). Model-predictive control with stochastic
collision avoidance using bayesian policy optimization.
In 2016 IEEE International Conference on Robotics
and Automation (ICRA), 4597–4604. IEEE. doi:
10.1109/ICRA.2016.7487661.

Bansal, S., Calandra, R., Xiao, T., Levine, S., and Tomiin,
C.J. (2017). Goal-driven dynamics learning via bayesian
optimization. In 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), 5168–5173. IEEE. doi:
10.1109/CDC.2017.8264425.

Berkenkamp, F., Schoellig, A.P., and Krause, A. (2016).
Safe controller optimization for quadrotors with gaus-
sian processes. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), 491–496. IEEE.
doi:10.1109/ICRA.2016.7487170.

Calandra, R., Seyfarth, A., Peters, J., and Deisenroth,
M.P. (2016). Bayesian optimization for learning gaits
under uncertainty. Annals of Mathematics and Artifi-
cial Intelligence, 76(1-2), 5–23. doi:10.1007/s10472-015-
9463-9.

Forrester, A., Keane, A., and Bressloff, N. (2006). Design
and analysis of noisy computer experiments. AIAA
Journal, 44(10), 2331–2339. doi:10.2514/1.20068.

Ghosh, S., Berkenkamp, F., Ranade, G., Qadeer, S.,
and Kapoor, A. (2018). Verifying controllers against
adversarial examples with bayesian optimization. In

2018 IEEE International Conference on Robotics
and Automation (ICRA), 7306–7313. IEEE. doi:
10.1109/ICRA.2018.8460635.

Hutter, F., Hoos, H.H., and Leyton-Brown, K. (2011).
Sequential model-based optimization for general algo-
rithm configuration. In C.A.C. Coello (ed.), Learning
and Intelligent Optimization, 507–523. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Khosravi, M., Eichler, A., Schmid, N., Smith, R.S., and
Heer, P. (2019). Controller tuning by bayesian opti-
mization an application to a heat pump. In 2019 18th
European Control Conference (ECC), 1467–1472. IEEE.
doi:10.23919/ECC.2019.8795801.

Krause, A. and Ong, C.S. (2011). Contextual gaussian
process bandit optimization. In J. Shawe-Taylor, R. S.
Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger
(eds.), Advances in Neural Information Processing Sys-
tems 24, 2447–2455. Curran Associates, Inc.

Lucchini, A., Formentin, S., Corno, M., Piga, D., and
Savaresi, S.M. (2020). Torque vectoring for high-
performance electric vehicles: an efficient mpc cali-
bration. IEEE Control Systems Letters, 1. doi:
10.1109/LCSYS.2020.2981895.

Marco, A., Hennig, P., Bohg, J., Schaal, S., and Trimpe,
S. (2016). Automatic lqr tuning based on gaus-
sian process global optimization. 270–277. doi:
10.1109/ICRA.2016.7487144.

Martinez-Cantin, R., Tee, K., and McCourt, M. (2018).
Practical bayesian optimization in the presence of out-
liers. In A. Storkey and F. Perez-Cruz (eds.), Pro-
ceedings of the Twenty-First International Conference
on Artificial Intelligence and Statistics, volume 84 of
Proceedings of Machine Learning Research, 1722–1731.
PMLR, Playa Blanca, Lanzarote, Canary Islands.

Marzat, J., Piet-Lahanier, H., and Walter, E. (2011).
Min-max hyperparameter tuning, with application to
fault detection. 18th IFAC World Congress. doi:
10.3182/20110828-6-IT-1002.00476.

Neumann-Brosig, M., Marco, A., Schwarzmann, D., and
Trimpe, S. (2019). Data-efficient auto-tuning with
bayesian optimization: An industrial control study.
IEEE Transactions on Control Systems Technology, 1–
11. doi:10.1109/TCST.2018.2886159.

Piga, D., Forgione, M., Formentin, S., and Bemporad, A.
(2019). Performance-oriented model learning for data-
driven mpc design. IEEE Control Systems Letters, 3(3),
577–582. doi:10.1109/LCSYS.2019.2913347.

Rasmussen, C.E. and Nickisch, H. (2010). Gaussian
processes for machine learning (gpml) toolbox. J. Mach.
Learn. Res., 11, 3011–3015.

Rasmussen, C.E. and Williams, C.K.I. (2006). Gaussian
Processes for Machine Learning (Adaptive Computation
and Machine Learning). The MIT Press.

Shahriari, B., Swersky, K., Wang, Z., Adams, R.P.,
and de Freitas, N. (2016). Taking the human
out of the loop: A review of bayesian optimiza-
tion. Proceedings of the IEEE, 104(1), 148–175. doi:
10.1109/JPROC.2015.2494218.

Stemmler, S., Ay, M., Schwenzer, M., Abel, D., and
Bergs, T. (2019). Model-based predictive force
control in milling. In 2019 18th European Con-
trol Conference (ECC), 4313–4318. IEEE. doi:
10.23919/ECC.2019.8795716.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10529

